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Abstract. Smart meters are increasingly being deployed to measure
electricity consumption of residential as well as non-residential consumers.
The readings reported by these meters form a time series, which is stored
at electric utility servers for billing purposes. Invalid readings may be re-
ported because of malicious compromise of the smart meters themselves,
or of the network infrastructure that supports their communications. Al-
though many of these meters come equipped with encrypted communica-
tions, they may potentially be vulnerable to cyber intrusions. Therefore,
there is a need for an additional layer of validation to detect these in-
trusion attempts. In this paper, we make three contributions. First, we
show that the ARMA model proposed in the anomaly detection litera-
ture is unsuitable for electricity consumption as most consumers exhibit
non-stationary consumption behavior. We use automated model fitting
methods from the literature to show that first-order differencing of these
non-stationary readings makes them weakly stationary. Thus, we pro-
pose the use of ARIMA forecasting methods for validating consumption
readings. Second, we evaluate the effectiveness of ARIMA forecasting
in the context of a specific attack model, where smart meter readings
are modified to steal electricity. Third, we propose additional checks on
mean and variance that can mitigate the total amount of electricity that
can be stolen by an attacker by 77.46%. Our evaluation is based on a
real, open dataset of readings obtained from 450 consumer meters.
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1 Introduction

The Industrial Control Systems Cyber Emergency Response Team (ICS-CERT)
within the U.S. Department of Homeland Security works to reduce risks within
and across all critical infrastructure sectors. They recently published an incident
response letter describing an unauthorized access to an electric utility’s control
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system network [11]. Further, a network host-based forensic analysis led them to
find that the utility’s network was likely exposed to multiple security threats. In
order to defend against these attacks, they have proposed the use of monitoring
and detection methods, without making specific recommendations. In this paper,
we present specific algorithms that a utility can use to verify the integrity of
readings reported by smart meters that measure electricity consumption. In the
U.S. alone, 50 million such smart meters had been deployed by utilities as of
July 2014 [12]. Our data validation methods are envisioned to run on centralized
servers in each of these utilities, where the reported measurements from all these
meters are accessible.

In addition to the well-known benefits of smart meters, such as automated
data collection and estimation of the state of the electric distribution grid, util-
ities such as BC Hydro believe that these meters would aid them in detecting
electricity theft [3]. This belief was challenged in 2010, when the Cyber Intel-
ligence Section of the FBI reported that smart meters were hijacked in Puerto
Rico, causing electricity theft amounting to annual losses for the utility esti-
mated at $400 million [7]. Given this report of the compromise of a smart meter
installation, large-scale smart meter rollout efforts could potentially increase the
likelihood that other smart meter installations could be compromised. In ad-
dition to electricity theft, other attacker models in the context of Advanced
Metering Infrastructure (AMI) are discussed in [4]. In [20], we suggest that an
attacker may destabilize a real-time electricity market system by compromis-
ing the electricity price relayed to consumers. Equivalently, it may be possible
to destabilize the system by compromising smart meter consumption readings,
causing suppliers to respond to the demand by modifying the electricity price.

It must be noted that smart meters, such as those manufactured by GE [5],
are equipped with encrypted communication capabilities and tamper-detection
features. However, as discovered by ICS-CERT, reliance on these mechanisms
alone is not sufficient to ensure total defense against cyber intrusions that ex-
ploit communication vulnerabilities. The anomaly detection methods presented
in this paper assume that an attacker has compromised the integrity of smart
meter consumption readings, and aim to mitigate the impact of such an intru-
sion. How the attacker can get into a position where he is capable of modifying
communication signals is not a focus of this paper and is discussed in [13], [15],
and [16]. Our aim is to validate the data reported to the utility by modeling
the normal consumption patterns of consumers and looking for deviations from
this model. We use data-driven insights on consumption characteristics, simi-
lar to our award-winning work that employs Principal Component Analysis [2].
Also, our algorithms for intrusion detection are specific, as opposed to high-level
guidance for network administrators given in [4] and [11].

The Auto-Regressive Moving Average (ARMA) and Auto-Regressive Inte-
grated Moving Average (ARIMA) models are used to predict future data points
in a time series. ARIMA forecasting is used to predict annual electricity con-
sumption in [17] and hourly electricity prices in [6]. We predict electricity con-
sumption at a half-hour granularity using ARIMA models.
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In this paper, we make three contributions. First, we show that the ARMA
model proposed in the anomaly detection literature [14] is unsuitable for elec-
tricity consumption as most consumption behavior is non-stationary. We use
cross-validation techniques in [10] to show that first-order differencing of the
consumption data makes the data weakly stationary. Thus, the ARIMA model
is a better model for capturing consumption behavior and forecasting future
behaviors. Second, we evaluate the effectiveness of ARIMA forecasting in the
context of a specific attack model, where smart meter measurements are modi-
fied in a way that leads to electricity theft. Third, we propose additional checks
that can mitigate the total amount of electricity that can be stolen by an at-
tacker by 77.46%. Our evaluation is based on an open dataset of meter readings
from a real deployment with 450 consumers.

2 Dataset Used in the Study

The data we used was collected by Ireland’s Commission for Energy Regulation
(CER) as part of a trial that aimed at studying smart meter communication
technologies. This is the largest, publicly available dataset that we know of.
The fact that the dataset is public makes it possible for researchers to replicate
and extend this paper’s results. We evaluate our models and algorithms on 450
consumers from this dataset. For each of these consumers, the smart meter
readings are collected at a half-hour time resolution, for a period of up to 74
weeks. The consumers include 377 residential consumers, 18 small and medium
enterprises (SMEs), and 55 unclassified by CER.

We assume that this dataset is free from maliciously compromised measure-
ments, and use the data to understand normal consumption behavior.

3 Modeling Approach

The underlying assumption of the ARMA model is that the time series data
is weakly stationary. Stationary data has three characteristics: (1) the mean is
constant, (2) the variance is constant and (3) the covariance of the signal with
itself at different time lags is constant. We define a weakly stationary signal as one
that fails condition (1), but satisfies conditions (2) and (3). The moving average
component of ARMA automatically adjusts for changing means, so condition
(1) is not important for the suitability of ARMA for a given time series.

For the electricity consumption time series of a single consumer at time t,
given by the value of Xt, the ARMA model is defined as follows:

Xt = c+ εt +

p∑
i=1

αiXt−i +

q∑
j=1

βjεt−j (1)

In the auto-regressive component, Xt is an affine function with intercept c
of the time signal at p previous time points Xt−i with linear coefficients αi. The
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moving average component of ARMA handles weakly stationary signals that do
not have constant means. It assumes that i.i.d Gaussian noise εt ∼ N(0, σ2

ε )
compounds over q time periods to contribute linearly to the signal Xt with
coefficients βj .

The ARMA model does not handle largely changing covariance in non-
stationary signals. Fig. 1(a) illustrates the Auto-Correlation Function (ACF)
for a single consumer. The ACF is the correlation of the time series with itself at
a specified lag. We extract the time series for a single consumer and depict the
ACFs for 350 half-hour lags. There are 336 half-hours in a week, so the figure
captures a little over a week. As expected, high auto-correlation was observed for
this consumer at multiples of 48 half-hour (or 1 day) time periods. These high
correlations persist for all lags throughout the consumption history captured in
the dataset. Further, the plot demonstrates failure of the third requirement for
stationarity since the ACFs change significantly over time. This lack of station-
arity implies that the ARMA model would fail to provide a reliable prediction of
the next point in the time series. The ACFs need to rapidly decrease to constant
or insignificant values in order for the ARMA model to reliably work. The rate
of ACF decrease will determine the model order.
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(a) ACFs without differencing
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(b) ACFs with first-order differencing

Fig. 1: Auto-Correlation Function of the time series signal of a single consumer.
The lag is in terms of half-hour time periods.

We propose an alternative model, the ARIMA model, which has an additional
differencing term. We find that first-order differencing causes rapidly decreasing
ACFs for consumers who have non-stationary consumptions. First-order differ-
encing modifies the ARMA model in Equation (1) as follows. Instead of pre-
dicting the next value in the time series, we predict the difference between the
current and next value in the time series as a linear function of past differences.

Xt−Xt−1 = c+ (εt− εt−1) +

p∑
i=1

αi(Xt−i−Xt−i−1) +

q∑
j=1

βj(εt−j − εt−j−1) (2)
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In essence, a linear model fits the gradients of the points as opposed to the
points themselves. After applying first-order differencing, we observe Fig. 1(b).
Clearly, the ACFs are close to zero beyond 3 time lags. Therefore, the order of
the ARIMA model is finite. In addition, the order is small (p and q are around
3), which is important to ensure minimal computational costs.
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Fig. 2: Distribution of differencing order among consumers of different types.

We have applied first-order differencing and observed its benefits for one
consumer, but visual inspection is impractical for our dataset of 450 consumers.
Therefore, we employ the Hyndman-Khandakar algorithm [10] to estimate the
model order. This method combines cross-validation techniques, unit root tests,
and maximum likelihood estimation.

The results of the Hyndman-Khandakar algorithm are as follows. While the
autoregressive (p) and moving average order (q) range from 0 to 5, the differenc-
ing order is either 0 or 1. A minority of consumers (35 out of 450, or 7.78%) have
stationary consumption patterns and thus the ARMA model proposed in [14]
is appropriate for this minority. However, for 92.22% of consumers, first-order
differencing is required, justifying our ARIMA model proposal. The distribution
of consumers, segregated by consumer type is captured in Fig 2.

Once the ARIMA model is estimated, the next consumption point in the
time series Xt is forecast. From this point forecast, a 95% confidence interval C
is constructed with the assumption of i.i.d. Gaussian errors εt as described in [1]:

C = Xt ± 1.96σε (3)

Here 1.96 comes from the fact that 95% of the standard normal distribution
lies within [-1.96,+1.96]. Recall that σε was the standard deviation of the i.i.d.
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(a) ARIMA prediction for Consumer 1
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(b) ARIMA prediction for Consumer 2

Fig. 3: ARIMA forecasting of points and 95% confidence intervals.

Gaussian errors εt in 1. The prediction by ARIMA and the confidence intervals
for two different consumers are illustrated in Fig. 3. In this paper, we propose the
use of these confidence intervals for anomaly detection. If a smart meter reading
lies outside these intervals, we say with 95% confidence that it is anomalous. Also
note that there is an order of magnitude difference between the consumptions of
these two consumers and that the confidence intervals for Consumer 2 in Fig. 3(b)
are relatively tighter, because of lower variance in consumption patterns. Tighter
confidence intervals are preferred, as faults or attacks become easier to detect.

In our dataset, the consumers do not produce electricity and sell it back
to the grid, so the consumption is never negative. Thus, the lower bound of the
confidence interval is only useful if it is positive, as negative readings reported by
smart meters are naturally anomalous. Note that the lower bound for Consumer
1 in Fig. 3(a) goes negative, while it stays positive for Consumer 2. The reason
why the lower bound goes negative is due to the symmetry in the Gaussian error
assumption that is inherent in ARIMA and ARMA models. However, in future
scenarios where consumers supply to the grid, or consume a negative amount of
electricity, a negative lower bound of the confidence interval will become useful.

4 Electricity Theft Attack Model

The ARIMA confidence interval provides a bound on the measurements and
serves as a good detector for invalid measurements for faulty meters. However,
these bounds are not sufficient to detect attacks in which the attacker has full
knowledge of the system. We consider a specific attack model in which the at-
tacker steals electricity from a neighbor for monetary gain. Let the attacker’s
consumption at time t be At and the neighbor’s consumption be Xt. The at-
tacker compromises his neighbor’s smart meter and has it report a consumption
of X ′t > Xt. At the same time, the attacker under-reports his own consump-
tion by compromising his meter’s reading to A′t = At − (X ′t − Xt). Therefore,
he steals a positive amount from the neighbor of (X ′t − Xt). He gets billed for
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A′t < At while the neighbor gets billed for X ′t > Xt. Note that balance checks
(discussed by researchers at Mitsubishi [18]) at upstream points on the electric
distribution network would find that the expected sum as reported by the smart
meters (X ′t + A′t) matches the measured sum of (At + Xt). Thus, the attacker
has averted the balance check. In order to do so, he has increased his neighbor’s
smart meter consumption readings.

Without the ARIMA detection mechanism in place, the attacker can steal
an arbitrary amount of electricity. He is only constrained by the physical lim-
its of the electric distribution system. Specifically, electric distribution lines are
rated based on the maximum current that they can carry. If the demand from
the attacker increases (while the distribution voltage is kept approximately con-
stant by reactive power compensation), the current in the distribution lines will
increase. This generates heat in the form of I2R losses, where I is the current
and R is the resistance. If the current increases beyond the rated threshold, the
lines will exceed their thermal limits. The ensuing damage may lead to blackouts
or other equipment failures, which are an obvious indication of anomalous con-
sumption. Therefore, we assume that the attacker would try to avoid detection
by operating in a way that his own consumption is within these physical limits.
A detailed study on these physical limits can be found in [21].

4.1 ARIMA Attack

In order to avoid detection in the presence of ARIMA-based detection thresholds,
the attacker needs to ensure that the neighbor’s consumption remains within
the 95% confidence interval. If he steals more electricity from the neighbor, the
utility will find that the neighbor’s consumption exceeds the upper bound of the
confidence interval and is anomalous. On discovering this anomaly, the utility
may dispatch a technician to manually verify the integrity of the neighbor’s
meter. Such investigations are already being made periodically [8]. In this section,
we assume the worst-case scenario in which the attacker has full information and
can estimate the 95% confidence intervals just as well as the utility can.

The optimal value for the attacker to steal is the maximum that he can steal
while averting detection. This point is reached at the 95% confidence threshold.
Thus the attacker over-reports the neighbor’s consumption as the 95% threshold
point as shown in Fig 4. Since this attacks averts the ARIMA-based detector,
we refer to it as the ARIMA attack.

The ARIMA detector has bounded the attack, and the maximum electricity
stolen from the neighbor is given by the difference between the ARIMA Attack
curve and the Actual Consumption curve.

In order to detect the attack, the statistics of the window can be compared
against statistics of previous windows. Specifically, if the observed mean µ′ lies in
the interval [min({µ}),max({µ})] and the observed standard deviation σ′ lies in
the interval [min({σ}),max({σ})], then we say the new point is not a suspected
attack. Here {µ} and {σ} are the sets of means and standard deviations observed
in historic data. For the sake of standardization, we assume in our simulations
that each statistic (µ and σ) is calculated on a window of a week in the historic
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(a) Zoomed In (±12 hours)
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(b) Zoomed Out (±1 week)

Fig. 4: Illustration of an ARIMA attack on a neighbor. The attack is launched
at time 0 on the horizontal axis.
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(a) Zoomed In (±12 hours)
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Fig. 5: Illustration of Integrated ARIMA attack on a neighbor using the Trun-
cated Normal Distribution. The attack is launched at time 0 on the horizontal
axis.

data. Therefore, the cardinality of {µ} and {σ} is the number of weeks in the
utility’s smart meter data archive.

4.2 Integrated ARIMA Attack

As security researchers and practitioners, it is important for us to think about
how an attacker may evade our own checks, as no check is completely foolproof.
In our case, we find that, despite checks on the mean and standard deviation, it
is possible for the attacker to steal electricity. He may do so by generating false
consumption readings using a Truncated Normal distribution. This distribution
is specified by a range, mean and standard deviation. By setting the range to
the ARIMA confidence intervals, the attacker averts detection by the ARIMA
detector. In addition, he can set the mean to the extreme pointmax({µ}) to avert
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the check on the mean. At the max({µ}) value, the mean quantity of electricity
stolen is maximized while being undetectable. Finally, he can set the standard
deviation to the extreme point min({σ}) to avert the standard deviation check.
We assume that he wants to minimize the standard deviation to minimize the
variability that he needs to incorporate into his own consumption. If the attacker
were to steal electricity from multiple consumers, the variability would add up,
making it difficult for him to match with his own consumption in order to pass
the balance check.

Since this attack averts all these integrated checks, we called it the Inte-
grated ARIMA attack and it is illustrated in Fig. 5. It can be seen that the
Integrated ARIMA attack curve has significantly higher variance as compared
to the ARIMA attack curve in Fig. 4. However, its mean is lower, so we expect
less electricity to be stolen under the Integrated ARIMA attack. The trade-off
for the attacker is that the Integrated ARIMA attack is harder to detect.

5 Quantitative Evaluation

In this section, we present a simulation study of the ARIMA and Integrated
ARIMA attacks for the set of 450 consumers in the dataset. We built the attack
simulations using Python, with bridges to the R Forecast library by Hyndman
and Khandakar [10]. The Integrated ARIMA attack used truncated normal ran-
dom number generators, so we ran 50 simulation trajectories for each consumer
in order to reduce the bias in our random samples. The massive computation
requirements for this simulation occupied 70 CPU cores in our TCIPG testbed
over the course of a full week.
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(a) Maximum electricity stolen by means
of the ARIMA attack
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of the Integrated ARIMA attack

Fig. 6: Distribution of maximum electricity stolen from each consumer through
ARIMA and Integrated ARIMA attacks.

The maximum amounts of electricity stolen for both the ARIMA attack and
the Integrated ARIMA attack were calculated, and histograms of the results are
given in Fig. 6. It is clear that much less electricity is stolen due to the Integrated

9



Disclaimer: This document is not the final version of the paper.
The final version can be found in the proceedings of the 10th International
Conference on Critical Information Infrastructures Security (CRITIS 2015)

0 20 40 60 80 100
% Reduction in electricity stolen

0

20

40

60

80

100

120

140

160

N
u
m

b
e
r 

o
f 

C
o
n
su

m
e
rs

Fig. 7: The maximum electricity stolen from each consumer through an Inte-
grated ARIMA attack is less than an ARIMA attack. The distribution of the
percentage reduction is shown. For most consumers, a large reduction is seen.

ARIMA attack as compared to the ARIMA attack. This serves to quantify the
benefit of adding the additional checks on mean and standard deviation. The
improvement seen, as a percentage for each consumer, is given in Fig. 7. Up to
99.4% reduction in theft can be achieved with the checks on mean and variance.

The aggregated results across all 450 consumers are as follows. For a period
of 1 week, the attacker managed to steal 285, 914 kWh under the ARIMA attack
and 64, 447 kWh under the Integrated ARIMA attack. That is a reduction of
77.46%. Therefore, the additional checks played a major role in mitigating the
attack. We quantify the monetary benefit to the attacker by multiplying the elec-
tricity stolen with the latest $/kWh rate posted by the Pacific Gas and Electric
Company (PG&E) for residential services [19]. This rate is $0.16/kWh, and the
corresponding profits for the attacker under the ARIMA and Integrated ARIMA
attacks are $45, 746 and $10, 311, respectively. These numbers tell us how much
the attacker stands to gain under the assumption that he has full information
about the system and the ability to control the meter readings reported. On the
other hand, if the attacker had lesser capabilities, the attacks would be either
easily detected or significantly mitigated by our proposed methods.

Note that, throughout this paper, we have spoken of an attacker in the sin-
gular. We have not, however, made any assumptions that restrict our analysis
and results to a single attacker. Our sample of 450 consumers is large enough
to demonstrate that it is unlikely that a single attacker will be able to steal
the ARIMA attack upper bound of 285, 914kW (averaged over an hour), due to
the physical limits of distribution lines that connect his consumption facility to
the nearest transformer. However, it would be possible for multiple attackers on
different distribution lines to collude and steal this amount. The dynamics of
collusion between multiple attackers is a subject for future work.
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6 Conclusion and Future Work

In this paper, we evaluated the suitability of the ARMA and ARIMA models for
forecasting electricity consumption behaviors. These forecasts produced confi-
dence intervals using the ARIMA assumption that noise is normally distributed.
The confidence intervals served as a first layer of validation for faulty smart me-
ter measurements. In order to detect and mitigate well-crafted electricity theft
attacks, additional checks needed to be put in place, and we proposed checks on
mean and variance. We showed that an electricity theft attack is feasible despite
these checks, but the amount of electricity that can be stolen under this attack
is up to 99.4% less than what was stolen without these checks in place. The
reduction in electricity stolen, aggregated over all consumers, was 77.46%.

In future work, we will explore ways to improve the ARIMA forecasting
method by incorporating seasonalities. Since consumption patterns repeat daily
or weekly, as seen by the seven daily peaks in Fig 1(a), there is inherent sea-
sonality that is not captured in our low-order ARIMA models. Incorporating
seasonalities may not help in tightening the confidence intervals to improve
detection, because the first-order differencing may flatten out seasonalities as
shown in Fig 1(b). Nevertheless, we have observed cases where the seasonalities
still persist after this differencing has been done. We have not been success-
ful in investigating these cases, because the seasonalities are at large lags of 48
half-hour periods. We have found that dealing with such high order seasonalities
requires computational processing power and memory beyond the capabilities
of our most powerful servers. This computational issue is well-known in the
forecasting community [9], and solutions are worth exploring for future work.
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