CONSTRUCTION AND SOLUTION OF PERFORMABILITY
MODELS BASED ON STOCHASTIC ACTIVITY NETWORKS

by
William Harry Sanders

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
1988

Doctoral Committee:

Professor John F. Meyer, Chairperson
Professor Keki B. Irani

Professor Arch W. Naylor

Professor Kang G. Shin

Assistant Professor Mandyam M. Srinivasan

©

William Harry Sanders

All Rights Reserved

1988

To my parents

ii

ACKNOWLEDGEMENTS

An undertaking such as this can never be accomplished in isolation; it is only through
the support and advice of many others, both technical and moral, that it can be carried
out. I would first like to acknowledge Professor John F. Meyer, my dissertation advisor.
Professor Meyer taught me a way of approaching, analyzing, and solving problems that is
invaluable. He inspired me, both in the classroom and through our technical discussions, to
do my best at whatever task was at hand. Thanks also go to the remainder of my doctoral
committee, Professors Keki B. Irani, Arch W. Naylor, Kang G. Shin, and Mandyam M.
Srinivasan. Their collective technical guidance added much to the content of this work.

Many others also contributed in various ways to the dissertation. In particular, I'd like
to thank the past and present members of the Communications and Distributed Systems
Laboratory at the Industrial Technology Institute, for both technical and financial support
during the last four and a half years. It was here that many of the ideas of this dissertation
were formulated and tested. Special thanks go to those who helped develop METASAN™,
a performability evaluation tool based on many of the early ideas of this dissertation: Paul
Daugherty, Jorge Goié, Steve Sparks, and Greg Ullmann. Their hard work was essential
in making the tool a reality. Particular thanks go to Jorge, whose timely implementation
of some of the reduced base model construction techniques developed herein permitted
them to be tested on realistic systems. T wonld also like to thank Ali Movaghar, for the
development of some of the basic ideas regarding stochastic activity networks, and K. H.
Muralidhar, for his sound technical advice and collaboration on the token bus network
evaluation study presented in the applications chapter.

Heartfelt thanks also go to those who read early versions of this manuscript and made

helpful comments, both technical and editorial, which improved its contents and presen-

iii

tation style. In addition to those mentioned earlier, I would like to thank Linda Atwood,
Emily Churchill, and Lola McGuffin for their help in this capacity. I would also like
to thank Emily Churchill and Michelle Schiller for their help in producing some of the
illustrations in this document.

Lastly, but by no means lesser in importance, I would like to thank my family and
friends for their moral support during the time of this effort. While technical advice is
necessary, it is by no means sufficient. Without their encouragement, none of this work

would have been possible.

iv

e i

TABLE OF CONTENTS

DEDICATION & . .. ittt ittt et e e e e e e, i
ACKNOWLEDGEMENTSt ittt ittt ittt nnenn i
DICTIONARY OF PRINCIPALSYMBOLSot v v vt r .. viii
LIST OF DEFINITIONSttt it tiiie e e xii
LISTOF FIGURES ittt it ttteteeeenennn. xvii
LISTOFTABLES e e e e e e e e e XX

CHAPTER
I INTRODUCTION ittt ttiennnnn.. 1
Background e e e 1
Performability ittt e e e . 2
Stochastic Extensionsto PetriNets 3
Research Objectives enn... 8
II. MODELING FRAMEWORKc0itii i 11
Introduction i e e e 11
Activity Networks oo it ittt e i e e e e e 11
Definitions0ttt ittt i e 12
Graphical Representation00 ... 14
Activity Network Behavior 17
Stochastic Activity Networks v v v i i vt v it e e 19
Definition of a Stochastic Activity Network 24
Stochastic Activity Network Behavior 29
Well Specified Stochastic Activity Networks 30

v

IIL.

VI.

PERFORMANCE VARIABLES¢cco0tuun 47

Introduction00ttt ineeenneennenenn 47
Reward Modelso v i ittt ittt e e e et it ee e ee 48
Activity-Marking Oriented Variables 51
Structure and Variable Definitions 53
Example Variable Instantiations 56
CONSTRUCTION TECHNIQUES 63
Introductiont ittt ittt 63
Model Decompositiono v v v i v ittt it e e 65
Definitions, Conditions, and Procedure 65
Detailed Base Model Constructioncv .. 68
Stochastic Process Representations 69
Supportof Variables0 77
Construction Procedures ivt it nennn 79
Reduced Base Model Construction00t 85
Construction Operations vt en v et e e 86
Representationsof State, 92
Support of Variables 0., 98
Nature of StochasticProcess 101
Construction Procedure 106
SOLUTION TECHNIQUES00ttt 110
Introductionc0i ittt ienneneennnns 110
Application of Known Stochastic Process Solution Methods 111
Solution for Expected Reward 115
Derivationottt ittt it e e e 116
Example i e e e e 122
Solution by Simulation. i ., 127
APPLICATIONS it it ittt ettt et nennens 130
Introductionttt ieeeeenetennenns 130
Token Bus Network0 i ittt it nennnns 130
Model Assumptions . . . v« v v v v it i e e e e e 132
Token Bus Network Model 133

vi

Performance Vazriables i v v ittt i it et e e 141

Discussionof Results v v v vt v v it et et e e 142

ConClUBIORS v v v v v vttt i et e e e e e e e e e e 152

CSMA/CD Local Area Networko oo v v v v v e i vnnennn 153

Stochastic Activity Network Model and Variables 154

Evaluation Results v i i i v i e et e et e ettt ee e 160

VII. CONCLUSIONS AND FURTHER RESEARCH 164

Contr butions . » v & v i e vt e e e e e e e e e et e 164

Directions for Further Research ¢ v v v v i it it v s e e s o 165

APPENDIX . .. i ittt e et et e e e e et e e e e e e 168

BIBLIOG RAPHY . . . ittt i it et i e et e et e e 195
vii

Symbol

E ®

S

[y]

AN

#s

IP(a)

DICTIONARY OF PRINCIPAL SYMBOLS

Page
amaTking it e e e e e e e e 13
thenaturalnumbers 13
possible markingsof asetofplaces S i3
an enabling predicate, 13
an input function or output function 13
anactivitymetwork L .., 13
afinitesetofplaces. i e, 13
afiniteset of activities 13
afinitesetofinput gates, 13
a finiteset of output gates i3
thecasefunctionofan AN 13
the type functionofan AN 13
the input structure functionofan AN 13
the output structure functionofan AN 13
the restriction of a marking to aset of placesS 14
input places foran activitye 14

viii

OP(a) output placesforanactivitye 14

R(AN,po) reachablemarkings of AN IR g1« « v o v v v vt v v i i e oo e e 18
SR(AN, po) stable reachable markings of AN in flg « - « v v v v v v v v v v . 18
UR(AN, uo) unstable reachable markingsof ANinpro. . . o oo v v v vv v n. . 18
S(p) set of steps associated with p 20
SAN a stochastic activitymetwork 24
Ho theinitialmarking 25
C a case distribution assignment, 25
F an activity time distribution function assignment 25
R therealmumbers 25

a reactivation function assignment 25
p powersetfunction, 25
NS(p,a) next stable markings reachable from u by completion ofa 31
Pr(s) probability of astablesteps., 32
P“j,“, steps from p to u’ by completionofa 32
P(C) probability of a set of stablestepsC 33
hy (1) probability that u’ is reached upon completionofainy 36

NP(p,a) the set of next possible markings reachable from p by completion of a 41

C(a) reward obtained due to completion of activitya 53
R(v) rate of reward obtained when for each (p,n) € v there are n tokens in
Place D v v e e e e e e e e e e e e e e 53

P(P,IN) partial functions between Pand IV 53

Vi instant-of-time behaviorofa SAN att 54
Vieroo instant-of-time behavior of a SAN in steady-state 54
Yie s reward accumulated during the interval [t,24+1] 55
Wi+ time-averaged reward accumuiated during the interval [£,¢4+1]. ... 55

Ytt4+0,tmc0 TeWard accumulated during an interval of length / in steady-state . . 55

Wit t40,t—-0 time-averaged reward accumulated during an interval of length I in

steady-state . . v v v i it i e e e e e e e e e e 55

Yitt+0200 Teward accumulated during an infinite interval starting at time¢ .. 56

Wit s41-00 time-averaged reward accumulated during an infinite interval starting at

1711 T 56
A, structure related activities it ... 65
A, performance related activities 0. 66
v fictitious activity i e i 70
E setofam-states L i i i 70
(R,T, L) activity-marking or marking behaviorofa SAN 70
Z minimal behaviorof a SAN, 70
ra(12) rate of an activity @ in an activationmarking p 72
M setofm-states. L i e e 74
pla,p) rate of reward accumulated in am-state (e, p2) 78
é(a,p) reward accumulated upon entry to (1)o 78

SBRM a SAN-basedrewardmodelt i vt o, 86

U minimal behavior of 2 SAN-based reward model 95
T discrete-time imbedded behavior of a SAN-based reward model ... 95
fla,p) functional mapping am-states to reduced states 96
Ry equivalence relationdefined by f 98

LIST OF DEFINITIONS

uttlization Period i i i e e e e e e e et e e e 2
accomplishment levels i i i it ittt e e e 2
performability L e e e e e e e e e e e 2
base model. R T R T T T 2
performability model e e e e e 3
model CONSITUCLION . .« o v v v v i i i it e e et e e e e 3
model solution i e e e e e e e 3
GCLIVILIES . o o o v v i it e e e e i e e et e e et e e e e e e e 12
COSES + v v v e v ettt e i e e e e e e e 12
Places . . o i e e e e e et e e e e e e e e e e e 12
marking of § . . . o i e e e e e e e e e e 13
possible markings of S e e e e e e e e e 13
MPUL GaTE . . o o i e e e e et et e e e e 13
MPUt Places i e e e e e e e e e e e e et e e 13
enablingpredicate. it e e e e e e et 13
IMPUL FUNCLION . o . o v i i it e e e e e e e e e e e 13
xii

OUtPUL gate o e e e e e e e e e e e e 13

oulpui BlACES . . . i e e e e e e e e e e e e 13
output function e e e e e e 13
activity network L L e e e e e e e e 13
marking of the network e 14
holds oo e e e 14
enabled e e e 14
stable e e e e e 14
input places of an activity e e e e e e 14
output places of an activity i e e 14
maycomplete e e e e e e e e e 17
completion yields i e e e e e 18
immediately reachable e 18
reachable markings e e e e e e e 18
stable reachable markings e 18
unstable reachable markings e 18
COMAIGQUIALION i i ittt e e e e e e e 19
completion of @ configuration 19
27 19
initial marking of a path e 19
resulting markingof apath 19
xiii

stepofanactivitynetwork. i et i et e e e 20

stabilizing activity networkt i i et e et e 20
self-disabling instantaneous activity« . v . i i it e e e e e 23
cycle-free instantaneous Gctivity i i it e e e 23
stochastic activity network L. i e e et e e e e 24
Mial Marking o i e e e i e i e e e et e 25
case distribution @ssignment i it ittt et 25
case distribution of @ In 1L e e e e e e e e e 25
activity time distribution function assignment oo 25
activity time distribution function ofa inpy R 25
reactivation function assignment o i it ittt et e e 25
Teactivation Markings . . .« v v v v i v u i et i e et e e e 26
GCLIVALION . . v v v it i i e e e e e et e e e et e e 26
aborted. e e e e e e e e e e e e e e 26
QCUUIY LIMNE © v o i v v i et et o s o s e s e e e e 26
completion i i e e e et et e e e e 26
wellbehaved o i i i e e e e e e e e e e 28
GClIVILY CROICE . . o v v o i i e e e e e et e et 30
CASE CROICE . . v v v v i i i it it e e e e e e e e 30
stable Step . . . o . i i e e e e i et e e e e 31
next stable markings i e e e e e e 31

xiv

probability of a stable step oo i i e e e e 32

well specified stochastic activity network it 33
dependent instantaneous activities o i i it it i e e e 40
instantaneous subnetwork of a stochastic activity network 40
partial stable step i . e e e e e e e e e e e 42
activity-marking oriented reward structuret i e 53
Partial marking i e e e e e e e e e e 53
detailed base model it e e e e e e et e 64
reduced basemodel e e e e e e e 64
structure-related Gctivities« v i it i i e e e e e e e e 65
performance-related activities i i e e e e e e 66
structure submodel e e e e e e e e e e e 66
performancesubmodel o o e 66
COMMON PIACES v v e s i e e e e e e e e e e e 67
SUPPOTE v v v i et e e e e e e e e e e s e et e e e 68
GM-SIBLE o v o i o e e e e e e e e e e e e et e e e 69
tnittal am-state i e e e e e e e e e e e e e e e e 70
am-behavior of a stochastic activity network 70
minimal am-behavior of a stochastic activity network 70
activation marking o i e it e e e ettt e e e e 71
M-SIGLES .+« v v i i e e e e e e e e e e e e s e i e e e 74

XV

m-behavior of a stochastic activity network 74

minimal m-behavior of a stochastic activity network 75

SAN-based reward model e 86

composed SAN-based reward model 89

representative marking of a reduced state. 107

representative GClivity v i i e i e e e e e e e et et 108

potential completion time e e e 128
xvi

Figure
2.1 Graphical Activity Network Representation. 16
2.2 A Stablizing Activity Network 0., 21
2.8 An Activity Network which is not Stablizing 21
2.4 A Second Stabilizing Activity Network 25
2.5 Terms Related to the Execution of a Timed Activity 27
2.6 A Well Specified, but not Well Behaved, Stochastic Activity Network 35
2.7 A Well Specified Stochastic Activity Network. 37
2.8 Set of Stable Steps for Stochastic Activity Network of Figure 2.7 from Marking
10000000 by Completion of Activity T'1. ¢ v v vt v i v e e un . 38
2.9 A Well Specified Stochastic Activity Network With Instantaneous Subnetworks
Noted00ttt it i et ittt ettt 45
3.1 Variable Types Consideredot enenn.. 52
8.2 Multiprocessor Fault Model, 58
3.3 Multiprocessor Performance Model - 60
4.1 Representation of Construction Operations 90
4.2 Composed SBRM for Multiprocessor Example 93

LIST OF FIGURES

xvii

4.3 Example Composed SAN-Based Reward Model 94

4.4 Example Composed SAN-based Reward Model g7
4.5 “Regular” SAN-Based Reward Model Structure 99
5.1 Degradable MultiprocessorModel, 123
6.1 30 Station Token Bus Network o . v v v vt v vt o it v v e e v vnnn 131
6.2 Reduced State Transition Diagram 134
6.3 Station Model00ttt ittt 136
64 NoiseBurst Model............. ... i 139
6.5 Response Timevs. Loadottt eeennns 143
6.6 Token Rotation Time vs. Load . « + « v v v v v v v e vt evennn.. 145
6.7 Bus Activity in Steady-State e 146
6.8 Response Time vs. Noise Condition v 148
6.9 Token Rotation Time vs. Noise Condition 149
6.10 Response Time vs. Token Loss Probability 151
6.11 Token Rotation Time vs. Token Loss Probability 152
6.12 Station Submodel i e 154
6.13 NetworkSubmodel 157
8.i4 Homogeneous Networkttt it ennns 159
6.15 Normal/High Priority Network 159

6.16 Expected Queue Length vs. Load for a 10 Station Homogeneous Network . . 163

6.17 Expected Queue Length per vs. Load for a 10 Station Network with 2 Station
Classes v v v v i e e e e e e e e e e e e e 163

A.l

A.2

A.3

A.4

A.s

A.G

A.7

A.8

A9

Main METASAN Meau . . . v v v vt ittt ittt e i ee e s en e 170
METASAN FlowDiagram oo i vt v v vt vt e e nnnn 172
Example Stochastic Activity Network 173
Example Description File ittt 174
Example Simulation Experiment File 181
Example Analytic Experiment File 0., 184
Processing Algorithm i, 189
Example METASAN OQutputottt i it i i 193
Expected Reward Obtained for Various Utilization Periods 194

xix

LIST OF TABLES

Table

4.1 SAN-Based Reward Models for Multiprocessor Example 91
5.1 Throughput as Determined from Performance Submodel 125
5.2 Expected Benefit Derived from Multiprocessor v v v v v v v v v v v .. 126
5.3 Parameter Values for Degradable Multiprocéssor Example 126
6.1 Timer Values for Network Model 133
6.2 Activity Parameters for Network Node 135
6.3 Input Gate Parameters for Network Node 137
6.4 Output Gate Parameters for Network Node 138
6.5 Timed Activity Distributions for Network Model 141
6.6 Experiments with Load Varied 144
6.7 Experiments with Noise Burst Rate Varied, 50% Load 147
6.8 Experiments with Noise Burst Rate Varied, 85% Load 148
6.9 Experiments with Token Loss Probability Varied, 50% Load 150
6.10 Experiments with Token Loss Probability Varied, 85% Load 150
6.11 Gates for Station Submodel 155
6.12 Activity Parameters for Station Submodel 155

6.18 State-Space Sizes Obtained Using Various Construction Techniques 160

6.14 Performance of 10 Station Homogeneous Network 161
6.15 Performance of a 10 Station Network with 2 Station Classes 162
A.1l Results from Performance Submodel ¢ it it i .. 192

CHAPTER 1

INTRODUCTION

Background

System evaluation can be done during specification, design, implementation, and mod-
ification of a system, and by different methods. Each of these phases presents specific
challenges and, accordingly, several different approaches to evaluation have evolved. Mea-
surement can be an effective tool when the system to be studied has been implemented.
This approach typically entails using hardware and/or software monitors to collect in-
formation regarding the operation of the system and the use of statistical methods to
estimate performance indices. Several disadvantages are associated with exclusive use of
measurement. First, the system to be evaluated must be implemented. This precludes
evaluation during the specification and design phases of a project. Second, this type of
evaluation is typically costly, since it requires the development of special data collection
hardware and/or software and use of the implementation to collect the data. In addi-
tion, to evaluate a proposed change to a system, it must be implemented before it can be
evaluated, typically resulting in much down-time and cost.

In order to avoid the drawbacks inherent with measurement, system modeling has
been used extensively. Instead of collecting data from the actual system, a model is
constructed and performance and/or dependability characteristics are estimated from the
model. This type of evaluation has several advantages over measurement. First, a model
can be constructed during any phase of the life-cycle of a system. Second, evaluation via

1

2

modeling is typically much less costly, both to develop and to use. In order to study the
effect of a change in design, one need only change the model.

Traditionally, model-based evaluations have been accomplished by treating perfor-
mance [23,36,49] and dependability [2,48] as separate issues, under the assumption that a
system either performs as expected (delivers its expected service) or fails. In such cases,
performance means “failure-free performance” and dependability means “the ability to
perform successfully”. While these separate approaches were sufficient for systems in
the past, they do not suffice for distributed systems, which pose challenging evaluation
problems, due to both their complexity and the application environments in which they
operate. Properties that contribute to system complexity include concurrency, fault tol-
erance, and degradable performance. In the case of real-time environments, timeliness
is an additional consideration. Accordingly, as first noted in [65], all of these properties
should be accounted for in the evaluation process. In particular, degradable performance
calls for unified performance-dependability measures, which, in our terminology, quantify

a system’s performability [63,64].

Performability

Performability and its associated concepts are defined as follows. Let $ denote the system
in question where S is generally interpreted as including not only a system, per se, but also
relevant aspects of its environment (e.g., workload, external sources of faults, etc.). Then
the performance of S over a specified utilization period T is a random variable Y taking
values in a set A. Elements of A are the accomplishment levels (performance outcomes)
to be distinguished in the evaluation process. The performability of S is the probability
measure Perf (denoted ps in [63,64]) induced by Y where, for any measurable set B of
accomplishment levels (B C A),

Perf(B) = the probability that § performs at a level in B.

Solution of performability is based on an underlying stochastic process X, called a base
model of S, which represents the dynamics of the system’s structure, internal state, and

environment during utilization. By its definition, the base model must also “support” the

3

solution of Perf in the sense that, for any accomplishment set B of interest, Perf(B) can
be formulated in terms of X. A base model X together with a performance variable Y is a
performability model of §. Performability model construction is the process of identifying
a performance variable Y and determining a base model stochastic process X that permits
the solution of performability. Performability model solution is the process of obtaining
performability values Per f(B) for accomplishment sets B that are of interest to the user.

Stochastic Extensions to Petri Nets

While the concept of performability provides a framework to delineate the scope of the
evaluation activity, it in itself does not suggest methods for model construction and so-
lution. Queueing networks have been used extensively for the evaluation of computing
systems [36,45], but their application to systems that exhibit complex concurrency, fault
tolerance, and degradable performance is not straightforward. Extensions to Petri nets
[76], on the other hand, have proved to be valuable tools for evaluation of systems that
exhibit these properties. Many of these extensions have included the addition of an ex-
plicit representation of time. In particular, one approach has been to add timing of a
probabilistic nature to transitions in the net. This permits the representation of both
performance and dependability related characteristics, depending on the interpretation
given to the tokens in the model.

Early work whose aim was to add probabilistic timing to the transitions of the net can
be traced back to three independent efforts each begun in the late 1970’s [69,73,82]. All of
these efforts shared the common idea of associating time with the transitions of classical
Petri nets, but differed in details. The most well known is the work of Molloy [69] and
of Natkin and Florin [73]. In each of these efforts, the authors augmented standard Petri
nets by associating an exponentially distributed delay with each transition in the standard
Petri net (Molloy also considered geometrically distributed time). Then, by assigning an
appropriate interpretation to the execution of the net, they noted that the sequence of
markings that arises during an execution of the net can be represented as a continuous-

time discrete-state Markov process (discrete-time discrete-state in the case of geometrically

4

distributed delays). This observation permitted the authors to solve for a variety of
performance variables in terms of the solution of the associated Markov process. Standard
Markov analysis techniques were used. Examples include determining the throughput of
an alternating bit protocol via a steady-state state occupancy probability solution [69)
and determining the dependability of a subway system by determining the mean time to
absorption of an associated Markov process [8]. Shapiro [82] added time to the transitions
of the Petri net in a similar manner, but required all places in the net to be 1-safe (have
a marking of 0 or 1). This led to a process where the marking of each place could be
modeled by an indicator random variable.

These early efforts were quite successful in both representing and solving for the be-
havior (both dependability and performance related) of complex concurrent systems, but
it was soon realized that it was possible to extend them in order to enhance the rep-
resentation power and modeling convenience of the networks. There were three basic
driving forces in this regard. First, it was realized that the models should be extended,
at least conceptually, to include cases where the delays associated with the transitions
in the net were not exponential. Subtleties masked by the memoryless property of the
exponential distribution then became apparent. This was handled in different ways by
different researchers. Second, it was noted that the difference in magnitude of the various
rates associated with the transitions in the net was typically large. Assuming that the
time spent in markings in which very fast transitions are enabled is negligible (in terms
of the desired performance variables), they could be replaced by transitions that had a
zero delay time, with an interpretation that reduced the state space size of the associated
Markov process. Third, it was noted that additional constructs could be added to the net
structure to facilitate representation of systems in a compact manner, while not changing
the probabilistic behavior of the net.

As was the case with the initial attempts to add time of a stochastic nature to Petri
net transitions, several groups of researchers produced somewhat similar independent ex-
tensions at approximately the same time. The first generalization to appear was that
of Marsan, Balbo, and Conte [56,57]. Marsan et al. introduced “Generalized Stochastic
Petri Nets” (GSPNs) and proposed their use as stochastic models for the performance

5

evaluation of computer systems which exhibit synchronization, passive resources, and/or
blocking. A brief review of their generalizations follows. First, immediate transitions were
introduced to model events in a system that take a negligible amount of time. In the
case of multiply enabled immediate transitions, a random switch is used to determine the
probability that each enabled transition fires in a given marking. An execution of a GSPN
consisted of a sequence of transitions between a set of tangible and vanishing states. Tan-
gible states represent markings in the GSPN that are occupied for a non-zero amount of
time before reaching a next state, while vanishing states represent markings in which no
time is spent before the next transition. A model construction method was proposed that
eliminated vanishing states, thus reducing the size of the state space required (compared
to initial SPN formulations) for a given problem. Two software tools to aid in model
construction and solution using GSPNs have been presented: the first by Marsan, Balbo,
Giardo, and Conte [55] and the second by Chiola [12]. The general approach taken by
these packages is to construct a stochastic process representation of the execution of the
GSPN and then solve this representation for desired system characteristics using known
methods. The second package [12] also had a provision for simulating the behavior of the
net when it was not analytically tractable. GSPNs have been used as a modeling frame-
work in many modeling studies. Examples include studying the performance/reliability of
degradable multi-processor systems [58], the effect of software blocking [3,4], the effect of
different queueing disciplines [5], and the performance of a CSMA/ CD protocol [60]. The
last study made use of a solution technique [59] that allowed for the solution of a limited
class of GSPNs that have deterministic or exponentially distributed delays associated with
transitions.

A second attempt to generalize stochastic Petri nets was made by Dugan, Trivedi,
Geist, and Nicola [22]. They introduced the notion of an “Extended Stochastic Petri Net”
(ESPN) to model systems similar to those modeled by GSPNs. ESPNs differ from GSPNs
in several respects. First,the ESPN formalism allows the delays associated with transitions
to be represented by arbitrary distribution functions. In addition, a probabilistic arc was
introduced. Its interpretation is as follows. A probabilistic arc from a transition to a

set of output places deposits a token in one of the places in the set according to some

6

fixed probability distribution. Counter arcs and counter-aliernate arcs were also defined.
Although these constructs added no modeling power to the nets, they added convenience.
The remainder of Dugan’s work [21] consisted of defining conditions when a given ESPN
represented a Markov or semi-Markov process, describing a software package based on
ESPNs (DEEP), and applying ESPNs to several modeling probiems.

A third independent extension was introduced by Movaghar and Meyer [71] under
the name “stochastic activity networks” (SANs). Stochastic activity networks consist of
activities, places, input gates, and output gates. Activities (“transitions” in Petri net
terminology) are of two types, timed and instantaneous. Elongated ovals represent timed
activities and solid bars represent instantaneous activities. Timed activities are used to
represent activities of the modeled system whose durations impact the system’s ability to
perform. Instantaneous activities (immediate transitions in GSPN terminology) represent
system activities which, relative to the performance variable in question, complete in a
negligible amount of time. Places are depicted as circles and, as with Petri nets, each
place can hold a nonnegative number of tokens. The distribution of tokens in the places
of the network at a given time constitutes the marking of the network at that time.

Cases (a generalization of probabilistic arcs) can be associated with both timed and
instantaneous activities and are represented by small circles. Cases permit the realization
of two types of spatial uncertainty. Uncertainty about which activities are enabled in a
given marking is realized by cases associated with intervening instantaneous activities.
Uncertainty about the next marking assumed upon completion of a timed activity is
realized by cases associated with that activity. Input gates contain both an enabling
predicate and input function (on the marking of the places). The enabling predicate must
be true for the activity associated with that gate to be enabled. Upon completion of the
associated activity, the input function is executed, possibly changing the marking of the
net. Output gates have a single output function (on the marking of the places) associated
with them, which is executed upon completion of the associated activity.

The stochastic nature of the nets is realized by associating an activity time distribution
function with each of the timed activities and a probability distribution with each set

of cases. A reactivation function [66] is also associated with each timed activity. This

7

function specifies, for each ma.rki‘ng, a set of reactivation markings. Informally, given
that an activity is activated in a specific marking, the activity is reactivated whenever
any merking in the set of reactivation markings for the specified marking is reached.
This provides a mechanism for restarting activities that have been activated, either with
the same or a different distribution. Note that this decision is made on a per activity
basis (based on the reactivation function), and is not a net-wide execution policy. Meyer,
Movaghar, and Sanders [66] presented conditions under which the behavior of a SAN
is a Markov or semi-Markov process as well as a SAN-based performability evaluation
procedure.

Other generalization attempts have also been made. In particular, SPNs with phase-
type [74] delays associated with transitions were considered by Bobbio and Cumani [9],
and implemented in the software tool ESP [17]. SPNs with general delay time distribu-
tions were studied by Marsan, Balbo, Bobbio, Chiola, Conte, and Cumani [53]. They
defined formally the notion of an “execution sequence”, and discussed different “execution
policies”. In a broad sense, certain execution po]icies can be thought of as specific as-
signments of reactivation functions to activities (in the notation of Meyer, Movaghar, and
Sanders). Properties of colored SPNs were investigated by Zenie [91]. Finally, Zuberek
studied two types of stochastic Petri nets: D-Nets and M-Nets, which have deterministic
and exponentially distributed transitions, respectively [92].

Several types of stochastic Petri nets have been considered with the express intention
of solution by simulation. The most rigorous investigation has been done by Haas and
Shedler [34] who derive conditions which ensure that the stochastic process associated
with the SPN is a regenerative process in continuous time with a finite expected time
between regeneraticn points. This work was later utilized by Prisgrove and Shedler [77],
who investigated discrete-event simulation of symmetric SPNs. “Evaluation nets” are
considered by Behr et al. in [7] where they describe the simulation package FORCASD.
Godbersen and Meyer [27] have introduced “function nets” which allow for performance
evaluation via simulation and formal (non-time related) analysis via classical Petri net

techniques. Finally, simulation of SPNs in Simula has been done by Térn [86].

8

Research Objectives

While stochastic extensions to Petri nets provide a natural representation for systems
we are interested in, model construction and solution techniques for them are not as well
developed as they are for other model types (e.g., queueing networks). In particular, when
the intended solution method is analytic, model construction has consisted of taking the
possible reachable stable (or tangible) markings of the network to be states of the process.
Performance variables are then written at the state level in terms of this process, and do
not refer explicitly to behaviors at the network level.

The use of stochastic Petri nets has thus been limited to providing a convenient rep-
resentation of either a Markov process or simulation model, and the structure of the net
and performance variable has not been used to aid in model construction or solution. Two
general problems arise from this limited approach: 1) performance variables are limited to
those that can be written in terms of the “marking space” of the stochastic Petri net, and
2) construction techniques result in a large state-space representation (regardless of the
minimal base model that is required to support the chosen performance variables) which
grows rapidly with the size of the net.

The goal of this investigation is, then, to develop a coherent set of construction and
solution methods that exploit, to as great an extent as possible, the structure of the net
in the modeling process. Stochastic activity networks will be used as the extended Petri
net representation. This approach will allow performance variables to be specified at the
network level, and will allow the nature of these performance variables to be used in the

construction procedure. More specifically, we will:

1. Provide formal definitions of stochastic activity networks and related concepts and

specify when SANs can be used for performability evaluation.
2. Define a general class of performance variables at the SAN level.

3. Develop model construction techniques that make use of these variables and network

characteristics to reduce the size of the base model representation.

4. Investigate the use of traditional stochastic process solution techniques to solve for

9

the defined variables, develop a solution method for expected reward that is appli-
cable to one “type” of the defined variables, and develop a simulation procedure to

solve for many variables.

5. Hlustrate the use of these methods by evaluating the performability of two dis-

tributed systems.

Chapter 2 provides the basic definition of stochastic activity networks, and specifies
when they can be used for performability evaluation. In particular, stochastic activity
networks are defined in terms of a simpler non-probabilistic model class known as activity
networks, similar to the manner in which stochastic Petri nets are defined in terms of
Petri nets. This definition allows the investigation of conditions under which a SAN is
well specified or, in other words, the stochastic extension made to the activity network
completely specifies the network’s probabilistic behavior. This is a necessary condition for
the SAN to be used for evaluation.

Chapter 3 defines performance variables that can be written directly at the SAN level.
Variables that depend on both activity completions and markings of places are permitted.
Expressing variables at the SAN level has two distinct advantages over expressing them at
the process level, as has been done previously. First, it allows the analyst to think about
the variables at the same level as the structure of the system being modeled, eliminating
the need to think in terms of the possibly vcry large process representation. Second, it
permits the variables to be used in the construction procedure, both ensuring that the
base model representation is detailed enough to “support” the variable and is no larger
than is necessary to be “solvable”.

Chapter 4 develops model construction techniques for stochastic activity networks and
the variables that are defined in Chapter 3. More specifically, two classes of base models
are considered. In particular, a base model which supports a large class of variables is
referred to as a detailed base model while a base model constructed to support a designated
performance variable is a reduced base model. Reduced base models, while limited to a
particular class of systems, typically have fewer states and, hence, are easier to solve.
Conditions defining when reduced base models may be obtained are given, along with a

proof that, when these conditions are met, the resulting stochastic process is indeed a base

10

model (i.e., it supports the variable of interest) and, moreover, permits the variable to be
solved for using known techniques. Construction procedures are also developed for both
classes of base models.

Chapter 5 investigates the use of traditional stochastic process solution techniques for
use in solution of the defined variables and develops a solution method for one “type” of
variable defined in Chapter 3. The solution method is applicable to systems that have a
finite “lifetime”, i.e., there is a time after which no further changes in the variable occur
(with probability one). In addition, a procedure is developed to simulate a stochastic
activity network at the network level. This permits estimation of performance variables
when the nature of the SAN does not allow solution by analytic methods.

Chapter 6 presents the results of the application of the construction and solution

techniques developed in this dissertation to the evaluation of two distributed systems.
The first is an evaluation of an industrial network. employing the IEEE 802.4 token bus
protocol. The performance of the network is evaluated in the presence of faults caused
by noise bursts and token losses. The second is an eveluation of a CSMA/CD local area
network. It both illustrates the state-space savings achieved through the use of reduced
base model construction methods and investigates the effect that a particular priority
scheme has on the delay that messages experience when trying to access the channel.
These two applications illustrate that stochastic activity networks and the construction
and solution techniques developed herein are indeed applicable to complicated distributed
systems.

Chapter 7 summarizes the results of this dissertation and suggests topics for further
research.

An appendix, which describes a software tool for the evaluation of systems using
stochastic activity networks, is alse included. This tool, METASANI, facilitates both
construction and solution of systems modeled as stochastic activity networks. METASAN
provided an environment in which to test the usefulness of the techniques developed in

this dissertation and a tool to evaluate the performability of many systems.

1 METASAN is a Trademark of the Industrial Technology Institute.

CHAPTER IT

MODELING FRAMEWORK

Introduction

In order to be effective and generally applicable, model construction and solution tech-
niques require a formal representation scheme. The scheme must be general enough to
allow for easy representation of realistic systems, and formal enough to permit derivation
of useful results. The modeling framework discussed in this chapter serves this purpose.
To account for degradable performance, the concept of performability is employed. To per-
mit the representation of parallelism, timeliness and fault tolerance which may be present
in distributed systems, stochastic activity networks are used. These models allow for com-
pact representation of large systems and, due to the chosen definition of execution, exhibit
behaviors which may be described in terms of one of several stochastic processes, depend-
ing on the structure of the network-level representation and the designated performance

variables.

Activity Networks

The desire to represent system characteristics of parallelism and timeliness, as well as fault
tolerance and degradable performance, precipitated the development of general network-
level performability models known as stochastic activity networks [66,71]. Stochastic ac-
tivity networks are probabilistic extensions of “activity networks”, where the nature of the

11

12

extension is similar to the definition of stochastic Petri nets in terms of (classical) Petri

nets.
Definitions

Informally (as in [71]), activity networks are generalized Petri nets with the following

primitives:

® activities, which are of two kinds: timed activities and instantaneous activities. Each

activity has a non-zero integral number of cases'.
o places, as in Petri nets.

e input gates, which have a finite set of inputs and one output. Associated with each
such input gate is an n-ary computable predicate and an n-ary computable partial
function over the set of natural numbers called the enabling predicate and the input
function, respectively. The input function is defined for all values for which the

enabling predicate is true.

o output gates, which have a finite set of outputs and one input. Associated with each
such input gate is an n-ary computable function on the set of natural numbers called

the output function.

Timed activities represent activities of the modeled system whose durations impact
the system’s ability to perform. Instantaneous activities, on the other hand, represent
system activities which, relative to the performance variable in question, are completed in
a negligible amount of time. Cases associated with activities permit the realization of two
types of spatial uncertainty. Uncertainty about which activities are enabled in 2 certain
state is realized by cases associated with intervening instantaneous activities. Uncertainty

about the next state assumed upon completion of a timed activity is realized by cases

1 The term case, as used here, should not be confused with the notion of cases of elementary

net systems [85]. Here the term case is used to denote a possible action which may be taken upon the

completion of an event.

13

associated with that activity. Gates are introduced to permit greater flexibility in defining
enabling and completion rules.

Before formally defining an activity network, it helps to define several related concepts
in a more precise manner. Let P denote the set of all places of the network. If S is a set
of places (§ C P), a marking of S is a mapping p : § — IN. Similarly, the set of possible
markings of § is the set of functions Mg = {u | p : § — IN}. With these definitions in
mind, an input gate is defined to be a triple, (G, e, f), where G C P is the set of input
places associated with the gate, e : Mg — {0,1} is the enabling predicate of the gate and
f: Mg — Mg is the input function of the gate. Similarly, an output gate is a pair, (G, f),
where G C P is the set of output places associated with the gate and f : Mg — Mg is an
output function of the gate. One can then formally define an activity network in terms of

allowable interconnections between these model primitives.
Definition IL.1 An activity network (AN) is an eight-tuple
AN = (P,A,1,0,7,7,¢,0)

where P is some finite set of places, 4 is a finite set of activities, I is a finite set of input
gates, and O is a finite set of output gates. Furthermore, 7 : A — IN* specifies the number
of cases for each activity, and 7 : A — {Timed, Instantaneous} specifies the type of each
activity. The net structure is specified via the functions ¢ and 0. ¢ : I — A maps input
gates to activities, while 0o : 0 — {(a,c)|a € Aand c € {1,2,...,7(a)}} maps output gates

to cases of activities.

Several implications of this definition are immediately apparent. First, each input and
output gate is connected to a single activity. In addition, each input of an input gate and
output of an output gate is connected to a unique place. In contrast to the definition in
[71], different output gates and input gates of an activity may be connected to identical
places, as has been done in practice. Ambigﬁity in the execution of the net is avoided by
requiring that the marking obtained upon completion of each activity not depend on 1)
the order of application of the input gate functions, or 2), the order of application of the
output gate functions.

The following definitions aid in the discussion that follows.

14

Definition I1.2 If AN = (P, 4,1,0,,7,¢,0) is an activity network and §,G € P then

1. a mapping p : P — IN is a marking of the network,

2. for §C P, pus : § — IN is the restriction of p to places of S (i.e. ps(p) = pu(p),Vp €
8)

3. an input gate g = (G, e,f) holds in a marking p if e(ug) = 1,
4. an activity a is enabled in a marking p if g holds for all g € .~1(a),
5. a marking u is stable if no instantaneous activities are enabled in g,

6. the input places of an activity a is the set IP(a) = {p | 3 (G,e, f) € t"(a) such
that p € G}, and

7. the output places of an activity a is the set OP(a) = {p | for some ¢ = 1,2,...,v(a),
3 (G, f) € 0™1(a, ¢) such that p € G}.

The marking of a network can alternatively be represented as a vector, where each
component of the vector is the number of tokens in a particular place. The correspondence
of components of the vector with markings of places is done via some designated total
ordering of P. For example, for a set of places {p1,p2,...,Px} € P and marking vector
(1512500 0y 7n), p(p1) = 0y, 0(P2) = N2ye ey pt(Pr) = Mg, i Py < P2 < ... < Py The
functional notation for markings is more convenient for the development of theory, while

the vector notation is useful for examples.
Graphical Representation

To aid in the modeling process, a graphical representation for activity networks is typically
employed. In fact, for all but the smailest networks, specification via the tuple formuiation
presented in the definition is extremely cumbersome. Not only is the graphical represen-
tation more compact, but it also provides greater insight into the behavior of the network.

For example, let ¢ and j be natural numbers and consider the following activity network

{A4,B,C}, where A< B<C

{T1,T2,11}

O ~

GAl
GA2
GB
GC
G2

AG
BG
cG

Gl

15
{GA1,GA2,GB,GC,G2}
{AG,BG,CG,G1}
{(11,2), (T2,1), (11,1)}
{(T1,Timed), (T2,Timed), (I1,Instantaneous)}
({4} 4G D 15> 01U{©,0}, {Gi- D} i > 01U (0,00
({4}, {G: 1) 11 > 00U {0, {Gi- D} i > GHU {0,001
({B}, {G,1) 1> 0}U{©O,0)}, {(isi- D} i > 0}u {0, 0}
({Ch {G:0) 1> 01U {01}, {(i,i) | Vi)
({B,C}, {(Gdh1) |§>00rj > 0}u
109,03, {(G5,(0,0)1 %5, 71
({4}, {Gi+ 1) | ¥iY)
({B}, {Gi+ 1) [Vi})
({Ch {Gi+ 1) Vi)
({4 BY, {((iod), i+ 2,9)) | § < 8 and j < 5}U
{(G:3), G- 1.9) 1§ > 5 and i =0} U
{6330 |5 > 5.and i #0))
{(GA1,T1), (GA2,11), (GB,11), (GC,I1), (G2,T2)}
{(AG,(T2,1)), (BG,(T1,2)), (CG,(11,1)), (G1,(T1,1))}

Figure 2.1 depicts the graphical representation of this network. One can immediately

see the utility of a graphical representation. Here places are represented by circles (e.g.,

A, B, C), as in Petri nets. Timed activities (e.g., T1, T'2) are represented as hollow ovals.

Instantaneous activities (e.g., 1) are represented by solid bars. Cases associated with an

=7

activity are represented by small circles on one side of the activity (e.g., T'1). Activities

with one case are represented with no circles on the output side (e.g., T2).

16

Gate | Predicate Function

G1 - if (MARK(A) < 5 and MARK(B) < 5 then
MARK(A) = MARK(A) + 2;
else if (MARK(A) > 0) then

MARK(A) = MARK(A) - 1;

G2 | MARK(B)>0 or MARK(C)>0 | MARK(B) = 0;

MARK(C) = 0;

Figure 2.1: Graphical Activity Network Representation

17

Gates are represented by triangles. G2 is an example of an input gate with 2 inputs.
G1is an example of an output gate with 2 outputs. Enabling predicates and functions for
gates are typically given in tabular form. Three types of commonly used gates are given
default (non-triangle) representations for ease of interpretation and to illustrate their
similarity to classical Petri net primitives. In particular, an input gate with one input,
enabling predicate {(¢,1) | i > 0}U{(0,0)} and function {(¢,2—1)} | ¢ > 0}U{(0,0)} (e.g.,
GALl) is represented as a directed line from its input to its output. Similarly, an output
gate with one output and output function {(z,:+1) | Vi} (e.g., AG) is shown as a directed
line from its input to its output. Finally, an input gate with one input, enabling predicate
{(¢,0) | ¢ > 0} U {(0,1)}, and function {(3,%) | Vi} (e.g., GC) is shown as a directed line
from its input to its output crossed by two short parallel lines. This type of input gate
corresponds to an inhibitor arc in extended Petri nets. These shorthand notations for

gates aid in understanding the behavior of a network from its graphical representation.
Activity Network Behavior

The behavior of an activity network is a characterization of the possible completions of

activities, selection of cases, and changes in markings. Specifically,
Definition I1.3 An activity @ may complete in a marking p if

1. ais enabled in y, and

2. if a is timed, no instantaneous activities are enabled in u.
This imposes two explicit priority classes on activities. We can now define the result of
the completion of an activity and selection of a possible case. This is made easier by

expanding the domain and range of the gate functions to the complete network marking.

Specifically, for an activity network with places P, gate (of the network) with set of places
G and function f, define the function f : Mp — Mp where if f(u) =y then

f(ee)(p) ifpeG

#(p) otherwise.

H(p)=

18

Using this notion, we can define an activity completion and case selection.

Definition II.4 Given an activity network AN = (P, 4,1,0,%,7,t,0) with activity

which may complete in y, the completion of activity a and choice of case ¢ in p yields

W = Jom(+Jor (Fralc - F() -+) -+)
where :7(a) = {Iy,-...,I,} and 07(a,c) = {Oy,...,0n}.

While the gates in the two sets are numbered, there is no implied ordering on their
application within a set, since the SAN definition does not specify an ordering among

input gates or output gates. Output gate functions are applied after input gate functions,

however. The notation i =5 g’ is used to indicate that the completion of @ and choice of ¢

- yields p'. Furthermore, we say that marking p' is immediately reachable from a marking
pif p 25 ! for some activity a and case c.

The set of reachable markings from a given marking can be defined directly in terms
‘of the reflexive, transitive closure of the yields relation, which we denote as —. Using this

notation, the set of reachable markings from some marking can be defined as follows.

Definition II.5 The set of reachable markings of an activity network AN in a marking

Lo is the set of markings R(AN, pg) where

R(AN, po) = {1 | po = p}-

Sets of “stable reachable markings” and “unstable reachable markings” of an activity
network can then be defined in terms of its reachable markings. Specifically, the set of
stable reachable markings of an activity network AN in an initial marking pg is the set
SR(AN,ug) C R(AN,up) of reachable markings of AN from up that are stable. Simi-
larly, the set of unstable reachable markings, denoted U R(AN, pg), is the set of markings
reachable from pg that are not stable.

The behavior of an activity network can be described in terms of successive applications
of the yields relation. Each application of the yields relation represents the completion
of one activity of the one or more activities that may complete in the marking. Note

that, unlike elementary net systems [85], the yields relation is defined only for single

19

activities and that the concurrent completion of more than one activity is not considered.
Each step in the evolution of the network is called a configuration which, formally, is a
marking-activity-case triple < g, a,c > where a is some activity with case ¢ which may
complete in u. A completion of a configuration occurs when the activity associated with
the configuration completes. The behavior of a network can thus be described in ierms of

possible sequences of configurations, more formally called “paths™.
Definition II.6 A path of an activity network, AN, with marking yo is 2 sequence of
configurations < py,a,€1 >,< f2,02,€2 >,. ..y < fn,Cn,Cy > such that,

1. u1 € R(AN, o),

2. for each pair of configurations < pi,ai,¢; >, < pit1,@i41,¢41 > (1 £ i < n),

Qi Ci
Bi = Miy1, and

3. s “25" p! for some marking 4.

Definition of several additional terms aid in the discussion that follows. In particular,
the initial marking of a path is the marking of the first configuration in the path. The
resulting marking of a path is the marking that is reached upon completion of the last
configuration in the path. A path is said to be from p to ' if p is the initial marking of
the path and 4/ is the resulting marking of the path.

Stochastic Activity Networks

Activity networks are interesting in their own right and several properties of them have
been studied [70]. However, for the purpose of this dissertation, they serve as a non-
probabilistic base for a stochastic extension, called stochastic activity networks, which is
used for performability evaluation. When used in this manner, care must be taken to
insure that the probabilistic behavior of the stochastic extension is completely specified.
Specifically, since we want to be able to ask questions regarding possible sequences of timed
activity completions and intervening stable markings, we require that a stable marking
eventually be reached after any sequence of consecutive instantaneous activity completions.
Identification of situations where this may occur is aided by the introduction of the notion

of a “step”.

20

Definition II.7 Let AN be an activity network and s be a path of AN with initial

marking po. Then s is a step if:

1. the initial marking of s is stable, and

2. the markings of all other configurations of s are unstable.

Note that it is not required that the resulting marking of the step be stable. The set of
markings that can be reached by completion of different steps with a single initial marking

provides insight into the behavior of an activity network. To see this, let
S(p) = {s| s is a step with initial marking u}

where p is a stable reachable marking of the AN in question. Now, since there are only
a finite number of steps of a given length from any marking p, the cardinality of S(u) is
Ro if and only if the length of steps in S(i) increases without bound. Or equivalently,
since all of the activities except the first in a step are instantaneous, |S(x)| = Rp if and
only if an unbounded number of instantaneous activities can complete without resulting
in a stable marking. This leads us to the following definition of a “stabilizing” activity

network. Formally,

Definition II.8 An activity network AN in a marking pg is stabilizing if, for every u €
SR(AN, uo), the set S(p) is finite.

The following example illustrates the concept of stabilizing and non-stabilizing activity
networks in a marking. Consider the activity network of Figure 2.2. If we denote its
marking as a vector using the usual lexicographic ordering of place names, then the set of

steps associated with marking 100, i.e., the set S(100), is
{<100,T1,1><010,I1,1>, < 100,T1,1>< 010,11,2>}.

Similarly, $(001) = {< 001,72,1 >}. These two markings are the only stable reachable
markings from the pictured initial marking. Since both S(100) and S(001) are finite, the

activity network is stabilizing. Now consider the activity network of Figure 2.3. For this

21

Figure 2.2: A Stablizing Activity Network

Figure 2.3: An Activity Network which is not Stablizing

22

network, S(100) is the countably infinite set

(

<100,71,1>< 010,11,2>,
< 100,71,1>< 010,11,1>,
y <100,T1,1>< 010,I1,1>< 010,I1,1>, (-

<100,71,1><010,I1,1 >< 010,71,1 >< 010,71,1 >,

Thus the activity network of Figure 2.3 is not stabilizing.

Generally, it is not decidable whether an activity network in a marking ug is stabiliz-
ing. To see this, recall that it can be shown (see [76], for example) that extended Petri
nets (Petri nets with inhibitor arcs) are equivalent, computationally, to Turing machines.
The proof of this fact is by construction. Specifically, it can be shown that any register
‘machine can be converted into an equivalent extended Petri net. In this case, the lan-
guages generated by the net can be taken to be the set of sequences of transitions that
lead to a reachable marking. Given this equivalence, it is evident that activity networks
are equivalent to Turing machines, since every extended Petri net is an activity network
(transitions map to activities, places to places, and arcs to gates). In the context of an
activity network, the language generated can be taken to be the set of steps with initial
marking uo (i.e., S(po)). Thus the class of languages generated by the set of possible
activity networks is coextensive with the class of recursively enumerable sets. Since, gen-
erally, it can not be decided whether a recursively enumerable set is finite [37], we have

the following theorem.

T « T

Theorem II.i It is not decidable whether an activity network in a marking o is stabi-

lizing.

There are, however, sufficient conditions by which the stabilizing property can be
established, based on the structural properties and configuration of the instantaneous
activities in the network. Identification of conditions is aided by the introduction of two

properties of instantaneous activities. Specifically,

23

Definition II.9 Aninstantaneous activityis self-disablingif, given any reachable marking

K, it can only complete a finite number of times without any other activities completing.

This definition allows us to identify activities that will complete only a bounded number
of times without a change in the marking of their input places caused by another activity.
While this may be a difficult condition to check generally, it is easy to identify several
frequently used activity-gate pairs that are self-disabling. For example, an activity with
disjoint sets of input and output places and all default input gates (denoted by directed
arcs) is self-disabling. In order to identify those activities which have no potentially
unstabilizing interactions with other activities, we introduce the notion of a “cycle-free”

instantaneous activity.

Definition I1.10 An instantaneous activity I is eycle-free if there does not exist a se-

quence of instantaneous activities Iy, I5,..., I, such that

OP(L)NIP(L)#0 A
OP(L)NIP(L)#0 A

OP(IL,)NIP(I;) # 0.

Informally, then, an instantaneous activity is cycle-free if there does not exist a sequence of
instantaneous activities that, through their completions, can affect the original activity’s
input places. Note that this is a purely structural condition and, even if an activity is
not cycle-free, the enabling predicates of the activities in the cycle may be such that the
cycle of completions can never occur. Furthermore, because the number of activities in
a network is finite by definition, an algorithm exists to determine whether an activity is
cycle-free. These two concepts provide us with criteria to identify sufficient conditions
for an activity network to be stabilizing. Intuitively, if every instantaneous activity is
cycle-free and self-disabling, then no instantaneous activity can complete an unbounded
number of times without the intervening completion of a timed activity. More formally,

we have the following theorem.

24

Theorem I1.2 An activity network AN in a marking p is stabilizing if every instanta-

neous activity of the network is cycle-free and self-disabling,.
Proof:

The proof is by contradiction. Suppose there exists an activity network AN with activities
A that is not stabilizing in a marking s but where every instantaneous activity of the net-
work is cycle-free and self-disabling. Then, by definition, since AN is not stabilizing there
exists an activity which can complete an unbounded number of times without resulting
in a stable marking. A self-disabling activity can only complete an unbounded number
of times without reaching a stable marking if another instantaneous activity changes the
marking of one of its input places. But every instantaneous activity in A is cycle-free,
so this may not occur. Thus an activity network in a marking p is stabilizing if every
instantaneous activity in the network is cycle-free and self-disabling. O

For an example of an activity network that satisfies the conditions of the above theorem,
see Figure 2.4. First, note that all the instantaneous activities in the network are self-
disabling since they all have default input gates and disjoint input and output places.
Secondly, note that all instantaneous activities are cycle free. Thus by Theorem II.2
this activity network is stabilizing. The stability of an activity network is an important
necessary condition to insure that the probabilistic behavior of its stochastic extension is
completely specified. Before the second necessary condition can be discussed, the definition

of a stochastic activity network must be given.

Definition of a Stochastic Activity Network

Given an activity network which is stabilizing in some specified initial marking, a stochas-
tic activity network is formed by adjoining functions C, F, and G, where C specifies the
probability distribution of case selections, F' represents the probability distribution func-
tions of activity delay times, and G describes the sets of “reactivation markings” for each

possible marking. Formally,

Definition I1.11 A stochastic activity network (SAN) is a five-tuple

SAN = (AN, o, C, F,G)

25

Figure 2.4: A Second Stabilizing Activity Network

where:

1. AN =(P,A,1,0,7,7,¢,0)is an activity network.
2. pp € Mp is the initial marking and is a stable marking in which AN is stabilizing,

3. C is the case distribution assignment, an assignment of functions to activities such
that for any activity a, Cs : M1p(a)uoP(s) X {1,---,7(a)} = [0,1]. Furthermore, for
any activity e and ‘marking g € Mjp(s)uopP(e) in Which a is enabled, C,(g,-) is a
probability distribution called the case distributz'on of a in p.

4. F is the activity time distribution function assignment, an assignment of continuous
functions to timed activities such that for any timed activity a, F, : Mp xR — [0,1].
Furthermore, for any stable marking 2 € Mp and timed activity @ which is enabled
in p, Fy(,-) is a continuous probability distribution function called the activity time

distribution function of a in y; Fo(p,7)=0if 7 <0.

5. G is the reactivatien function assignment, an assignment of functions to timed activ-

ities such that for any timed activity a, G, : Mp — p(Mp), where p(Mp) denotes

26

the power set of Mp. Furthermore, for any stable marking p € Mp and timed ac-
tivity @ which is enabled in g, G,(y,*) is a set of markings called the reactivation

markings of a in p.

Recall that an activity is enabled if all of its input gates hold. While this concept
is suffices to describe the behavior of an activity network, several additional terms are
needed to describe the behavior of a stochastic activity network. Figure 2.5 aids in the
description of these terms. In particular, since timed activities represent operations in a
modeled system, events must be defined to denote the start and finish of these operations.
The start of an operation is signaled by an activation of an activity. An activation of an
activity will occur if 1) the activity becomes enabled (illustrated by the first time-line) or
2) the activity completes and is still enabled (illustrated by the second time-line). Some
time after an activity is activated it will either complete (illustrated by the first time-line)
or be aborted (illustrated by the third time-line). The activity will complete if it remains
enabled throughout its activity time (to be defined momentarily); otherwise it is aborted.

The activity time distribution function specifies (probabilistically) the activity time of
an activity, i.e., the time between its activation and completion. Any continuous distribu-
tion (e.g., exponential, normal) is a legal activity time distribution, although the choice of
distribution will affect the applicability of many solution methods. Both the distribution
type and its parameters can depend on the global marking of the network at the activa-
tion time of the activity. Activity times are assumed to be mutually independent random
variables.

Two other functions are associated with an activity network to form a SAN. In par-
ticular, the case distribution specifies (probabilistically) which case is to be chosen upon
the completion of an activity. These probabilities can depend on the markings of the
input and output places of the activity at its completion time. A reactivation function
is also associated with each timed activity. This function specifies, for each marking, a
set of reactivation markings. Given that an activity is activated in a specific marking,
it is reactivated (i.e., activated again) whenever any marking in the set of reactivation
markings for the activation marking is reached before it completes (as illustrated by the

fourth time-line). Probabilistically, the reactivation of an activity is exactly the same as

27

activation completion

<4—-activity time-»

<4—— enabled —»

completion
activation and activation completion

activity activity
time r_ time

<4———————¢habled ——»

activation aborted

4———gctivity time ———»

) —

l¢4— enabled »

activation reactivation completion
activity
time activity

l' time

777777, ¢

enabled »

Figure 2.5: Terms Related to the Execution of a Timed Activity

28

an activation; a new activity time distribution is selected based on the current marking.
This provides a mechanism for restarting activities that have been activated, either with
the same or different distribution. This decision is made on a per activity basis (based on
the reactivation function) and, hence, is not a net-wide execution policy.

The definition of a stochastic activity network presented here differs from that pre-
sented earlier in [66] in three respects. First, it is required that probabilities associated
with cases depend only on input and output places of the associated activity. This require-
ment permits the development of more efficient algorithms to test whether the probabilistic
behavior of a stochastic activity network is completely specified. Since any place in a net-
work can be made to be an input or output place of any activity, this is not a restrictive
requirement.

Second, the new definition requires that the probability distribution function associ-
ated with each timed activity in a possible marking be continuous. This requirement is
to insure that no two timed activities complete at the same time, since the behavior in
this instance is not specified. This requirement is not overly strict for stochastic activ-
ity networks that are to be solved analytically, since the solution method usually places
stricter constraints on the distributions. In the case of SANs that are to be solved via
simulation, the ambiguity can be avoided by assigning an ordering to timed activities that
may complete at the same time.

Third, the current definition does not require that the underlying activity network be
“well behaved” [66] in its initial marking. An activity network is said to be well behaved
in an initial marking p if

1. Noinfinite sequence of instantaneous activities may complete in a marking reachable

from marking p, and

2. If a marking reachable from p has more than one enabled instantaneous activity,
then, from that marking, all possible sequences of reachable markings result in the

same stable marking.

29

The requirement that the underlying activity network be well behaved is more strict
than the requirement that the underlying AN be stabilizing, and does lead to stochastic
activity networks whose probabilistic behavior is completely specified. However, delaying
the introduction of conditions of this type until after the stochastic extension is defined
allows us to identify a larger class of networks whose probabilistic behavior is completely

specified.

Stochastic Activity Network Behavior

Before discussing in detail how activity time distributions, case distributions, and reacti-
vation functions determine an activity network’s behavior, it helps to describe, informally,
how a network executes in time. In particular, one can think of an execution of a SAN as a
sequence of configurations, the interpretation being that for each configuration < p,a,¢ >
the SAN was in marking p, activity a completed, and case ¢ was chosen. In any marking
i, the activity that completes is selected from the set of active activities in u, i.e., the
set of those activities which have been activated but have not yet completed or aborted.
After each activity completion and case selection, the set of activities which are active is
altered as follows. If the marking reached (as specified by the yields relation) is stable,
then
1. the activity which completed is removed from the set of active activities,

2. activities which are no longer enabled in the reached marking are removed from the
set of active activities,

3. activities for which the reached marking is a reactivation marking are removed from
the set of active activities, and

4. activities which are enabled but not in the set of active activities are placed in the
set (including those which were reactivated).
In contrast, if the marking reached is not stable, then timed activities (other than the one
that just completed, if timed) are not added or deleted from the set. Instead,
1. the activity which completed is removed,

2. instantaneous activities which are no longer enabled in the reached marking are
removed, and

3. instantaneous activities which are enabled but not in the set are added.

30

. The- choice of activity to complete from the set of active activities is determined by the
activity time distribution function of each activity in the set and the relative priority of
timed and instantaneous activities (as specified by the definition of “may complete”). If
there are one or more instantaneous activities in the set, one of them is chosen (non-
deterministically) to complete. If not, the timed activity with the earliest completion
time is selected (stochastically) based on the activity times of the set of active activities.
Recall that the activity time distribution function defines the time between an activity’s
activation and completion. After the activity to complete is selected, a case of the activity
is chosen based on its case distribution in the current marking, and a new marking is
reached. The set of active activities is “initialized” at the start of an execution by adding
all those activities to the set that are enabled in the initial marking. Note that, because
choices between active instantaneous activities are made non-deterministically but not
probabilistically, there may be networks for which these choices lead to behaviors which
are not probabilistically specified. We now investigate conditions under which probabilistic

behavior of the network is completely specified.

Well Specified Stochastic Activity Networks

Two types of nondeterminism can occur in stochastic activity networks: 1) uncertainty as
to which activity completes among the active activities, and 2) uncertainty as to which
case is chosen of the activity that completes. To aid in the discussion that follows, we will
refer to a choice of the first type as an activity choice and a choice of the second type as
a case choice.

In stochastic activity networks, case choices are quantified by the assignment of a case
distribution to each activity. Activity choices are quantified partially by the assignment of
an activity time distribution to each timed activity. However, the activity time distribution
does not completely quantify this type of non-determinism, since the behavior is not
defined in the case that two activities have the same completion time. This will never
occur for two timed activities, since all activity time distributions are continuous. It
will occur, however, whenever two or more instantaneous activities are enabled, since

instantaneous activities complete in zero time. In this situation, the choice of which

31

activity completes next is non-deterministic and not quantified by either the activity time
distribution function assignment or the case distribution assignment.

Since we are interested in possible sequences of timed activity completions and reached
stable markings, we would like the probability distribution on the choice of next stable
marking to be the same regardless of any non-probabilistically quantified activity choices
that have been made. To investigate this more formally, we introduce the notion of a

“stable step”.

Definition I1.12 Let S = (AN, uo,C, F,G) be a stochastic activity network and s be a
step of AN with initial marking o, then s is a stable step if the resulting marking of s is
stable.

Stable steps can be thought of as “jumps” in the execution of a stochastic activity network
that take the network from stable marking to stable marking via the completion of a timed
activity and zero or more instantaneous activities. There may be several steps with the
same first marking and activity, but a different final marking. Accordingly, we define the
“set of next stable markings” for a stable marking upon completion of an activity a as

follows.

Definition I1.13 Let S = (AN, uo,C, F,G) be a stochastic activity network and p €
SR(AN, uo). The set of nezt stable markings for § in g upon completion of a is the set

NS(u,0) , 3 a stable step s from p to y’ such that
®a)= I8

a is the activity of the first configuration of s

This set allows us to focus our attention on those stable markings that may be reached
from a particular stable marking by completion of a specific timed activity. In order to
insure that the probability distribution over next stable markings is invariant over activity
choices between instantaneous activities, we must define a measure on stable steps that
captures the probability that a stable step is taken given that a set of activity choices is
made in a manner such that the step is possible. The case construct allows us to define

this probability. Specifically,

32

Definition I1.14 Let § = (AN, pto,C, F,G)beaSAN and s = < pl,al, ¢t >< p?,a?,¢% >
-++ < p™,a% c" > be a path of §. Then, the probability of s, denoted Pr(s), is

Pr(s) = Cau(Bip@iyuop(st) €") X Ca2 (B3p(a2yuop(a2) €7) - - - X Con (Blp(anyuop(amy» €™
where X is taken to be normal multiplication on the set of real numbers.

This function defines the probability that a stable step is taken given that a set of
activity choices was made such that the step may occur. Since we want to insure that the
probability distribution over next stable markings upon completion of a timed activity
is invariant over possible sets of activity choices, we consider the set of steps from some
stable marking u to a stable marking p’' € NS(g,a), by completion of a timed activity a
which may complete in y. Formally, let

P; s = {s| sisastable step from u to u' with first activity e }.

Different stable steps in this set can arise from different sets of activity choices. In order
to specify the set of stable steps from one marking to another upon completion of some
timed activity for a single set of activity choices, it helps to define a relation relating stable
steps that can occur under a single set of activity choices. Specifically, define the relation

Ron P;“'“, to be

R (5,) for every configuration < p,a,c > in s and configuration
=4{(s,8

< p',d',¢' > in 8 such that p=p',a=d’

Thus two si;a.ble steps are related if, for every marking they share in common, the
same activity choice is made. Note that while R is not an equivalence relation, it is a
compatibility relation (i.e., it is reflexive and symmetric). While a compatibility relation
does not necessarily define a partition of a set, it does define a covering of a set, by the
mazimal compatibility classes of the relation. Recall that (as in [87]) a subset C C P} ,
is called a mazimal compatibility class if any every element of C is related to every other
element of C' and no element of P2 ,, —C is related to all the elements of C. Each maximal

compatibility class contains stable steps that correspond to a single set of activity choices.

33
More specifically, note that all stable steps in C correspond to steps from u to y' by
completion of timed activity a under some set of activity choices. The probability that u’
is reached from p by completion of a, given that a particular set of activity choices has
been made, is thus the sum of the probabilities of all stable steps in C, i.e.,

P(C) = 2 Pr(s).

seC

All activity choices within stable steps correspond to choices between active instanta-
neous activities and, hence, are not probabilistically specified. Therefore, for a stochastic
activity network to be completely probabilistically specified, P(C) must be the same for
all maximal compatibility classes C. To express this precisely, we introduce the notion of

a “well specified stochastic activity network”.

Definition I1.15 A stochastic activity network S = (AN, o, C, F, G) is well specified if,
for every marking p € SR(AN, o), each activity a which may complete in g, and all
i € NS(u,a), P(C) is identical for all maximal compatibility classes C of R defined on

(3
P TN A

The above definition identifies a class of networks whose behavior is completely speci-
fied, probabilistically, with respect to all notions of state that we intend to consider.

It is interesting to compare the notion just presented to the well behaved notion used
previously. In particular, one can show that every activity network well behaved in some
marking po is well specified for any choice of activity time distributions, reactivation

functions, and case probabilities. We state this fact as a theorem.

Theorem I1.3 If an activity network is well behaved in a marking uo, then it is well
specified for any choice of activity time distributions, reactivation functions, and case

distributions.
Proof:

Suppose an activity network AN is well behaved in a marking po. Then, for every marking
u reachable from g, no infinite sequence of activities may complete in p. Thus AN is

stablizing in po. Augment AN with arbitrary activity distributions, reactivation functions,

34

case distributions, and initial marking uo to form a SAN. Now, recall that this SAN is
well specified if for every stable marking u reachable from po, each activity @ which may
complete in p, and each u' € NS(u,a), P(C) is identical for all maximal compatibility
classes C or R defined on P ;. Consider an arbitrary stable marking x reachable from p
and activity ¢ which may complete in p. Since S is well behaved, one of three situations
may arise upon completion of a in p.

In the first situation, all markings in the set of next possible markings are stable.
There is thus only one maximal compatibility class for this marking and activity and the
criterion of Definition II.15 is satisfied.

In the second situation, at least one marking in the set of next possible markings is
unstable, and all possible unstable markings that may be reached before reaching another
stable marking have at most one instantaneous activity enabled. Then, as in the first
situation, there is only one maximal compatibility class for this marking and activity and,
therefore, the criterion of Definition II.15 is satisfied.

In the final situafion, at least one marking in the set of next possible markings is
unstable, and some unstable marking that may be reached before reaching another stable
marking has two or more instantaneous activities enabled. But, since S is well behaved, all
possible sequences of reachable markings, from that marking, result in the same next stable
marking. Thus while there may be more than one compatibility class for the marking and
activity, they all result in the same single marking with probability one, aﬁd hence, P(C)
is identical for all maximal compatibility classes. Again the criterion of Definition II.15 is
satisfied for this marking and a.ctivity.

Since the criterion of the definition is satisfied for each possible situation for every
reachable marking and activity that may complete in the marking, the SAN is well spec-
ified, for any choice of activity time distributions, reactivations, and case distributions.
O

It should be noted, however, that the converse of IL.3 is not a theorem and, hence, well-
specified SANs are properly more general than well-behaved SANs. To see this, consider
the stochastic activity network of Figure 2.6. This SAN is well specified in the pictured

marking, since the activity choice which is made after completion of the enabled timed

35

Figure 2.6: A Well Specified, but not Well Behaved, Stochastic Activity
Network

36

activity does not affect the distribution of next stable markings. It is not well behaved
though, since two instantaneous activities may be enabled and more than one stable
marking can be reached from the current marking. Recall that in order for an activity
network to be well behaved, whenever a reached marking has two or more instantaneous
activities enabled, all possible sequences of reachable markings must result in the same
stable marking.

Any algorithm to determine whether a given stochastic activity network is well spec-
ified must check that the probability distribution over each next stable markings does
not depend on the set of activity choices that is made. This condition can be checked
using techniques developed to find the set of all maximal compatibles [46]. The following
algorithm checks this for a particular stable marking and timed activity.

Algorithm II.1 (Determines whether the next stable marking probability distribution is
invariant over possible sets of activity choices for a stable marking p and activity @ which

can complete in x, and if so, computes this distribution.)

Compute the set of all stable steps where the initial marking is g and timed
activity is a.

Group the set of stable steps computed above according to the resulting
marking of each step. Denote the subset containing the stable steps from p
to p' by completion of timed activity a as P;f’ e

For each subset P}
Construct the set of maximal compatibles of R on P
Compute P(C) for each maximal compatible C.
If P(C) is not identical for all compatibles C' then
Signal SAN is not well specified and abort algorithm.
Next P} .

Return next stable marking probability distribution for marking and
activity.
For convenience in that which follows, we denote this distribution by the function
hya : NS(p,a) — [0,1], where for p' € NS(g,a), huq(p’) is the probability that p' is
reached given that the SAN is in z and a completes.

37

Figure 2.7: A Well Specified Stochastic Activity Network

The following example illustrates the use of Algorithm II.1. Specifically, consider the
stochastic activity network of Figure 2.7. Here the case distribution for each activity
is denoted by the number next to each case for the activity. In addition, markings are
denoted as vectors, assuming the usual lexicographic ordering of place names. With these
facts in mind, we will show (using Algorithm I1.1) that the next stable marking probability
distribution is invariant over possible sets of activity choices for the initial marking 1000000
(lexicographic ordering on place names) and timed activity T'1. As per the algorithm, the
set of all stable steps is computed first, and is shown in Figure 2.8. These steps are
then used to determine the set of possible next stable markings (¥ .§(1000000, T'1)), which
is found to be {0001010,0000011}. The set of stable steps is then split into two subsets,
according to their resulting marking. These two subsets serve as input to the portion of the
algorithm that computes sets of maximal compatibles, checks to see that the probability
measure is invariant over all possible compatibles, and computes the next stable marking

probabilities. As per the algorithm, the set of maximal compatibles corresponding to the

38
' < 1000000,71,1 >< 0100100, 11,1 >< 0001100,13,1 >, ’
< 1000000, 71,1 >< 0100100, I1,2 >< 0010100, /2,1 >< 0001100,13,1 >,
< 1000000,71,1 >< 0100100, I1,2 >< 0010100, I2,2 >< 0000101,13,1 >,
< 1000000,71,1 >< 0100100, I1,2 >< 0010100, 13,1 >< 0010010, 12,1 >,
< 1000000,7'1,1 >< 0100100, 11,2 >< 0010100, 13,1 >< 0010010, 12,2 >,
< 1000000,71,1 >< 0100100, 13,1 >< 0100010, 11,1 >,

< 1000000,71,1 >< 0100100, 13,1 >< 0100010, I1,2 >< 0010010, 12,1 >,

| < 1000000, 71,1 >< 0100100, 13,1 >< 0100010, 11,2 >< 0010010,72,2> |

Figure 2.8: Set of Stable Steps for Stochastic Activity Network of Figure
2.7 from Marking 10000000 by Completion of Activity T'1.

resulting marking 0001010 is then computed, and found to consist of the three elements

C; = {< 1000000,7'1,1 >< 0100100, I1,2 >< 0010100, I2,1 >< 0001100,13,1 >,

< 1000000,71,1 >< 0100100, 71,1 >< 0001100,13,1 >},

C2 = {< 1000000, 71,1 >< 0100100, 1,2 >< 0010100, I3,1 >< 0010010, 12,1 >,

< 1000000, 71,1 >< 0100100, 11,1 >< 0001100,I3,1 >}, and

C3 = {< 1000000, 71,1 >< 0100100, 73,1 >< 0100010, /1,2 >< 0010010, 12,1 >,

< 1000000, T'1,1 >< 0100100, 3,1 >< 0100010, 11,1 >}.

P(C) is then computed for each maximal compatible C, and P(C;) = P(C:) = P(C3) =

.58. Similarly, computing the set of maximal compatibles of stable steps with resulting

39
marking 0000011, we obtain:

C1 = {< 1000000, 71,1 >< 0100100, 11,2 >< 0010100, 2,2 >< 0000101, I3,1 >}
C» = {< 1000000,T1,1 >< 0100100, 11,2 >< 0010100, 13,1 >< 0010010, I2,2 >}

Cs = {< 1000000,T1,1 >< 0100100, 13,1 >< 0100010, I1,2 >< 0010010, I2,2 >}

For these compatibles, P(C1) = P(C2) = P(C;) = .42. Since the probability measure is
the same for each maximal compatible in a set, for both sets, the next stable marking
probability distribution is invariant over possible set of activity choices for this SAN,
starting marking and timed activity.

By definition, then, a stochastic activity network is well specified if this distribution
is invariant for all stable reachable markings and activities which may complete in these
markings. In cases where the set of stable reachable markings is finite, this fact leads
immediately to an algorithm to check whether a SAN is well specified. Specifically, consider
the following algorithm.

Algorithm IL2 (Determines whether a SAN with a finite reachability set is well specified

and computes next stable marking probability distributions)
For each p € SR(AN, po) and activity a which may complete in p:

Determine whether the next stable marking probability distribution
is invariant over possible sets of activity choices for this choice of u
and a.

If distribution is not invariant for this u and a then
Signal SAN is not well specified and abort algorithm.
Next p € SR(AN, po) and activity a which may complete in p.

Signal stochastic activity network is well specified.

Note that this algorithm is simply an iterative application of Algorithm II.1. While Al-
gorithm IL.1 suffices to determine whether the next stable marking probability distribution
is invariant for a particular marking p and activity a, its performance can be improved
upon by using information concerning the structure of the network. This technique makes

use of the concept of “dependent instantaneous activities”. Specifically,

40

Definition II.16 Let [; and I; be instantaneous activities of some activity network.

Then I and I, are dependent if
(IP(L) U OP(1)) N(IP(L;) U OP(Iz)) # 0.

Informally, then, two instantaneous activities are dependent if they have common input
or output places. Two activities which are dependent can affect each other by changing
the marking of each other’s input or output places. In order to identify instantaneous
activities that can affect each other through a sequence of completions we look at the
transitive closure of a relation based on the above definition. Specifically, let DEP denote

a relation on the set of instantaneous activities of a SAN such that Iy DEP I, if I; and
I are dependent. Furthermore, let DEJP denote the transitive closure of DEP. It is easy

to see that DEP is an equivalence relation; thus it partitions the set of instantaneous
activities. The blocks of the partition are sets of activities whose order of ‘completion
may affect the probability distribution of next stable markings. On the other hand, pairs
of activities from different blocks cannot affect each other by completing (since activities
can only change the marking of their input or output places and case probabilities depend
only on input and output places). This suggests that steps within each subnetwork defined
by activities in each block can be considered individually and combined to determine the
total probability for a possible next stable marking.

In order to explore this idea in more detail, we define the notion of an instantaneous

subnetwork of a2 SAN constructed from a set of activities.

Definition II.17 Given a stochastic activity network § = (AN, o, C, F,G), underlying
activity network AN = (P, A,1,0,7,T,¢,0), and set of instantaneous activities A’ C A
the instantaneous subnetwork of S with respect to A’ is a structure (M’, ug,C') where
1. M'=(PLA,I'Ov,7,/,0) is an activity network with
() PP={p|p€ P and p € IP(a)U OP(a) for some a € A'},
(b) A’ is some specified set of instantaneous activities,
() I'={g|geIand g€ (a)for somea € A},

(d) O'={g| g€ 0 and g € 0~ (a,c) for some a € A’ and ¢ =1,2,...,7(a)}, and

41
(e) 7', 7’y ', and o are the functions.y, 7, ¢, and o, respectively, restricted to P/,
A, I’ and O'.
2. pg = po restricted to places P/, and

3. C' is the function C restricted to A’.

While (M, muf,C"’) does not fit the definition of a stochastic activity network precisely
since the initial marking is not stable, it does provide us with a network made up of in-
stantaneous activities where all the case probabilities are specified. The revised algorithm

presumes that such a subnetwork is constructed for each set of activities corresponding to

a block of the partition defined by D}:JP. By the nature of DEP, these subnetworks do
not interact with one another. This fact is exploited in the revised algorithm presented
below.

Unlike Algorithm IL.1, which computes the set of all stable steps for the given marking
and activity immediately, the revised algorithm accomplishes the same goal in two smaller
steps. First, it computes the set of “next possible markings” for the given starting marking
and activity. The set of next possible markings is the set of markings that can be reached

by one application of the yields relation, i.e. for a given marking p and activity e

NP(u,a) = {p' | p =5 p for some a € A and c € {1,...,7(a)}}.

Each of these markings can be either stable or unstable. If a marking is stable, then it
is a next stable marking for the specified starting marking and activity. Furthermore,
its probability of occurrence is just the sum of the probabilities of all cases that lead to
that marking. Since only probabilistically specified activity choices were made in reaching
the marking, the network is well specified. A more complicated situation exists for each
unstable marking in N P(u,a).

These markings are unstable markings that can be reached after one application of
the yields relation and, hence, situations where one or more instantaneous activities must
be completed to find possible resulting next stable markings. To find these, consider the
instantaneous subnetworks previously constructed. First, note that although the sets of
places defined by each subnetwork are disjoint, they may not partition the set of places of

the entire network, since there may be places that are connected only to timed activities.

42

The marking of these places will not change by completion of instantaneous activities and
hence will remain the same in all next stable markings of the network reached from this
marking. In the algorithm which follows, the marking of the places connected only to
timed activities is denoted as p!, for each p' € NP(p,a). Similarly, the initial (unstable)
markings of each of the n subnetworks are denoted as i, p9,. . . , 41, , respectively, for each
¢ € NP(u,a). Now, since the markings of places of different subnetworks are indepen-
dent of each other, sets of next stable markings can be computed for each subnetwork
independently and be combined to obtain “global” next stable markings for the entire
network.

Computation of the local next stable markings, and the subsequent check that the
probabilities these markings are invariant over possible sets of activity choices for each
subnetwork, is done in a manner similar to that of Algorithm I1.1, except that the initial
marking of each of the possible paths to a stable marking is not itself stable. Since these
paths are suffixes of stable steps, we call them “partial stable steps”. A partial stable
step is a stable step without the initial configuration. Except for this difference, the
invariant check and computation of probabilities is done exactly as in Algorithm II.1. In
the algorithm presented below, for each subnetwork 7, the set of (subnetwork) next stable
markings is denoted as N'S; and the probability that subnetwork marking p!; is reached

from subnetwork marking p! is denoted as 71,4 ()

After the possible next stable markings and probabilities of these markings have been
computed for each subnetwork, they are combined to construct next stable markings and
probabilities for the entire network. Possible next stable markings for the entire network
are constructed by forming all possible combinations of subnetwork next stable markings
together with u!. Each marking constructed this way is denoted as the concatenation of its
constituent subnetwork markings together with p}. The probability of each of these global
markings is then computed as the product of the probabilities of each of the constituent
markings. Since each global marking could also be reached in other ways (i.e., from
another y' € NP(y/,a)), the computed probability obtained in each way is summed to
obtain the total probability for this next stable marking.

A more precise description of the algorithm is the following.

43

Algorithm I1.3 (Uses concept of instantaneous subnetworks to determine, given a stable
marking p and activity ¢ which can complete in u, whether the next stable marking prob-
ability distribution is invariant over possible sets of activity choices, and if so, computes

this distribution.)

Let NS(p,a) equal the null set.
Let fyq =0.
Compute NP(u,a).

For each ' € NP(p,a):
Let hyq(i') = > Ca(K1P(a)u0P(a): €)-
¢ such that x=5u

If o' is stable then
Add p' to NS(p,a).
Let hya(p') = hua().
else
For each instantaneous subnetwork ¢, 7 =1 to n:
Restrict ¢’ to places of the subnetwork (denote this p!).

Compute the set of all partial stable steps of the subnetwork with initial .
marking p!.

Compute the set of resulting stable markings from the set of partial stable
steps. Denote these k; markings pl'y, g’z - - - py,.

Group the set of partial stable steps computed above according to their
resulting marking. Denote the subset containing partial stable steps from

! 14
Hi to p3; as By .

For each Puﬁ,uf’_,-’ j=1tok;:

Construct the set of maximal compatibles of R on Py

"o

5

Compute P(C) for each maximal compatible C.
If P(C) is not identical for all compatibles C then

Signal SAN is not well specified and abort algorithm.

else
Add pi; to N8i(pl)-
Let hy(p;) = P(C).
Next j.
Next 2.
{* Now form global next stable marking from subnetwork results *}
Forji=1to k

For jo = j1 to ko

For jn = jn-1 to kn

Add py ;15 5, -+ B o M 80 N S(p,a).

Let bk gy Hag, * = bnjalls) =)

h“’a(#'lvjlulzyjz e 'u:l,]n”;) + hﬂya(”l) HZ.:]. tO n hﬂ: (p:.,j.')'
Next .

Next jz.

Next j1
Next p/ € N P(u,a).

Return next stable marking probability distribution for marking and activity.

This algorithm has significant advantages over Algorithm II.1 for systems that have
several instantaneous subnetworks, and reduces to Algorithm II.1 when there is a single
subnetwork. To illustrate this, consider again the stochastic activity network of Figure
2.7, which was shown to be well specified using Algorithm II.1. Figure 2.9 depicts this
activity network with the instantaneous subnetworks outlined. As shown by Algorithm
I1.3, each of these subnetworks can be analyzed separately to check that the network is

well specified and to compute the next stable state probability distribution. In order to

45

Figure 2.9: A Well Specified Stochastic Activity Network With Instan-

taneous Subnetworks Noted

46
do this, we must first compute the set of next possible markings, which in this case is
{0100100}. The probability this marking, denoted A1000000,71(0100100), is 1. Now, since
the marking is not stable, the set of next stable states and their probabilities must be
computed for each instantaneous subnetwork. For the first subnetwork, which contains I1

and I2, the set of partial stable steps is

4 3

< 1000,11,1 >,

v <1000,11,2 >< 0100,12,1>, (

< 1000,711,2 >< 0100,12,2 >
\ /

and set of possible next stable markings, NS; is {0010,0001}. There is one maximal
compatible corresponding to each possible next stable marking. The first,

C = {< 1000,I1,1 >,< 1000, 11,2 >,< 0100,12,1 >}

has probability P(C) = .58 and, hence, hoo1o = .58. The second, corresponding to the
stable marking 0001, is

C = {< 1000, 1,2 >< 0100,12,2 >}

and has probability 31000(0001) = .42. The computations for the second subnetwork are

even simpler. For this subnetwork, the set of partial stable steps is the singleton set
{<10,13,1>}

where the set of possible stable markings, NSz is {01} and h10(01) = 1.

Since the next stable st;\.te probabilities are invariant for each subnetwork, they are
invariant for the entire network. The global next stable marking probabilities are com-
puted by forming possible combinations of the local next stable markings. When this is
done, the set of next stable markings is found to be N.$(1000000) = {0001010,0000011}
with proabilities h1000000,71(0001010) = .58 and hyopop00,71(0000011) = .42. This result
matches that computed previously using Algorithm II.1.

CHAPTER III

PERFORMANCE VARIABLES

Introduction

The previous chapter presented a general framework for the representation of distributed
systems using stochastic activity networks. These networks have properties that allow
them to be solved either by analysis or simulation, depending on specific model character-
istics. However, before methods to do this can be developed, it is necessary to specify the
range of questions (i.e. “types” of performance variables) that will be considered. To some
extent, this range is determined by the choice of representation scheme. For example, if
queueing networks are employed, one is typically limited to asking questions regarding
server utilizations, queue lengths, waiting times. and service times. If stochastic activity
networks are used, the class is larger, due to the lower-level nature of the model primi-
tives. On the other hand, as with queueing networks, the spectrum of variables that are
considered directly affects the techniques that may be used to obtain a solution.

It is therefore useful to formally categorize performance variables in a manner that
suggests methods which may be used to obtain their solution. Previous work done re-
garding “reward models” [38] (and associated “reward variables”) provides an instructive
example in this regard. Informally, a reward model consists of a stochastic process and a
“reward structure”. The reward structure relates possible behaviors of the process to a
specified performance variable. Typically, this is done by associating a “reward rate” with
each state, the interpretation being that this rate is the rate at which reward accumulates

47

48
while the process is in the state. The performance variable in this case is then taken to
be the reward accumulated over some utilization interval (either finite or infinite). By
associating different reward rates to states, one can construct performance variables with
many different interpretations.

We take a similar approach in this chapter, but develop reward structures that quantify
behaviors at the stochastic activity network level, instead of the state level. This approach
has several distinct advantages over the state-level approach outlined above. First, the
assignment of rewards and interpretation of solutions is more natural, since it is done
at the level at which the modeler thinks. Second, since rewards are assigned at the
network level, they can be used in the construction procedure (i.e. the procedure by which
a base model or simulation program is generated from the network representation and
performance variable).

The remainder of this chapter is organized as follows. In the following section, tradi-
tional reward models and variables are reviewed and a general framework for classifying
reward variables based on the “type” of their reward structure is given. This framework
is then used to generate particular variable types that will be considered. In the final sec-
tion, variables based on a particular type of reward structure which captures information
regarding activity completions and numbers of tokens in places are investigated. Example
instantiations of variables of these types are given and their relationships to variables used

in traditional performance and dependability evaluations are illustrated.
Reward Models

As stated in the introduction, a reward model consists of a stochastic process and a
reward structure. The stochastic process represents the dynamics of the system and can
be constructed by hand or, automatically, from some network level description. The reward
structure is typically a set of one or more functions defined on the states or transitions
between states in the process. In all cases known to the author, the interpretation given
to each function is either that it is a rate at which reward is accumulated or that it is
an impulse of reward that is obtained at the time of some “event” of the process. These

events are typically either entrances to states, exits from states, or transitions between

49

pairs of states. If the interpretation is of the first type we say that the reward is rate-based;
reward functions with the second interpretation are said to be impulse-based. Performance
variables can then be written in terms of the reward structure.

As with the reward structure itself, the manner in which this is done varies greatly in
the literature. Variables can be written in terms of the state of the process at a particular
time, during an interval of time, or during a time-averaged interval of time. In the first
case, the variable typically represents the “status” of the modeled system at some time
t and is said to be an instant-of-time variable. In the second case, the vaziable typically
represents accumulated benefit derived from operating the system for some interval of
time and is said to be an interval-of-time variable. If the reward accumulated during some
interval is divided by the length of the interval, one obtains a variable which represents
the (time-averaged) rate at which reward is accumulated during the interval. Variables of
this type are called time-averaged interval-of-time variables.

An excellent early exposition of a general reward structure and variable class is given
by Howard [38)]. In [38], Howard postulates a reward structure on semi-Markov processes
that consists of both “yield rates” and “bonuses”. In the terminology introduced above,
the “yield rates” specify rates at which reward is accumulated and the “bonuses” specify
impulses of reward that are obtained at state changes. More precisely, yield rates are
associated with pairs of states, the interpretation being that for a pair of states ¢ and 7,
¥i,;(e) is rate at which reward is accumulated in state i o time units after i was entered
when the successor state is 7. Furthermore, bonuses are associated with state transitions,
where b; j(7) is the reward awarded upon exit from ¢ and subsequent entry into j given
that the holding time in ¢ was 7 time units. The bonuses paid at state transitions depend
both on the transition made and the holding time in the state preceding the transition.
The generality of this structure is difficult to fully exploit, due to the complexity of the
resulting solution. The analysis required is simplified if one considers reward rates that
are constant during the occupancy of each state and bonuses that do not depend on the

holding time in the previously occupied state. In this case,
yivj(a) = yi’j and bi;j(T) = biyj'

Howard then considers the solution for the expected value of an interval-of-time variable

50

written in terms of reward structures of this type. -

Later work concerning reward variables did not make use of reward structure types that
were as general as those considered by Howard. In particular, most researchers have limited
their attention to a reward structure type with a single function that is rate-based. For
example, Meyer [62] provided an early application of a rate-based reward structure to the
evaluation of a two-processor system. The variable considered for this application is in the
time-averaged interval-of-time category. This work was later extended by Furchtgott and
Meyer [25] to provide a solution, albeit computationally expensive, of an interval-of-time
variable for systems which are acyclic and nonrecoverable [90] and the reward structure is
rate-based. An algorithmic time-domain solution for an interval-of-time variable was then
developed by Goyal and Tantawi [31,32] for acyclic rate-based models.

Further work was also limited to rate-based reward structures, but made use of trans-
form techniques to obtain a solution. In particular, Donatiello and Iyer [18,19] provided
a closed-form time-domain solution using transform techniques with a rate-based reward
structure, thus generalizing the technique described in [62]. Iyer et al. [40] later extended
this work to obtain a solution in the transform domain for Markov models and an explicit
computational formula for each moment of a variable representing accumulated reward
over an interval. Kulkarni et al. [47] obtained a similar transform solution, but consid-
ered models where some transitions cause the loss of all accumulated reward. They also
obtained solutions for the distribution of accumulated reward for non-trivial repairable
systems by numerical inversion of the transform solution. Most recently, Ciciani and
Grassi derived a closed-foi'm solution for general acyclic Markov reward models [13].

While each of these efforts extended known solution techniques for reward models,
they did little to extend the generality of reward structure types and hence performance
variables that counld be considered. Except for the work by Howard, little use has been
made of impulse rewards. In addition, the utility of these methods has been limited by
having all rewards assigned at the state level. While reasonable for state spaces that are
small or have a high degree of regularity, it is often difficult to assign meaningful rewards
to large numbers of states. We address these both these issues by 1) constructing general

reward structures at the network level and 2) systematically generating variables from

51

these reward structure types.

The variables that we consider are systematically organized according to reward struc-
ture type, category within a reward structure type, and variable type within a category.
The manner in which we do this is outlined in Figure 3.1. As depicted in this figure, cate-
gories of variables are distinguished at the highest level by the choice of a reward structure
type. By type we mean one or more classes of functions that that have a particular in-
terpretation in terms of the networks. For a given reward structure type, variables can
be further distinguished by the interval of time that they depend on. Three categories of
variables are distinguished at this level, as was discussed earlier in this chapter. The first
category, instant-of-time variables, represents the status of the SAN at either a particu-
lar time ¢ or in steady state, as shown in Figure 3.1. Interval-of-time and time-averaged
interval-of-time variables will also be considered.

Within each of the other two categories, the interval-of-time variables and time-averaged
interval-of-time variables, three types of variables are considered. The first type represents
the total or time-averaged reward (relative to a particular reward structure) accumulated
during some interval [¢,¢ 4 I]. The second type corresponds to an interval of length [as ¢
goes to infinity, and is useful in representing the reward that is accumulated during some
interval of finite length in steady-state. The final variable type corresponds to the total
or time-averaged reward accumulated during an interval starting at ¢ and of length [as
! — 0. Thus, as can be seen in Figure 3.1, we consider eight variable types fdr each
reward structure type. We now consider a reward structure type that quantifies benefits

associated with activity completions and particular numbers of tokens in places.

Activity-Marking Oriented Variables

A reward structure type which quantifies benefits that can be related to the numbers
of tokens in particular places and completions of specific activities is considered in this
section. By associating impulse rewards with activity completions, as well as reward
rates with particular numbers of tokens in places, we greatly extend the measures of
performability that can be considered. Variables based on a reward structure of this type

can be used to determine many traditional and non-traditional measures of performance,

52

Reward Structure

Instant-of-Time Interval-of-Time

A\
Time-Averaged Interval-of-Time

v v

t t— o0 [t,l] [t,l] [t,]]
'x t—o00 =00

.1 &1 .7

1t — 00 00

Figure 3.1: Variable Types Considered

53

including queueing time, queue length, processor utilization, steady-state and interval
availability, reliability, and productivity. In addition, if some high-level measure of “worth”
is defined, this can be expressed as a particular reward structure of this type.

Structure and Variable Definitions

We define an “activity-marking oriented reward structure” as follows:

Definition II1.1 An activity-marking oriented reward structure of a stochastic activity

network with places P and activities A is a pair of functions:

C : A — IR where for a € A, C(a) is the reward obtained due to completion of

activity a, and

R :P(P,IN) — IR where for v € P(P,IN), R(v) is the rate of reward obtained

when for each (p,n) € v, there are n tokens in place p,

where IV is the set of natural numbers and P(P, V) is the set of all partial functions
between P and IV.

Informally, impulse rewards are associated with activity completions (via C) and rates
of reward are associated with numbers of tokens in sets of places (via R). An element
v € P(P,IN) is referred to as a partial marking. The marking is partial in the sense
that natural numbers are assigned some subset of P, namely the domain of the partial
function ». This assignment is made in a manner identical to the way a (total) marking
assigns natural numbers to all the places in the set P. Although R has a countably
infinite domain, the number of elements v that are of interest to the modeler and, hence,
deserving of a non-zero reward assignment will generally be small compared to, say, the
number of reachable stable markings of the SAN. Similarly, it will usually be the case
that only a fraction of the SAN’s activities will have non-zero rewards associated with
their completions. We thus use the convention, in practice, that rewards associated with
activity completions and partial markings are are taken to be zero if not explicitly assigned

otherwise.

54
Given a SAN with a reward structure of this kind, there are a variety of ways of defining
different types of performance (reward) variables, as suggested in the previous section. In
particular, we consider two variable types in the instant of time category. The first of
these quantifies the behavior of a stochastic activity network at a particular time ¢. More
precisely, if we let V; denote this variable type then

Vi= >, R@)-IY + >_C(a)-If,

veP(P,IN) a€A
where

I is an indicator random variable representing the event that the SAN is in a marking

such that for each (p,n) € v, there are » tokens in p at time ¢, and

¢ is an indicator random variable representing the event that activity a is the activity

that completed most recently at time 2.

This variable expresses the total reward (according to the reward structure defined
above) associated with a SAN’s status at an instant of time ¢. Depending on the instan-
tiation of the reward structure, the variable can represent a variety of things including
queue length and component status (e.g. idle, busy, blocked, failed, functioning). In view
of our above observations concerning typical reward structures, and since zero values of
R(v) can be ignored in the summation, the number of elements which must be accounted
for in this sum is again relatively small.

Depending on the nature of the stochastic activity network in question, I} and I} may
converge in distribution for all » and a with non-zero rewards as ¢ approaches co. When
this happens, the “steady-state” reward obtained at an instant of time can be studied. If
we denote the random variable with this steady-state distribution as Vo, its value can
be expressed as

V;-“DO = E R(”) * :—»oo + Z C(a) * Ita—voo’
veP(P,IN) a€A

where

¥ oo is an indicator random variable representing the event that the SAN is in a marking

such that for each (p,n) € v, there are n tokens in p in steady-state, and

55

I?, . is an indicator random variable representing the event that activity a is the activity

that completed most recently in steady-state.

Variables of the interval and time-averaged-interval categories can also be considered.
In these cases, the reward accumulated is related both to the number of times each activity
completes and time spent in particular markings during an interval. As was discussed in
the previous section, we consider three variable types in each of these categories corre-
sponding to an interval of length [starting at time ¢ ([t,t +]), an interval of length as
t — oo ([t,t+1],t — o), and an interval starting at ¢ as I — oo ([¢,¢+],/ = o). In the
following, variable types of the interval category are denoted by “Y” while variables types
of the time-averaged category are denoted by “W™, each with the appropriate subscript.
In particular, let

Yigerg = Z 7i’«(”)'J[I;.t-i-l] + ZC(a) 'N[:,t#]’ and
veP(P,IN) a€A

Vet
W[t,t+t] = il 1 1

where

Jf;++q is a random variable representing the total time that the SAN is in a marking such

that for each (p,n) € v, there are n tokens in p during [t,t + {], and

N[‘;’t +] is a random variable representing the number of completions of activity a during
[t,t+1).

If J[‘;,t + and N[at,t +1) converge in distribution as ¢ — oo for all » and a that have
non-zero reward assignments, the time-averaged reward accumulated and total reward
accumulated during some interval of length [in steady-state can be studied. If we denote
the random variables with these steady-state distribution as Yt t41),t—00 and Wit 111) 100
then

Y[t,t+1].t—ooo = Z R(v)-J f;,t-]-l],t—voo + Z Cla)- N, I;,'H-I],t—.oo’ and
veP(P,IN) a€A

Y -
Wit,t41},t-00 = ——[t't+ll]'t =,

56

where

Il 440,t—c0 18 @ Tandom variable representing the total time that the SAN is in a marking

such that for each (p,n) € v, there are n tokens in p during a interval of length ! in

steady-state, and

N[‘;,t +]2—00 is a random variable representing the number of completions of activity a

during an interval of length ! in steady-state.

Similarly, if J[';’t +] and N[‘;’t +]] converge in distribution as ! — co for all ¥ and e that

have non-zero reward assignments, the total reward and time-averaged reward accumu-

lated during an infinite interval starting at time ¢ can be expressed as

YVeeioo = Z R(V)°Jf;.t+1],1-'°° + ZC(“)°N§.t+I],l—»oo’ and
veP(P,IN) . a€A

. Y
W[tst+tl"_'°° = Il_l.lg'o %

where

J[‘;,t +H]J—o0 is a random variable representing the total time that the SAN is in a marking

such that for each (p, ») € v, there are n tokens in p during [t,), and

N[‘;,t H]j—o0 1S 2 random variable representing the number of completions of activity a

during [t, c0).

Example Variable Instantiations

Traditional measures of dependability and performance can be specified easily using the
performance variables just discussed and particular instances of the activity-marking ori-
ented reward structure. To illustrate this, we consider a simple multiprocessor system
where all processors service tasks from a single degradable buffer. The normal, fault-free
operation of the system is as follows. Tasks arrive as a Poisson process with rate a. If the

buffer is full, they are rejected. If not, they are placed in the buffer to be served by the

57

first available processor in a FIFO manner. In addition, processing times are independent
and exponentially distributed with each processor having a processing rate 3.

Faults can occur both due to a failure of a buffer stage and due to a failure of a
processor. In each case, the fault may be covered (i.e. the system degrades successfully to
a less productive structure state) or it may result in & total loss of processing capability
(i.e. total system failure). Additionally, certain processor failures are repairable. Repairs
are performed on one processor at a time, with an exponentially distributed repair time
with rate (. We assume further that faults in both a buffer stage and a processor occur
as Poisson processes with rates A and 4, respectively.

A stochastic activity network representing changes in the structure of the multiproces-
sor due to faults is given in Figure 3.2. Since our intent is to illustrate the specification
of traditional dependability and performance variables, the model is kept simple. Sys-
tem resources (i.e. processors and buffers) are represented by tokens in places. Place A
represents the number of processors queued for repair, place B represents the number of
fault-free processors, and place C' represents the number of fault-free buffer stages. Activ-
ities processor.failure and buffer_failure represent the occurrence of faults in the processors
and buffer stages, respectively. Three types of processor faults are possible, corresponding
to the three cases associated with activity processor_failure. Case 1 represents the occur-
rence of a fault that is repairable. Case 2 represents a total system failure, and case 3
represents the occurrence of a non-repzﬁrable fault. Cases for buffer_failure are similar,
except that buffer stages may not be repaired. Here case 1 represents the occurrence of
a non-repairable fault and case 2 represents total system failure. Processor repairs are
represented by activity processor_repair.

Before dependability type measures can be formulated, a definition of “system failure”
must be given. In this regard, we say that the system has failed if all processors have failed
in a manner such that they cannot be repaired. Then, if we define a reward structure such
that

C(a)=0, Vac A

58

Gate | Enabling Predicate Function
G2 - MARK(A)=MARK(B)=MARK(C)=0;
G3 - MARK(A)=MARK(B)=MARK(C)=0;
Activity Rate Probability
case 1 | case 2 | case 3
processor_failure | y* MARK(B) | cpl cp2 cp3
buffer failure | A* MARK(C) | cbl cb2 -
processor_repair ¢ - - -

Figure 3.2: Multiprocessor Fault Model

59

0 if v ={(4,0),(B,0)}
R(v) = {(4,0),(B,0)} (3.1)

1 otherwise,

E[V;] is the reliability (using the above definition of system failure) at time ¢.
Availability type measures [29,30] can be represented just as easily using this reward
structure type and an associated variable. If we consider the system to be available

whenever there is at least one processor functioning, the reward structure

C(e)=0, Yaec A

)= I 0 if »={(B,0)}

1 otherwise,

(3.2)

can be used to specify availability type measures. For example, using this reward structure,
the steady-state availability of the example multiprocessor system is E[V;—,o0). The interval
availability (i.e., the fraction of time the system is available during some interval of length
I starting at time %) is E[W}; q] using the same reward structure. The distribution of
availability, F(2,1,z), is the probability that Wy, < =.

Performance-oriented measures can be specified using a stochastic activity network
model that represents task arrivals and completions. A stochastic activity network model
of a multiprocessor with N processors and M buffers is given in Figure 3.3. In this figure,
each completion of activity arrival represents the arrival of a task to the buffer. The buffer
is represented by place E. The marking of place F represents the number of tasks queued
for service. Place F represents the status of each of the processors, where the number
of tokens in F is the number of processors that are busy. The finiteness of the buffer
is represented by gate G1. Gate G1 specifies (via its predicate) that activity arrival is
enabled only when the number of tasks in the system is less than system capacity (i.e. the
sum of the markings of E and F is less than the sum of the number of working processors
and buffers).

The service of tasks is represented by activity service. Use of a marking dependent ac-

tivity completion rate for service allows us to represent all processors via a single activity,

60

v
arrival I service
Gate Enabling Predicate Function
G0 | MARK(F) < N and MARK(E) > 0 | MARK(E) = MARK(E) - 1;
MARK(F) = MARK(F) + 1;
Gl MARK(E)+MARK(F) < M+N identity

Activity Rate
arrival a
service | B+ MARK(F)

Figure 3.3: Multiprocessor Performance Model

61

due to the memoryless property of the exponential distribution. The rate for activity ser-
vice is therefore the number of busy processors multiplied by the rate of a single processor.
The number of busy processors is represented by place F.

If we define the throughput of the system during some interval [¢,f +[] as the number
of tasks that are processed during the interval divided by the length of the interval, the
throughput of the example system can be represented using a reward structure consisting

only of impulse rewards. Specifically, consider the reward structure

1 if a = service

C(a) =
0 otherwise

R(v)=0, Vv e P(P,IN).

Using this reward structure, the throughput is represented by the variable W;,q. Steady-
state throughput is given by the limit of this variable when ¢ = 0 and I — o0, i.e.
Wio,, 1 — 0.

An alternate representation of expected steady-state throughput can be formulated
based on the arrival rate to the system and the probability that an incoming task is
processed. Since tasks arrive as a Poisson process, the probability that an incoming task
is processed is one minus the probability the buffer is full. This probability can be captured
by the reward structure,

C(a)=0, Vac A

)= 1 if v ={(E, M)}

0 otherwise,
and variable E[V; o). The expected steady-state throughput can then be written as

where ¢ is the rate of arrival of tasks to the system.
A representation of expected steady-state response time can be obtained using Little’s

result [50] and the expected number of tasks in the system in steady-state. The expected

62

number of tasks in the system can be represented using the reward structure

C(a)=0, Vac A

i+j if v={(E,),(Fj)}

0 otherwise,

R(v) =

if the variable is taken to be E[V}:—o0]. The expected steady-state response time is then

E[V} t—o0] divided by the rate at which tasks enter the system, i.e.

E[Vi.t—wO]
o
Processor utilizations can be obtained in a similar manner. Specifically, if the average
processor utilization (in steady-state) is defined to be the fraction of the total number of

processors that are busy, the reward structure

C(a)=0, YVae A

()= i if v={(F,)}

0 otherwise,

can be used. Processor utilization is then Ymﬁ—'ﬁ, where N is the number of processors
in the system. As can be seen by the previous examples, traditional performance related
and dependability related variables can be easily represented in the reward framework
presented. Other performance and dependability related variables can be constructed in
a similar manner. In addition, performabilitlv measures can be formulated as variables
within this type if performance and fault type activities are represented in a single SAN
model. An example of a variable such as this will be given in Chapter 5, after a solution

method particularly useful for performability models is presented.

CHAPTER IV

CONSTRUCTION TECHNIQUES

Introduction

The network-level representation and performance variables considered in the previous
chapters provide a flexible method for representing both systems and questions regarding
the performability of those systems. Before the answers to those questions can be found,
however, one must consider the development of “construction techniques” for SANs and
their associated variables. Model construction is the process of identifying a performance
variable and determining a base model that permits solution of that variable. As suggested
earlier, the construction procedure may depend on the nature of both the variable and
stochastic activity network representation employed. SAN characteristics that are impor-
tant to consider when constructing a base model include both the nature of the activity
time distributions and interconnections between model components.

Activity time distributions play an important role in model construction. Specifically,
as will be seen in this chapter, the “behavior” of a SAN is Markov only when all its activity
time distributions are exponential and its activities are reactivated often enough so that
their rates depend only on the current marking. The relative magnitudes of these rates
are also important, particularly when representing both dependability and performance
related events in a single model. In this case, there may be many orders of magnitude
difference between the rates of the fastest and slowest activities. This leads to stochastic
process representations that are extremely “stiff” (to be discussed in more detail in the

63

64

next section) if traditional construction procedures are employed. One way to deal with
this stiffness is through behavioral decomposition. A way to do this at the stochastic
activity network level is described in Section 2 of this chapter.

Given that a model is not stiff, several methods can be used to construct a stochastic
process representation. In the context of both SANs and other stochastic extensions
to Petri nets, this process has typically been obtained by choosing the reachable stable
markings of the network to be the states of the process. As alluded to earlier, however,
we take a more general view, in which knowledge regarding the structure of the network
and performance variables determines the notion of state used. To make this distinction
more precise, a stochastic process which supports a large class of variables is referred to
as a detailed base model, while a stochastic process constructed specifically to support a
designated performance variable is a reduced base model.

Detailed base models serve two useful functions relative to performability modeling
using stochastic activity networks. First, they serve as base models which can support
a large class of variables. Second, they aid in proving the correctness of reduced base
model construction techniques. Definition of two important detailed base models, proof
that they support the variables of Chapter 3, and conditions under which they are Markov
are given in Section 3 of this chapter. Procedures to generate the detailed base models
are developed when they are Markov. These procedures provide a means to evaluate,
analytically, a large class of stochastic activity networks. However, a drawi)ack of the use
of detailed base models is that they produce extremely large state spaces when applied to
realistic systems. |

A construction procedure that produces reduced base models for a restricted, but
common, class of SANs and performance variables is considered in Section 4. This class
includes ‘'stochastic activity networks that have some replicated components, e.g. proces-
sors in a multiprocessor or nodes in a computer network, and variables that are regular
in the sense that they assign equal rewards to identical events and markings in different
replicated components. For these systems, reduced base model construction procedures
can be developed that abstract unnecessary information from the base model without ren-

dering it unsolvable. Although the state space savings depends of the degree of replication

65

present in the system, it typically results in a large reduction in base model size.

Model Decomposition

As stated in the introduction, models that characterize both dependability and perfor-
mance characteristics of a system typically have great differences in the orders of mag-
nitude in the rates of different activities within the model. This leads (if traditional
construction techniques are used) to base model representations that are stiff. Methods
to deal with stiff systems include Gear’s methods [26], selective randomization [67], and
behavioral decomposition [62,65]. The goal of behavioral decomposition is to lump states
with high transition rates such that the lumped model is no longer stiff. Performance
rates in the lumped states can then be determined via steady-state solution techniques,
under the assumption that the consequences of high rate activities approach equilibrium
conditions between completions of low-rate activities. Once these rates are determined,
performability is evaluated using reward model solution techniques, which will be dis-
cussed in the next chapter. All previous work in this area has been done at the state
level.

The structure of a stochastic activity network gives us the ability to apply this method
earlier in the evaluation procedure, before a stochastic process is generated. When this
approach is taken, the activities of the model are decomposed into two sets, depending
on their rates of completion. To describe the nature of this decomposition, we introduce
the notions of a performance submodel, a structure submodel, and a set of common places.
These concepts will enable us to specify necessary and sufficient conditions that a SAN
must satisfy if its stochastic behavior is to be described in a manner conforming to “reward

model” solution technigues.
Definitions, Conditions, and Procedure
Central to the decomposition is the notion of a set of structure-related activities and

a set of performance-related activities. Given a stochastic activity network, the set of

structure-related activities is the set A, containing all activities that represent variations

66

in the system due to a change in system structure. The set of performance-related activities
is the set A, containing all activities that represent variations in the internal state and
environment of the system, excluding structure-related activities. In terms of 4, and 4,,

two submodels are distinguished as follows:

Definition IV.1 Given a stochastic activity network § = (AN, uo,C, F,G), an under-
lying activity network AN = (P, A,I,0,7,7,t,0), and set of structure-related activities
A, C A the structure submodel is a stochastic activity network (M,, uo,, Cs, F;,G,) where:
1. My = (Pyy Asy I3y 05y Yss sy Ls, 05) is an activity network with

(a) Ps,={p|p€ P and p € IP(a)UOP(a) for some a € 4,},

(b) A, is the set of structure-related activities,

(¢) I, ={g| g €I and g € +™%(a) for some a € 4,},

(d) Os={g| g€ 0 and g € 0™}(a,c) for some a € 4, and ¢ = 1,2,...,7(a)}, and

(€) sy Ta ts, and o, aze the functions v, 7, ¢, and o, respectively, restricted to P,

As, I,, and O,.
2. o, is the marking pg restricted to places P;.
3. C, is the function C, restricted to A,.
4. F, is the function F restricted to A, and po,.

5. G, is the function F restricted to A, and uo,.

Definition IV.2 Given a stochastic activity network § = (AN, o, C, F,G), an underly-
ing activity network AN = (P, A,I,0,4,7,t,0), and set of performance-related activities
Ap C A the performance submodel is a stochastic activity network (Mp, pto,, Cp, Fp, Gp)
where:
1. Mp = (P, Apy Ip, Op, Yps Tpy Lpy 9p) is an activity network with
(a) B,={p|p€ P and p € IP(a)U OP(a) for some a € Ap},

(b) Ay is the set of performance-related activities,

(c) I, ={g| g € I and g € 1™(a) for some a € 4,},

67
(d) O,={g| g€ O and g € 0™(a,c) for some a € Ay, and ¢ =1,2,...,7(a)}, and

(€) 7ps Tp, tp, and o, are the functions v, 7, ¢, and o, respectively, restricted to P,

Ay, I,, and O,.
2. po, is the marking g restricted to places P,.
3. C, is the function C restricted to A,.
4. F, is the function F restricted to A, and po,.

5. Gp is the function F restricted to A, and po,.
Definition IV.3 Given an activity network, the set of common places is the set P, N P,.

These two submodels specify stochastic activity networks that may, subject to certain
constraints, be solved independently to obtain a system’s performability. The constraints

restrict the way in which the performance and structure submodel may interact. Specifi-

cally,

1. The marking of a common place may not change upon completion of any activity in

the performance submodel.

2. No activity a € A, may have an activity time distribution function, case distribution,

or reactivation function which is dependent on a marking in the set P,.

3. The completions of activities within the set of performance-related timed activities
occur at a sufficiently high rate, as compared to the structure-related timed activities,
so that, to a good approximation, the performance submodel will reach steady-state

conditions between the occurrence of structure-related activities.

When a SAN meets these conditions, base model construction can proceed in the following

manner.

Procedure IV.1 (Constructs a base model of a stochastic activity network using the

decomposition technique)

1. Construct a stochastic activity network which meets the previously stated conditions.

68

2. Select a reward structure type and variable for the structure submodel such that the
instantiation of the reward structure type can be determined from the performance

submodel.

3. Define a reward structure and (steady-state) performance variable for the perfor-
mance submodel such that the value of the performance variable serves as input to

the reward structure instantiation for the structure submodel.
4. Construct a detailed base model for the structure submodel.

5. For each state of the detailed base model which corresponds to a distinct marking

of the common places in the structure submodel:

(a) Construct a reduced base model for the performance submodel, taking the
initial marking of the common places to be their marking in the current state

of the detailed base model.

(b) Solve the reduced base model for the defined performance variable to obtain a

value for the structure submodel reward structure.

The state behavior of the structure submodel, together with reward rates determined
above, constitute a base model of the system in question. An example of the use of
this procedure will be given in Chapter 5 in the section entitled “Solution for Expected
Reward”, which develops a solution method for reward models of the type constructed by

this procedure.
Detailed Base Model Construction

Detailed base models serve two functions relative to performability modeling using stochas-
tic activity networks. Their first function is to serve as a stochastic process representation
which can supi)ort a large class of variables. Their second function is to aid in proving
the correctness of reduced base model construction techniques. To be useful for either of
these purposes, they must “support” all the performance variables of interest. By support
we mean that the variable can be written in terms of state trajectories (sample functions)

of the stochastic process which serves as the base model. While this is not a sufficient

69

condition to insure that the process can be solved for the performance variable, it is a
necessary condition. Support of a variable by a stochastic process insures that there is a
functional (deterministic) relationship between outcomes of the process (state trajectories)
and values of the performance variable.

The “solvability” of a generated base model representation is also an important issue.
A base model is solvable for a specified variable if the desired probabilistic characteristics
of the variable can be obtained from the base model representation. In the context of
this dissertation, a base model is solvable (analytically) if it is Markov. In the following
subsections, we will consider conditions on a SAN such that its associated detailed base
model is Markov, show that these models support the variables defined in Chapter 3, and

present procedures for their construction.
Stochastic Process Representations

Two different notions of state will be considered for use in detailed base models. The
first, and most detailed, is an “activity-marking state” which captures the dynamics of
both markings and activity completions. When information regarding the names of the
activities that complete is not needed, a “marking state” can be used to form a detailed
base model. Note that even if transitions of the process are considered, a process based
on marking states cannot convey information regarding names of activities that complete
since different activity completions can result in the same marking state transition. Thus

both notions of state are important.

Activity-Marking Behavior

When information regarding both timed activity completions and intervening stable mark-
ings is desired, the “activity-marking” behavior of a SAN serves as the detailed base model.
This process is based on the notion of an activity-marking state. More precisely, given

some SAN, an “am (activity-marking) state” is defined as follows.

70

Definition IV.4 An am-state of a stochastic activity network SAN = (AN, po,C, F,G),
with activities A, is a pair (a,) where @ € AU {V}, p € SR(AN, o) and v € A. The

initial am-state is (7, po).

In terms of the underlying SAN, the first component of an am-state is the most recently
completed activity, the second component is the current (stable) marking, and v is a
fictitious activity that completes at £ = 0, bringing the SAN into its initial state. The
set of am-states associated with a SAN can be easily constructed from a conceptual point
of view. (Looking ahead, however, one would like to avoid actual construction of the
complete am-state space since, as is the case with marking-state spaces, they typically
convey much more information than needed for the performance variables in question.)
Specifically, for 2 SAN with stable reachable markings SR(AN, y19) and timed activities
A let

E= [UueSR(AN,uo) Usgen(n) U#’ENS(u,a){(“’ l‘l)}] U{(V,ro)}

where en(p) is the set of activities enabled in g and NS(p,a) is the set of next sfable
markings that may be reached upon completion of a in p. Then F is the set of am-
states associated with the SAN. With the preceding notion of state, we are able to define
a stochastic process éuch that a state trajectory of the process captures successive al-
ternations between activities that complete and the stable markings which result. More

precisely:

Definition IV.5 The am-behavior of a stochastic activity network is a stochastic process
(R,T,L) = {Ry,,Ty, L} where T, is the time of the nth timed activity completion, R, is
the am-state reached after the nth timed activity completion, and L is the total number

of transitions of the process including the one made at Tj, given that Ry = (7, o) and

To=0.

A higher level description of behavior can be derived by looking at the am-states as
a function of time. Specifically, the minimal am-behavior of a stochastic activity network
with am-behavior (R, T, L) defined on probability space (2, F, P) is the stochastic process
Z={Z; |t e R*} where for each w € Q

71

nTa(w)<t} (W) if ¢ < supocncr(w) Tn(w
Z(w) = Roupin:Ta(w)<t} (@) SUPo<n<L(w) In(w)

Rr(w)-1(w) otherwise.

Z is useful when an explicit count of the number of activities that complete is not needed.

The am-behavior is detailed enough to capture both activity and marking related
behavior. To see this, consider the notion of an “a-entry” to a stable marking. An a-entry
to p is defined to be the event that p is reached by completion of activity a. Note that
the occurrence of an a-entry to p during execution of the SAN is equivalent to entering
the state (a,p) in the associated am-states. Similarly, the total time spent in p during
[0, 1] relative to a-entries to p is exactly the time spent in (a,) during [0,].

Conditions under which we can solve these base models are now investigated. In-
formally, the am-behavior of a SAN will be a Markov renewal process [14,15], and the
associated minimal am-behavior will be Markov, whenever all timed activities have expo-
nentially distributed activity times and the rates of these distributions can be determined
from the current state of the process. Recall that the activity time distribution of an
activity (and hence, its rate if it is exponential) is fixed at activation time. Therefore,
if the rate is marking dependent, it may depend on a marking other than the current
marking, if other activities complete during the time it is active. The following definition
of “activation markings” is similar to that defined by Movaghar [70], but is defined at the
stochastic activity network level. It allows conditions to be specified to insure that the

rates can be determined from the current state of the process.

Definition IV.6 Consider a stochastic activity network with timed activity a which is
enabled in a marking u. An activation marking of @ in p is a marking p’ such that if the

marking of the SAN is y then a could have previously been activated in p’.

The set of activation markings of a timed activity in a marking and the nature of the
activity time distributions directly affect the nature of the am-behavior. The following
theorem identifies stochastic activity networks whose am-behaviors are Markov renewal

processes and whose associated minimal am-behaviors are Markov.

72
Theorem IV.1 Let § be a well specified stochastic activity network with activities which
have exponentially distributed activity times. Suppose further that for any timed activity
a which is enabled in a marking p, the rate of completion of @ is the same for all activation
markings p’ of a in g and let 7,(p) denote this common rate (i.e., for all activation markings
¢, Fy(i',2) = 1 — e"+(#)), Then the am-behavior of § is a Markov renewal process
with semi-Markov kernel K = {K(e;,e;,t) | €i,e; € E, t € R*} where, if e; = (a;, i)

and ¢; = (aj, #5),

K(e;,e5,t) = Taj(l‘i)haj,#i(ﬂj) (1 _e_zceen(p‘-)ra(#")t)
v Eaeen(u.-) ra(/‘i))

Furthermore, the minimal am-behavior is a Markov process with state-transition rate

matrix [Aee,] such that Aee; = hqjp; (1)7a; (i), for i # 7, and Ae;e; = = Y Acieje
Proof:
To show that (R, T, L) is a Markov renewal process we must show that
P(Rp41 = €5, Tny1 —Tn <t| Ry =€, Rpa,. ..,Ro,Tn,{Z’n_l,. .yTo) =
P(Rpy1 =€j,Tn1— T <t| Ra=¢;) (4.1)

forall n € {1,2,...,L — 1}, &;, ¢; € E, and t € R*. To do this, let

N A,(a) be the event that the nth activity to complete is a

NM,(p) be the event that the nth marking to be reached is p

and rewrite the left hand side of (4.1) in terms of this notation. In particular, this expres-

sion can be written as

P(NAnsa1(a;)s NMpya(p5), T4 — Tn £t | Ry = €5, Rn-1,. .., R0y Tny Tn-1,y . - -, To0),
which, by the definition of conditional probability, can be re-written as

P(NMpi1(p;) | NAnta(a;), Tng1 — T £ 8, Ry = €5, Rp-1y .. ., R0, Ty T, - - -, T)

X P(NAn-*-l(a’j) I Tﬂ+l ~Tp L t, R, = €4, Rn-—la v 7R09 Tn’ Tn-—la e ,TO)

X P(Tn+1 - Tn S t I Rn = €, Rn—ls .. -,RO’Tan—lv . -’T0)° (4'2)

73

Expression (4.2) is in a form such that each term refers to a particular aspect of SAN
execution and, hence, the definition of execution can be used to simplify each term. In
particular, note that since the SAN is well specified, the first term is independent of the
past history Thy1 — T, < 8, Ro,..., Ra—1,Tp,..., T, and is equal to the probability the
marking p; is reached given that a; completes in p; (i.e. by, q;(1;)). Furthermore, since all
activities have exponentially distributed activity times and the rate associated with each
activity’s distribution is the same in all possible activation markings, the probabilities ex-
pressed by the second and third terms of (4.2) are independent of Ry, ..., Rn-1,T0s-« ., Th.
In addition, given a current state, the next activity that completes is independent of the
time spent in the original state, due to the memoryless property of the exponential distri-
bution. Expression (4.2) can thus be equivalently given as

Puiva;(15)P(N Ant1(a;) | Bn = €)P(Tap1 —Tn < t | R = &) (4.3)

Probabilistic expressions for the second and third terms of (4.3) can now be derived. In
particular, since all activity time distributions are exponential and the rate associated
with each activity is the same in all activation markings, the probability that a particular
activity @; completes in a marking p; is the fraction of the total rate out of that marking
due to a;, i.e.

Ta; (ﬂi)

S acon(us) Talb)’ (44)

Furthermore, by the same reasoning, the probability that some activity completes in
; during the interval T4q — T, (i.e. the third term of (4.3)) is the distribution of the
minimum of all the activity times of activities enabled in y;. Recall (from [88], for example)
that the distribution of Y} ;) = {X1,X2,..., X} is

n

Frin(®) =1-T[[1 - B@).

=1

Since the activity time distribution of each activity a is the same in all activation markings

of @ in y; and is given by 1 — e~"a(#)t, it follows that

P —Th<t|Rn=e)=1- H e Taluilt
a€en(;)

4

or, equivalently,

P(Tpp1 — T, <t | By =) = 1 — ¢~ Saceniu Tab)E, (4.5)

Substituting (4.4) and (4.5) into (4.3) yields

haj i res(14) (1 — & Laeen(u) r“(“‘)t) (4.6)

ﬂj)Zaeeﬂ(m‘) 7a(pi)
as a representation for the left hand side of (4.1).

Note that, since all activities have exponentially distributed activity times and the
rate associated with each activity’s distribution is the same in all activation markings, the
derivation of (4.6) did not depend on the conditioning on the past history, and the same
result can be obtained for the right hand side. Equation (4.1) fhus holds and (R, T, L) is
a Markov renewal process. Furthermore, by (4.6), the semi-Markov kernel of the process

is

Ta;\Hhi - al\ b
K(ei,ejt) = h“j,ui(.“:i)z - a(J(l;")a(#i) (1 —e z:“G*!"(n.')"' (u)t))
acen(p;

Finally, it follows directly from the structure of Z; (see [14], pg. 316, for example) that the

minimal am-behavior is a Markov process with state-transition rate matrix [A,,.cj] such

that)\e.'ej = haj,ﬂi(”j)ra,-(/‘i)a fori# j,and Aee; = "Zj;&z‘ '\eiej- a

Marking Behavior

When information regarding the identities of activities that complete is not needed, a
detailed base model with states consisting of the reachable stable markings of the network
suffices. In this case, we refer to the states as m-states, and the set of m-states (denoted M
in the following) is just the set of stable reachable markings of the network. As with am-
states, we are interested in two types of behavior. If it is important to retain information
regarding the number (but not the names) of activity completions, the “m-behavior” can

be studied. Formally,

Definition IV.7 The m-behavior of a stochastic activity network is a stochastic process

(R,T,L) = {Ry, Ty, L} where T, is the time of the nth timed activity completion, R, is

7

the m-state reached after the nth timed activity completion, and L is the total number of
transitions of the process including the one made at Tp, given that Ro = (1) and Tp = 0.

Thus.the m-behavior is identical to the am-behavior except that the names of activities
which complete are not retained. Note however, that the number of activity completions
during an interval can by counted. Similarly, activity completions which do not change
the marking of the network can be detected since successive times of activity completions
are recorded by T,.

When this level of detail is not needed, the minimal m-behavior can serve as a detailed
base model. This process is defined in terms of the m-behavior in a manner which is
exactly analogous to the way the minimal am-behavior was defined from the am-behavior.
In particular, define the minimal m-behavior of a stochastic activity network with m-
behavior (R, T, L) defined on probability space (£, F, P) to be the stochastic process Z =
{Z: |t € R*} where for each w € Q

Rsup{n:Tn(w)St}(w) if ¢ < sup 0<n<L(w) Tn(w)
Zy(w) =

Ry(w)-1(w) otherwise.

This is the behavior typically used as a base model by when it is derived from a stochastic
Petri net. For example, state behavior defined by Movaghar et al. [70] is the minimal
m-behavior as we have defined it.

A theorem identifying stochastic networks whose m-behaviors are Markov renewal
processes and whose associated minimal m-behaviors are Markov can be written in a

manner similar to that for am-states. Specifically,

Theorem IV.2 Let § be a stochastic activity network with activities which have expo-
nentially distributed activity times. Suppose further that for any activity timed a which is
enabled in a marking p, the rate of completion of @ is the same for all activation markings

y of a in p and let 7,(x) denote this common rate (i.e., for all activation markings p’,

Fo(¢',z) = 1 — e~"(¥)%). Then the m-behavior of S is a Markov renewal process with

76

semi-Markov kernel K = {K(ﬁ‘i,ﬁjat) | Mis g € SR(AN$ ﬂ'ﬂ), te IR+} where

Dacen(u;) Ta(Bi)ha,ui(15) (—e Zaem(p,-)"“(“‘)t) .

K isMjst) =
(kis 3 t) = Eaem(u.) 7alpi)

Furthermore, the minimal m-behavior is a Markov process with state-transition rate ma-

trix [Ay,,;] such that Ay, = zaeen(u.') P (15)7a(ps), for £ # j,and Ay = — 3 50s Apisse
Proof:

The proof of this theorem is similar in spirit to that of Theorem IV.1, but differs in that
the states of the process are m-states. In particular, to show that (R, T, L) is a Markov

renewal process we must show that
P(Rn+1 = l‘j,Tn+1 -Tn <t | Rn = Uiy R‘n.--h .. ‘7R07Tn7Tn—1a .. 'aTO) =

P(Roy1 = pjy Tng1 - T <t | Rn = l‘i). (4.7)

for all » € {1,2,...,L — 1}, pi, #; € M, and t € R*. To begin, we note that, by the
definition of conditional probability, the left hand side of (4.7) can be re-written as

P(Rn+1 = Yy I Tn-!-l - Tn < taRﬂ. = Hi, Rn—l,- ",R07Tn,Tn—1’° . "TO)

X P(Tn+1 -Ta <t I R, = pi, Rya, .. <y R0y Tny T, .+ 'sTO)- (4-8)

As with (4.2), since all activities have exponentially distributed activity times and the
rate associated with each activity’s distribution is the same in all possible activation mark-
ings, the probabilities expressed by the terms of (4.8) are independent of Ry,..., Rs—1,To,

., T,. Furthermore, given a current state p;, the next state that is reached is mdependent
of the time spent in the original state, due to the memoryless property of the exponential

distribution. Expression (4.8) can thus be equivalently given as
P(Rnt1=pj | Bo= pi)P(Tn41 = Tn < 1| B =). (4.9)

The probabilistic representation of the second term of (4.9) is identical to that given in
(4.5). The first term, however, differs in that it represents the probability that p; is the

next stable marking reached from p;, regardless of the activity that completes resulting

”

in p;. Since all activity time distributions are exponential and the rate associated with
each activity is the same in all activation markings, this probability is the fraction of the

total rate out of u; that results in p;, i.e.

Ea&en(p_,') ra(pi)hm] (y‘.‘i)

4.10
Eaecn(p.') ra(ﬂi) ()
Substituting (4.10) and (4.5) into (4.9) yields
2a€cn(#j) r“(”i)h#i,a(ﬂj (1 - Zaeen(p,‘) "a(ll-i)t> (4.11)
zaeen(u.;) Ta([l:i)

as a representation for the left hand side of (4.7).

As in the proof of Theorem IV.1, since all activities have exponentially distributed
activity times and the rate associated with each activity’s distribution is the same in all
activation markings, the derivation of (4.11) does not depend on the conditioning on past
history, and the same result can be obtained for the right hand side. Equation (4.7) thus
holds and (R, T, L) is a Markov renewal process. Furthermore, by (4.11), the semi-Markov

kernel of the process is

K(e,-,ej,t) - ZaEen(ﬂj) Ta(l‘i)hui,a(#j) (1 e Zae‘n(“i) ra(u.')t))
Zaeen(u;) ra(lii)

Finally, it follows directly from the structure of Z; (see [14], pg. 316, for example) that

the minimal m-behavior is a Markov process with state-transition rate matrix [A,,,;] such

that Au; = zaeen(u;) ha,ui(Bi)ra(ss), for ¢ # j, and Ay, = — Ej;éi Apigj O
Support of Variables

A stochastic process supports a performance variable if it can be written in terms of state
trajectories of the process. Support of the instant-of-time variables is considered first. As
discussed in the previous chapter, these variables express the total reward (with respect
to a particular instantiation of the reward structure) associated with a SAN’s status at

some instant of time. The “instant-of-time” nature of these variables allows them to

78

be supported by the minimal am-behavior. To see this, recall that the notion of state
employed here is the am-state, where, for a state (a, 1), a is the most recently completed
activity and p is the stable marking that results from that activity completion. This
correspondence allows us to characterize the reward derived from an instant-of-time type
variable during an execution of a SAN at the am-state level. Specifically, we define
plap)= D, R@),
VEPN ()
where PN (u) is the set of v € P(P, V) such that for each (p,n) € v there are n tokens
in place p in marking p, and
é(a,p) = C(a).
These functions reflect precisely the reward obtained during an execution of a SAN in

terms of its minimal am-behavior, and hence, we can write
Ve = p(Z¢) + 6(Z¢), (412)

where Z = {Z;| t € IR*} is the minimal am-behavior of the SAN in question. Thus V;
is supported for all reward structure choices. If a limiting distribution for Z exists, then

Vi—oo is also supported by the minimal am-behavior, since

Vieroo = P(Ztarco) + 8(Ztm o),

where Z;_,, is the steady-state am-state distribution.

Interval-of-time and time-averaged interval-of-time variables are not supported by the
minimal am-behavior, since activity completions that do not result in an am-state change
cannot be detected by the minimal am-behavior. In this case, the am-behavior is needed.
Since this process keeps track of both times of activity completions and resulting stable

markings, it can be used to determine the number of completions of each activity during

an interval. To show this, define
Ay = min{n | T, > t}

and

By =maz{n | T, <t+1}.

79

A; and B;y specify the process variables to index over to determine the impulse component
of an interval or time-averaged interval variable. Then, if we let p and § be the state-level
reward functions defined earlier then the interval-of-time variable, Y; 41, can be expressed

as

Byt

Viesi= [2+ 3 (k)

n=A¢

where Z; is the minimal am-behavior and {R,,Ty,L} is the am-behavior of the SAN of
interest. Now, since the minimal am-behavior can be derived from the am-behavior (see
Chapter 2), the am-behavior supports 2all variables of the interval-of-time type. Knowing
this, it is apparent that the am-behavior supports time-averaged interval-of-time variables,
since

Yt
W[t,t-i-l] = ilitl.

It can also be shown, in a manner similar to that of the instant-of-time variables that, if

the needed variables converge in distribution as [— oo or ¢ — oo, then the corresponding

reward variables are supported. Thus all of the activity-marking oriented variables that
were introduced in Chapter 3 are supported by either the am-behavior or minimal am-
behavior. Whenever the value of the activity component of the reward structure is identical
for all activities, the minimal m-behavior can be used in place of the minimal am-behavior;
by the same reasoning the m-behavior can be used in place of the am-behavior. In this
case, it is only necessary to keep track of the number of activities that complete during

an interval, not the actual identities of the activities that complete.
Construction Procedures

This subsection discusses construction procedures for detailed base models. The goal is to
construct a state-level representation that can be solved, via machine implementation, for
the desired performance variables. The following construction procedures do this when
a network’s activity-marking and marking behaviors are Markov renewal processes and
the associated minimal behaviors are Markov processes. In this case, the complete be-

havior (activity-marking or marking) can be characterized by two processes: the minimal

80

process, and the discrete time imbedded process associated with the complete process. If
K = (s;,8;,1t) is the semi-Markov kernel identified with the complete process, then the dis-
crete time imbedded process associated with the complete process has the state transition
probabilities defined by

P(s;,8;) = t]_.l_glo K(s;,85,1).

It is known (see [14], for example) that the number of visits to a state by the process in the
limit is exactly the number of visits to the state by this Markov chain. A characterization
of both of these processes can be obtained from the set of reachable states and rates
between these states when the behaviors are Markov. In particular, let S be the set of
states of the detailed base model employed and, for s;,s; € 5, As,,s; be the transition rate
between s; and s;. Then the transition-rate mairix for the minimal behavior is given by

[Ai;], where

Aij = Agys; fori#j and A= —E)\s..,sj.
J#

Furthermore, the transition matrix of the discrete-time process is given by [v; ;] such that

As.' »85

7-’- - e s |
" Ea.]l sx€S)‘swk

Thus the minimal process and discrete-time imbedded process may be generated from the
set of states and transition rates between these states. Procedures to generate the set of

reachable states and rates between these states are now considered.

Marking Behavior

The procedure to generate the marking behavior is the simplest of those considered,
and hence described first. The procedure is broken down into two parts, a main and a
possible next state generator. The main procedure is given as Procedure IV.2. Here, M
denotes the set of reachable m-states, X denotes the set of markings to be expanded,
T denotes the set of transition rates between m-states and Y is a set of pairs denoting
the set of possible next m-states and rates to these states from a particular marking.

Furthermore, the rate from a marking state y; to p; is denoted as Ay, ;-

81

Procedure IV.2 (Procedure to generate the m-behavior of a stochastic activity network
with initial marking po.)
Let M = {uo}.
Let X = {uo}.
Let T equal the null set.
While X # null:

Let p = some_element{X}.

Let X = X — {u}.

Let Y = poss_M(y).

For each (y,,y) €Y:

If y, € M then
Let T =T U{(p, yu)}-
Let Apy, = Ua.

else

Let M = MU {y,}.

Let T =T U{(p, y)}-

Let Auy, = 9.

Let X = XU {y.}.
Next (yu,) €Y.

While end.

The procedure is an iterative exploration of the state space that identifies new stable
markings that may be reached upon completion of activities. The procedure first initializes
the set of m-states and the set of unexpanded states to the initial marking, and the set
of transitions to the null set. It then proceeds by exploring each unexpanded marking by
generating each possible m-state that can be reached directly from that marking. After

82

each m-state is generated, one of two things is done. If the m-state has not previously
been reached, it is added to the set of reachable m-states and a transition to the state is
added to the set of transitions for the process. Finally, since the new state has not yet
been expanded, it is added to the list of unexpanded markings. If the marking has been
previously reached, a transition is added to the appropriate m-state, but the marking is
not added to the list of markings to be expanded. Each marking is removed from the set
of unexpanded markings after it is expanded. The procedure terminates when the set of
unexpanded markings becomes empty. Note that this will not occur if the set of possible
states is not finite.

Two subprocedures are called from the procedure. The first, some_element, simply
picks an element from a set. The particular element that is picked is not important. The
second, poss_M , generates the set of m-states (and rates to these states) that are reachable
by completion of a single timed activity in a particular marking. Algorithm IV.1 provides
this function. In the algorithm, r,(4) denotes the rate of completion of @ in p and k4 (1)
denotes the probability that y' is reached upon completion of a in u. |

Algorithm IV.1 (Generates the set, 1;', of marking states and rates to these states di-
rectly reachable from a particular marking p.)
Let Y equal the null set.
Let D be the set of activities enabled in .
For each a € D:
Compute the set of possible next stable markings reachable upon completion of a
in p (i.e. NS(a, 1)), the probability of reaching each of these markings (i.e. by),

and check whether this distribution is invariant over possible sets of activity
choices. (Use algorithm II.1 or I1.3.)

If the distribution is not invariant over possible sets of activity choices then
Signal SAN is not well specified and abort algorithm.
For each p' € NS(a,p):

I (4, M) €Y for some A, then

et (', Aw) = (1 A + 7o) * hya(i)).

83

else

Let Y =Y U {(#', 7a(p) * hya(1))}-
Next u’ € NS(a, p).

Next @ € D.

Activity-Marking Behavior

The procedure to generate the activity-marking behavior is similar to that employed to
generate the marking behavior, but can be made more efficient by using information about
the behavior of a stochastic activity network. In particular, since the stochastic activity
networks we consider have behaviors which are Markov, the next state transition rates
depend only on the current marking of the net, and not on the activity that completed
resulting in that marking. In terms of an am-state, this means that the next state distri-
bution and rates to these states depend only on the marking component of the originating
am-state. Utilization of this fact in the construction procedure results in both time and
space savings. First, since the next state behavior from a given state depends only on
the marking component of that state, all states with an identical marking component will
have identical transition rates out of them. Thus states only need to be expanded if they
have a marking component that has not yet been expanded. In addition, this transition
information need only be stored once for each set of states having identical marking com-
ponents. We can thus identify the transition rates for the process with pairs where the
first component is a marking and the second component is an am-state.

Procedure IV.3 makes use of these observations. In this procedure, F denotes the
set of possible am-states, X denotes the set of markings to be expanded, T denotes the
transition rates from markings to am-states and Y is a set of pairs denoting possible next
am-states and rates to these states from a particular marking. The rate from a marking

p to an am-state e is written as A, ..

84
Procedure IV.3 (Procedure to generate the am-behavior of a stochastic activity network
with initial marking po.)
Let E = {(V, p0)}-
Let X = {uo}.
Let T equal the null set.
While X # null:
Let u = some_element{X}.
Let X = X — {u}.
Let Y = poss_ AM(p).
For each (y.,y) €Y:
If y. € E then
Let T = T U {(1,%e)}:
Let Apy. = 9.
else
Let E = EU {y.}.
Let T =T U {(k,)}
Let Ayy. = 9.
If no am-state exists in F with marking component identical to y.
Let X = XU marking component of y..
Next (ye,y2) €Y.

While end.

As with the procedure to generate marking processes, two subprocedures are called.
Subprocedure some_element is as in the previous procedure. Subprocedure poss_AM, on

the other hand, differs in that it returns a set of possible next activity-marking states

85

instead of marking states. Algorithm IV.2 provides this function.

Algorithm IV.2 (Generates the set, Y, of am-states and rates to these states from a

particular marking)

Let Y equal the null set.
Let D be the set of activities enabled in p.
For each a € D:

Compute the set of possible next stable markings reachable upon completion of a
in p (i.e. NS(a, 1)), the probability of reaching each of these markings (i.e. k),
and check whether this distribution is invariant over possible sets of activity
choices. (Use algorithm IL1 or I1.3.)

If the distribution is not invariant over possible sets of activity choices then
Signal SAN is not well specified and abort algorithm.

For each p/ € NS(a, p):

Let Y =Y U {((a, &), ra(p) * hrpa())}-
Next p’' € NS(a, p).

Next a € D.

Reduced Base Model Construction

While detailed models support all of the variables we wish to consider, their use with
realistic systems can result in state spaces that are very large. For certain classes of
systems, however, reduced base models can be constructed that are much smaller (in
number of states) and still preserve system information necessary to solve for the chosen
performance variables. This section discusses the theory and application of reduced base
model construction methods. These methods are useful for hierarchical systems where, at
certain levels in the hierarchy, subsystems are replicated and where contributions to total
reward (as defined by an activity-marking variable) are the same for identical subsystems.

Such hierarchical systems are becoming increasingly more prevalent and, in a computer

86

context, include both multiprocessor systems (with many identical processors and busses)
and computer networks (with many identical stations).

As with the conditions on system structure, the conditions on the performance variables
are not severe. In fact, since the structure of replicated systems is identical, it is natural to
assume that possible behaviors of identical subsystems would be treated in an equivalent
manner. An example of this would be a computer network consisting of many types of
stations, where one is interested in the queue length at a particular type of station, not at
an individual station within a type. The next subsection iniroduces operations that aid

in the construction of stochastic activity networks that meet these conditions.
Construction Operations

In order to insure that models built have characteristics that permit construction of a
reduced base model, we construct them in a bottom-up manner using two operations.
Before we can do this, however, a formal definition of the opera.ﬁds of the construction

operations is needed. Specifically, we introduce the notion of a “SAN-based reward model”.

Definition IV.8 A SAN S with places P together with a reward structure (C,R) and set
of distinguished places Pp C P is a SAN-based reward model (S,C,R, Pp).

A SAN-based reward model (SBRM) provides us with a structure that can be used to con-
struct larger models that have compact state-space representations. Since the operations
discussed below are defined on SAN-based reward models, they operate on the reward
structure as well as the network. This insures that the defined variable is supported by

the reduced model.

Replicate Operation

The first construction operation replicates a SAN-based reward model. This operation is
useful when a system has two or more identical subnetworks. The effect of the operation
depends on a set of places which is a subset of the distinguished places of the input SBRM.

These places allow communication between the replicated submodels and are not replicated

87

when the operation is carried out. Informally, the result of the replicate operation on a

SAN-based reward model is another SAN-based reward model, where

1. The SAN component is constructed by replicating the original SAN a certain number
of times, holding some subset of the distinguished places of the input SBRM common
to all replicate SANs, and

2. The reward structure is constructed by assigning an impulse reward to each replicate
activity equal to its reward in the original model and reward rates to each partial
marking in the new model equal to the rate assigned to the corresponding partial
marking in the original model, and

3. The set of distinguished places is the set of places used in the construction operation.

A more formal definition of the replicate operation can be given by considering a
particular SAN-based reward model RM = (S, C, R, Pp) where § is a SAN with places
P and activities 4, (C, R) is an activity-marking oriented reward structure for the SAN,
and Pp C P is a set of distinguished places. Let Pp C Pp be the set of places to tge
used in the replicate operation and RM’ = (RM, Pp). Now let RM denote the set of
all SAN-based reward models, and RM' denote the set of all SAN-based reward models
together with their possible subsets of distinguished places. Finally, define the function

Rep: RM' x IN — RM.
Rep((RM, Pp), n) is then a SAN-based reward model (§, C, R, Pp) with places P and
activities A defined as follows:

1. §is a SAN constructed by replicating S n times. All activities and gates are repli-
cated; all places except those in Pp are replicated. Connections to each p € Pp are

identical for each replicated submodel in § and as in S.

2. For each @ € A and corresponding set of replicate activities a;,az,...,a, C A,

C(a;) = C(a) for each replicate submodel 3.

3. For each v € P(P,IN) and corresponding partial markings »; € P(P,IN), R(v;) =
R(v) for each replicate submodel i. R(v) = 0 for all other v € P(P, IV).

88

4. Pp C Pp is the set of places not replicated.
Join Operation

The replicate operation allows us to construct SAN-based reward models that consist of
several identical component SBRMs. This permits the representation of systems that
consist of a single replicated structure. Typically, however, distributed systems consist of
several different structures, each of which may be replicated. The combination of several
different structures is accomplished using the join operation. As with the replicate opera-
tion, the join operation both acts on and produces SAN-based reward models. Informally,
the effect of the operation is to produce a new SAN-based reward model which is a com-
bination of the individual sub-networks and reward structures. Again, certain places play
an important role in the construction operation. In this case, however, a list of places is
associated with each component SBRM in a manner such that the cardinality of each list
of places is the same.

In the joined model, the corresponding places in each list form a single place, with
connections to gates and activities as in the individual models. These lists of places thus
allow communication between joined subnetworks. As with the replicate operation, each

list of places must be a subset of the set of distinguished places of the component SBRM.
The reward structure for the new SBRM is constructed in a similar manner to that used for
the replication operation. Specifically, the reward structure is constructed by 1) assigning
a reward to each activity in the new model equal to the reward of the corresponding
activity in the original model and 2) assigning a reward rate for each partial marking in
the new model equal to the rate assigned to the corresponding partial marking in the
original model.

More formally, let RM = (5,C, R, Pp) be a SAN-based reward model, where § is a
SAN with places P and activities A, (C, R) is a reward structure for the SAN, and Pp is a

set of distinguished places. Consider a totally ordered list of { places P! = [p1,p2,..-,2i],
where each p; € Pp, and let EM = (RM, P"). Now let RM denote the set of all SAN-

based reward models, as above, and 7€I4’ denote the set of all SAN-based reward models

89
together with possible lists of places of length /. Finally, define the family of functions

Joiny, for possible ! and m € N to be

m fold

Joinz,m:’lmlxﬂdlx---xml—)RM,

where Join;,, is the join of m SAN-based reward models, each with a list of I dis-
tinguished places. Specifically, Joinyu,((S1,C1,R1,Pp1,P}), (S2,C2,R2, Pp2, PY), ...,
(Sm3Crms Rms PDm, PL)), where S1,82,..., 8y, are SANs with places Py, Ps,..., P, and
activities Ay, Az, ..., Am, is 2 SAN-based reward model (§,C, R, Pp) with places P and

activities A defined as follows:

1. § is a SAN whose activities and gates are the union of the activities and gates of
S1, 82, . . -, Sm tespectively, and whose set of places is P, U(P, —P})U(P;— Pi)U---U
(P — PL,). Connections to all components are as in the individual models except
for connections in submodels Sg,Ss,...,5, to places P}, PL,..., Pl respectively.

Connections to these places are made to the respective places in the list Pj.
2. For each ¢; € A, and corresponding of € A (j =1 to m), C(al) = C(a:).

3. For each v; € P(P;,IN), j = 1 to m and corresponding & € P(P, IN), R(?) = R(v;).
For each 7 € P(P, IV) without a corresponding »; € P(P;, IV) for some 7, R(¥) = 0.

4. Pp= PpyU(Pps— P)U...U(Ppn — PL).

These operations can be applied iteratively to build models of systems that are orga-
nized in a hierarchical manner. We refer to a SAN-based reward model constructed in
this way as a composed SAN-based reward model. In order to describe the structure of
a composed SAN-based reward model, we make use of a directed tree with three types
of nodes: model/reward structure nodes, replicate nodes, and join nodes. See Figure 4.1
for a example of each type of node. Model/reward structure nodes have a degree of zero.
These nodes define distinct subnetworks and reward structures in the composed model,
and serve as a basis on which to apply the construction operations. Replicate nodes have

a degree of one with an outgoing arc that points to the SAN-based reward model that

90

(S,C,R) model/reward structure node

replicate node

JpD1, PD2 RN) join node

91

Model/Reward Structure Node Description
(58us,Caus, RBUS) Multiprocessor Bus Subnetwork
(Sproc,CProc, RProc) Processor Subnetwork

(S1/0cHANNEL,C1/0cHANNEL, R1jocHANNEL) | Processor I/0 Subnetwork
(S1/0L06105C1/0L0G1C: RI1jOLOGIC) I/O Board Logic Subnetwork

(S1/0P0RT>C1/0PORT> RIJOPORT) I/0 Board Port Subnetwork

Table 4.1: SAN-Based Reward Models for Multiprocessor Example

is replicated. Join nodes have a degree equal to the number of SBRMs that are joined
together. In this case, each arc points to a SBRM that is joined.

Information contained inside each node describes the parameters of the particular
operation. In particular, each model/reward structure node contains a triple, (5,C,R),
specifying the subnetwork and reward structure for the node. The SBRM associated
with the node consists of the SAN and reward structure of the node together with a set
distinguished places equal to the set of places of the SAN. Replicate nodes contain an
integer denoting the number of times the associated SBRM is to be replicated (given as
N in the figure) and a set of places to be used in the replicate operation. Join nodes
contain an integer (denoting the number of SBRMs to be joined) and a list of places for
each SBRM to be joined.

This representation makes it easy to specify multiple applications of replicate and join
operations on an initial set of SAN-based reward models. To illustrate this, consider
a tightly-coupled muitiprocessor system with a single bus which connects five processor
cards and two I/O cards together. Furthermore, suppose each processor card has two
dedicated I/O channels and each I/O card has eight I/O ports, different in design from
the channels on the processor boards. The models of Table 4.1 can then be used to
construct a composed SBRM for the multiprocessor using replicate and join structures.

Figure 4.2 illustrates the construction of the complete multiprocessor model from these

92
initial SBRMs.

Representations of State

We now consider possible state-space and, in turn, base model, representations for com-
posed SAN-based reward models. One approach would be to use am or m-states as the
state representation, and a detailed base model as the process representation. This, how-
ever, leads to excessively large state spaces for many models. The aim, then, is to find
one or more alternative representations for state that lead to reduced base models. X
support of the variable in question were the only concern, the set of possible values of the
variable could be taken as the states of the process. However, the state behavior of this
process is not generally Markovian or discrete state, and thus very difficult to solve. On
the other hand, if “solvability” were the only issue, the states of the detailed base model
could be lumped into a single state in a manner such that the behavior of the reduced
base model was easy to deduce. This will not suffice, however, since this process will not
generally support a selected variable. Thus both support and solvability are important
considerations in selecting a reduced base model representation.

Since we consider a process to be solvable if its behavior is Markov, results regarding
lumpings of a Markov process [44] and, equivalently, functions of a Markov process that are
Markov [79] are relevant. These resuits give conditions on a Markov process and a lumping
of that process (or equivalently, a functional of that process) such that the new process is
also Markov. These conditions are limited, however, in two respects. First, they consider
only the solvability of the resulting process; no requirement is made that the resulting
process support any particular variable. Second, a direct application would require that
the detailed process be generated and that a suitable lumping be found. Machine memory
size limitations typical preclude generation of the detailed process and, even if the process
could be generated, there is no easy way (without additional information regarding the
system being modeled) to determine a suitable lumping from the detailed model.

Stochastic activity networks and the construction operations introduced in the previous
subsection provide us with a means to avoid both of these difficulties, due to the way in

which the construction operations were defined. In particular, the order of application of

(TINNVHI O Y TINNVHO ON ok TINNVHO O1 s)

93

HOd On
\HIO& on m..h 0 AH0d o1 s)
8
Wm K m. EQ. AEW\
I —Qm «Q@ang Y .0~00.~Q§Q [avoron s)
8
NQ wQ
d ¢ “d
/ / r
QnQ 6,
[Q\J
H sng 14
a
lm S
4

Figure 4.2: Composed SBRM for Multiprocessor Example

94

M
J
1_1, L2 y aee Lm
n1 Rﬁz nm
RD1 D, RDM
(Sy Cp Ry) (Sy Cy Ry) (S Cor Rn)

Figure 4.3: Example Composed SAN-Based Reward Model

the operations (as specified by the directed tree representation introduced in the previous
subsection) determines a notion of state which both supports the variable in question and
is Markov whenever the detailed base model representation is Markov. Informally, this
notion of process state is determined such that for each replicate operation, the number of
replicate SBRMs in each possible submodel “state” is recorded and for each join operation,
a vector of the “state” of each joined submodel is kept. At the lowest lével, the “state”
of a SBRM model is the inarking of the submodel. The complete state for the composed
model is then taken to be a pair where the first component is the impulse reward of an
activity in the model and the second component is a state formed as described above.
To give a more precise example of how the notion of state would be formulated for a
particular application of the replicate and join operations, consider the composed SAN-
based reward model of Figure 4.3, where the lowest level nodes are arbitrary models and
reward structures. Now let E be the state-space of the am-behavior for this model, and M
to be the set of marking cofnponents of this am-space. Then define projections to examine

the markings of submodel types and individual submodels. Specifically, for each u € M

95

define g/ to be the projection of (global marking) p on the places of submodels of type 7,
j = 1 to m. Similarly, define u#* to be the projection of (global marking) x on the places
of submodel % of type j (where places within a submodel have the same ordering).
Furthermore, for each p’ let B, =< pl i, .. uim > be the bag of projected
markings for submodels of type j in marking pu. The bag formalism [76] is useful here,
since it allows us to compactly characterize the different configurations various replicates
of a submodel are in without distinguishing an ordering among them. As will be seen in
the following, this representation allows us to specify a functional which, due to the nature
of the replicate and join operations, can serve as a reduced base model for the system in

question. If, further, we let

f(a,p) = (C(a), Bya, B2y .., Bym) (4.13)

then this mapping defines a functional of the minimal and discrete-time embedded process
of the am-behavior associated with the SBRM of Figure 4.3. Specifically, if we let Z be
the minimal behavior and X be the discrete-time embedded process associated with the

am-behavior of the SBRM of Figure 4.3, then
U={f(Z)|te B*}

is the minimal behavior and

T ={f(Xs) | n € N}

is the discrete-time embedded process of a reduced base model for the SBRi.

Proofs that show that these processes are indeed solvable (Markov) and that they do
support the specified performance variable will be given in following sections. Intuitively,
however, these models are solvable because replicate submodels of a particular type behave
in an equivalent manner when in identical markings. Similarly, since the performance
variable was constructed in a bottom up manner as part of the composed SAN-based
reward model, it is “symmetric” with respect to different replicates of a given submodel
type and thus supported by the reduced base model. Finally, since we can generate these
processes without first generating a detailed base model (as shown in the final section
of this chapter), we have avoided both of the problems associated with classical lumping

methods.

96

While the functional notion of Equation (4.13) is convenient for two levels of opera-
tions, it becomes cumbersome if extended directly to more levels. Instead, we use a set of
equations relating SAN-based reward models at one level to those at the next lower level.
The nature of this relationship depends on the specific operation used at the particular
level. As with the two-level example just given, each replicate node corresponds to a
“number of” relation in the state space, and is represented as a bag of submodels at the
next lower-level. On the other hand, the “state” of each joined SBRM must be represented
explicitly, and hence the operation is represented as a vector of joined submodels. At the
lowest level are the submarkings of the individual SAN-based reward models. As with the
two-level case discussed above, activities are named in a way which designates the partic-
ular submodel that they belong to, and projections of markings on particular submodels
are designated by superscripts on the marking (i.e., u® ™2™ denotes the projection of
global marking 12 on the places of the n;th SBRM of the highest-level operation, the noth
SBRM of the next-level operation, and so on).

Forl example, consider the SAN-based reward model of Figure 4.4. The functional

describing the mapping from am-states to reduced states is written as:

f(a,p) = (C(a),V)
V = (By,p?)
B = <Vi,Vi2 >
Vii = (B, Bung)
Viz = (Bin,Bi22)

By = <ptil iz

B = < pht?t 12z 1,
By = <pi? nzy

By = < pl?t 2z 128

Using this notation, the letter B denotes a bag of SBRMs at the next lower level and V

denotes a vector. The superscripts on markings denote the marking of a particular sub-

97

JD1’ D,
2
J
D4’ Ds
2 3
R, Rp,
(S,:C,:Ry) (S35 Cyi Ry)

Figure 4.4: Example Composed SAN-based Reward Model

98

model. This notation is useful in the following sections, where the support and solvability

of reduced base models is considered.

Support of Variables

Support of the instant-of-time, interval-of-time, and time-averaged interval-of-time vari-

ables will now be considered.

Theorem IV.3 The reduced base model of a composed SBRM supports the instant-of-
time, interval-of-time, and time-averaged interval-of-time activity-marking oriented vari-

ables defined in Chapter 3.
Proof:

We begin by examining the partition induced on the set of am-states (E) by f. Specifically,
define the equivalence relation

Ry= {((b, ;l.), (a’ﬁ))lf(ba ﬂ) = f(aa ﬁ)}

on E. The equivalence classes of Ry are thus a partition of E. Since the am-behavior
supports the instant-of-time, interval-of-time, and time-averaged interval-of-time activity-
marking oriented variables (see the section on detailed base models in this chapter), it
suffices to show that for all pairs of states e and €’ in a common block of the partition,
8(e) = 6(¢’) and p(e) = p(€'). It is immediately apparent from the definition of Ry that
6(e) = é(e'); since f(e) = f(€') for all e and €’ in a common block, C(a) = C(a’), and
hence é(e) = 4(¢’).

To see that p(e) = p(e'), we assume a certain regularity to the application of the repli-
cate and join operations used to build the composed SAN-based reward model. Specii-
ically, we assume, as shown in Figure 4.5, that the directed tree used to represent the
construction operation has an even number of levels h, no two replicate or join opera-
tions are performed in a row, and the highest node is a join. Furthermore, the number
of branches at each node (i.e. the number of submodels replicated or joined together) is

as given in the figure. Note that these assumptions result in no loss of generality, since

©
w

1 JN
D1 :Dz ’ -;DN
® 0 ¢
B 4 D5 D
3 N7i11
D111:D112:
[]
e
h g N1t
(his even) Di4.. 4
N7y .. 1 replications
Sy e
v (h-1) 1's
(S,C,R)

Figure 4.5: “Regular” SAN-Based Reward Model Structure

100

a join or replication of a single submodel acts as a “no-operation” with respect to the
resulting state space and process description. No-operation nodes can thus be added to
any arbitrary tree such that it assumes the regular structure of the tree in Figure 4.5.

Now, recall that

p(b,p) = Z R(v),

vEPN (1)

which, by the additive nature of R(v) across submodel types and submodels within these

types, can be written as

Npy an n2 an RN

p(b u)— Z Z Z Z E Rnl,ng...nh(y)7

n1=1nz2=1 nz=1 np=1 uG'P,Af,,1 2 ’.__nh(b,uﬂl M2 M)

where PNy, n,,..n, is 2 function identical to PN but defined on the submodel ny, n2, .. .74
and Ry, n,,...n;, is the rate component of the reward structure for the same submodel. Then,
since PNy, n,..np, 30d R, m,,..n,, aTe the same for all replicates of a particular submodel,
we can write them as a function that depends only on the particular joins that they belong

to. Specifically,

N Nny Npyng Npynz,.np

p(b,ﬂ) = Z E E see Z z R[n;,ns...nh_g](y),

ni1=1ns=1 nz=1 np=1 ”EPJV[nl R (b,u™1:m25-7R)

where PNn; ns,..np_1] 304 Riny ns,...ns_,] aT€ the the PA and R functions associated with
a particular SBRM type.

Since there may be several replicates of a SBRM in a given “state”, we can sum over
distinct SBRM “states” (as defined informally earlier) and multiply by the number of
SBRMs in that state. This allows us to express p as

Nagn Nn1 N2y Bh 1
112

plbyp) = Z Z #(Vay,nzs Bny) Z Z E

n1=1 Vuy ,n, €Bny n3=1 np—1=1 pt1"2-Th€Bny ny,... 05

#(#7*1 M2enpy s Bm 24000y Tihm) Z 'R,[nl . (V)’
VEPN["I .n3...nh_1](b,y”1 n2 """h)

101

where the B and V are the bags and vectors defined in the previous subsection, and
#(X,Y) denotes the number of occurrences of X in a bag Y.

Furthermore, since, by the definition of f, there are the same number of replicates
of each submodel type for all states within a block, for each choice of a particular set of
joins, p(e) = p(e’) for all states within a block. Thus the reduced base model supports the
activity-marking oriented variables defined in Chapter 3. O

Nature of Stochastic Process

In order for reduced base models to be useful, they must also be solvable. The following
theorems establish that the minimal and imbedded discrete-time behaviors of a reduced
base model are indeed Markov whenever the am-behavior is Markov. We first establish

the following important result.

Theorem IV.4 The minimal behavior (U) of the reduced base model of a composed

SBRM is Markov whenever its minimal am-behavior is Markov.
Proof:

To prove the theorem, we employ a continuous-time version of the strong lumpability
theorem [89], which states that if the minimal am-behavior is Markov then U is Markov
if, for every pair of equivalence classes G, H (G # H) of the equivalence relation Ry, the
rate from (b, 1) to H is identical for each (b,u) € G.

To establish this, we again assume that the SAN-based reward model in question has
the regular structure of Figure 4.5. Recall that this can be done without loss of generality.
In the context of the proof the assumption is useful, however, since it gives us a specific
set of operations to sum over.

We begin by further refining H. H can then be decomposed according to the activity

component of the am-states in H. In particular, let
H:‘lrnl‘y---ynh = {(a, ll’) I (a, #) € H’ and a= a?11n2v"-|nh},

where a}1""2""™ refers to the ith activity in the nyth SBRM of the first join, the noth

SBRM of the following replication, and so on. Furthermore, note that in some cases,

102

H] 12" may be empty. The collection of all these non-empty H'''™"™ obviously
form a partition of #. Furthermore, to enable us to sum over particular sets of markings,
let

Srumarmh — (40| (g,) € B2y,

We now derive an expression for the rate of flow from a state (b, 1) to a state (a7 "™, u)

N14N29eeeNf 2

in g™ 1f we let 7 n1.mz..mn (1) be the rate of completion of activity a; in

p and let hp,a}‘l w2,y (') be the probability of entering p/ upon completion of a}*'"2""»

1 4N240004Nh

in p (where 7 n1.:m2. (1) and b, jn1m2.mn (1) aze assumed to be zero if g is not

enabled in p), the transition rate from (b, g) to (ai* ™™, p') is just

— - . . /
A(b,p),(a?bnz""'"h '“,) = Ta:‘n"2'"'»"n (Iu)hu,a?l BTN (‘u),

But, since the rate of completion of each activity a} ™2™

is the same for all replicates (by
definition), the rate depends only on the coordinates denoting instances of the join opera-

tions. We can therefore denote the rate for a class of replicate activities as T nging o] (&)
where T Inying vesn_11 (1) = 7 n1m2rm (1) for all possible choices of ng, n4, . . ., 4. Further-

more, the rate of an activity depends only on the marking of the submodel in which it is

located. We can therefore write /\(b’“),(a:‘h"z-m."h) 38

M2yveey !
A(bv#)t(a?l'nz renh 1/") = TGE-nl BT WY | (”711 "2 ﬂh)h“,a:u 2 th (#),

where p™ ™27k i the projection of global marking p on the places of n;th SBRM of the
first join, the noth replicate of the following replication, and so on. The transition rate to
some H['"™2™ is then determined by summing the rate due to all markings that may
be reached by completion of activity a{*™2"*"*. This may be expressed as

A(b,#),H?I W24y -_—

A N1 24000y ,
2 T Im gy (T)hy,a?l 2 em, ().
#'65?1,712 ,...,nh 1]

The total rate to a block H from a state (b,z) can then be obtained by summing over
all possible activities in all submodels. To do this we let Ay, nj,...n,_,] denote the set of

103

activities for a submodel of type [ny,73,...,74-1]. Then the total transition rate from a

state (b,) to block H is

MowH= D, D Y,

n ENnp GNHI Bh eNn1 R T T

Y (W) S by e (). (414)

‘iEA[nl n3 ""'"h—l] ' #Ies?l W2 4oy

We now show that the value given by (4.14) is the same for all states in the equivalence
class G. Specifically, consider an arbitrary pair of states (b, u),(c,z) in G. Since (b,p)
and (c, i) are equivalent (with respect to Ry), the number of submodels in a given state
is the same at each level where a replication is done and, hence, there exists a set of

permutations on the set of submodels defined by each replicate operation
Ty 2 Nny = Nogy Ty naing 2 Nagnging = Nagngyngs s

Trynzgennes © Vngmoennney = Nognzponnag
such that

ﬁm M2 M3 hgoens Nl #"1 1Tng (n2)i13,%ng ing g (24)senesny M2y PRy ("'h),

We write w(u) to represent the state obtained when these permutations are applied to
each submodel (i.e., z = m(p)). This fact and Equation (4.14) allow us to write A, z),m

as

MNedH= Do D Y >

nEN n2€Nn, np€Nny nz ..., np_1 iGA[nI B PO TR |

11,7y (72)4eesTny mg e imp g (nh)) Z

u’GS?I N2 400y

heuap e (),

T [n1.m3,..mp_4) (ﬂ
%

which, by rearranging summands, is equal to

Aemb= 2 X 2 2

n €N 77;11 (ﬂz)eNn1 1;:',,2'",_",!_1 (nh)Ean 2 eepg iEA[nI M3 eeep]

b=t
[4=]
3=

!
ﬂ(p),a?l 7Ty (n2),... 1TNY 025000 Bly (np) (I‘L)'

Ta[.n1,ns peofipetl (uﬂl ,nz,...,nh) Z
L]

n1,7%ny (52)s:7ny ng g1 (B)
Wes; 1 1m2 h—1

We now show that we can replace the summation over p/ € Sy ™ (22} o g e (1)

with a summation over #~1(u') € S7""#"*"™, To do this, we must show that the sets of

summands that correspond to non-zero transition (k) functions are equal, i.e.

n1,%n. (‘n),mﬂrn K Y TR (ﬂ-)
{“L' I ”’ E S‘l t 2 10z h—1 h and hﬂ.(#) ar.ll,wnl(ﬂz),...,ﬂ'nl,nz,.,,,nh_l(ﬂh) (”’) > 0}

= {y’ | #~1(y’) € ST+ ™ and hﬂ'(#\ [y (n)eenng i ey _q () (1) > 0} . (4.15)

NI

To see this, pick an arbitrary element x4’ of the left hand side (LHS) set. Then, since

("1 it s (o) () > O

the completion of a?l o7y (m2) g 0 eimpg () 3 7(p) may result in ' (i.e., there is a non-

zero probability that ' will be reached upon completion of a; =" ™ (m2) sy g impa (78) ¢

n
w()). Since each set of distinguished places at each level where a replication operation is
done is a subset of the corresponding set of distinguished places at the next lower level, the
effect of the completion of an activity in a submodel is the same, up to a set of permutations
on submodels defined by the replicate operations, as the completion of a replicate of that
activity in another submodel with the same marking. In other words, if the completion

11,7ny (n2)r---,7"n1 K VIR T (nh)

of a}*™ ™ in u may result in p', then the completion of o,

n1,Tny (n2)|--~17rn1 N2y (nh) in
i i

in 7(p) may result in x(n’). Thus, since the completion of &
m(p) may result in ', the completion of a]1""#"**™* in p may result in 7~2(y'). Since p is
an element of G, 771 (p') € §71'"*™™* and the LHS set is a subset of the right hand side

(RHS) set.
Now pick an arbitrary element u’ in the RHS set. Then, note that

W(u) a’.u TNy (nz),...,ﬂ'nl M2 e Bl 1 (nh) (#’) > 0 iﬁ h#’a?l W20y (7!‘_1 (#’)) > 0,

105

by the same reasoning used to show the equivalent effect of the completion of replicate
activities of replicate submodels in identical markings. Thus, since 771(p/) € §;"2""k,
the completion of a;*""*"™ in y may result in 7~1(y’). Furthermore, by the same ar-

114%ny (72)yeesTng g oninpy g (B8) i

gument used in the previous paragraph, the completion of ¢, n

N1yTny (n2)r---ﬂrnl M2 yeees Bl (ﬂ.h)

7(p) may result in p'. Since 7(y) = ji is an element of G, p’ € S;
and the RHS set is a subset of the LHS set. Equation (4.15) therefore holds and we can
equivalently express A(cr) m as

Mo =D, DL 2)

n €N 7";11 (n2)ENn1 W;f,nz,....nh_l ('nh)ean M2 e Bl g t.eA[fljl. N3Py gl

N1,124e0esNP) Z

a1 ([J.')ES?J M250e0sNpy

FAY
n1,7ng (12)017R1 102,00 Bp g (ﬂh)(/")

T
“E‘nl N3 eyl (# m(1)g;

By rearranging summands, we obtain

epa= L T v >

meN 7";11 (n2)ENn1 7";11,112 RN T (ﬂh)GNn]_ LVTR T iEA[’u B P TN |

147290009,
Ta[."l N3 1"'1"};—1] (;‘l' e h) Z
1 y.'ES:u Ro PRI Y

ﬂ_(“)‘arl "ng ("2)1--..1\'111 W2 ey Bh g (nh) (W(”’)).

Since the effect of the completion of an activity in a submodel is the same, up to a set
of permutations on submodels defined by the replicate operations, as the completion of a

replicate of that activity in a replicate submodel with the same marking,

hﬂ_(u)'a?:ﬂnl("z)v---"n; .nz.«--.nh_l("h)(ﬂ'(ﬂl)) = hp,a?" C (l‘l)°

We can thus express A(.z),5 as

MedVH= D, D2 > >

ni1EN r;:(nz)Gan ﬂ’:lxn"z----,"h—l (nh)eanv"2-~---"h_1 ieA[nl M3yeesBh—1]

Ta[-ﬂl BTN YRRy | (ﬂnl M2yealth) Z h#,az‘i N2 yeees T (IL,),

“lesr‘l M2y
3

establishing the desired result. O

106

In order to solve for variables that have non-zero rewards associated with activity
completions, the discrete-time imbedded behavior of the reduced base model must also be

Markov. The following theorem establishes sufficient conditions for this to be the case.

Theorem IV.5 The discrete-time imbedded behavior (T') of the reduced base model of

a composed SBRM is Markov whenever its am-behavior is Markov.
Proof:

Proof of this theorem is identical, in approach, to that of Theorem IV.4, and hence will
only be sketched. In particular, transition probabilities from states to blocks are computed
instead of, but in an identical manner as, transition rates from states to blocks as was
done for the minimal behavior. Since these probabilities are the same for every state in
a common originating block, a discrete-time version of the strong lumpability theorem
[44] can be invoked to show that the discrete-time imbedded behavior of the reduced base
model of a composed SAN-based reward model is Markov whenever its am-behavior is
Markov. O

Taken together, Theorems IV.4 and IV.5 state that minimal and discrete-ti.me imbed-
ded behaviors of the reduced base model of a composed SBRM are Markov whenever the
corresponding am-behavior is Markov. Since these processes also support the variable of

interest (Theorem IV.3), they can be used to solve for the variable’s probabilistic behavior.

Construction procedures which generate a reduced base model are now investigated.
Construction Procedure

While the proceeding theorems state that the reduced base model is indeed solvable when-
ever the detailed base model is and that the base model supports the specified performance
variable, they do not suggest a method for constructing the model. In fact, the proof of
solvability relied on lumping arguments. Clearly, one would hope that a procedure could
be formulated that did not rely on the prior gereration of a detailed base model. This
is, in fact, possible, and the resulting procedure is more efficient than those derived for

detailed base models.

107

At a high level, the main procedure is similar to that for the generation of the am-
behavior, but operates on reduced states and “representative” markings instead of am-
states. A representative marking of a reduced state is any marking that maps (via the
functional defined earlier) to the marking portion of the reduced state. The representative
markings allow the use of the next stable marking generation algorithms developed in
Chapter 2, instead of deriving new algorithms that operate directly on reduced states.
Once a state has be expanded, the representative marking is no longer needed; hence
representative markings need be associated with states only until they are expanded.

In the following procedure, f is the functional defined earlier which maps am-states
to reduced states, U is the set of reduced states, X is the set of reduced states yet to be
expanded and representative markings for these states, T is the set of transition rates from
marking portions of reduced states to reduced states and Y is a set of triples denoting
possible next reduced states, representative markings for these states and rates to these
states from the marking portion of a reduced state. The marking portion of a reduced
state u is denoted as «™. The rate from a marking portion of a reduced state, u™, to a

reduced state u’ is written as Aym 4.

Procedure IV.4 (Procedure to generate the reduced base model of a stochastic activity

network with initial marking uo.)

Let U = {f(V1 ﬂO)}'
Let X = {(f(V; ko), 0)}-
Let T equal the null set.

While X # null:
Let (u, p) = some_element{X}.
Let X = X — {(u,p)}.
Let Y = poss.U(u).
For each (¥, Y, 90) EY:
If y, € U then

Let T =T U {(u™,3.)}.

108

Let Aym g, = ¥a.
else
Lt U=UVU {g}.
Let T = T U {(u™, %)}
Let Aym gy, = yn.
If there does not exist a u € U such that ™ = y™
Let X = X U {(vu, %)}

Next (y'u.s Yus y).) €Y.

While end.

Algorithm IV.3 (poss.U) generates the set of next possible reduced states and rates
to these states from a particular marking portion of a reduced state. This algorithm
differs significantly from the corresponding algorithms for detailed base models, since it
is not necessary to consider every activity that is enabled in a given marking, Instead,
since completions of replicate activities in different submodels with identical submarkings
result in the same set of possible next reduced states, it is only necessary to complete one
activity within such a set of replicate activities in order to find a set of possible next stable
markings. In the following algorithm, the activity that is completed is referred to as the
representative activity. The number of activities that are in the set of replicate activities
is denoted by n. After possible next stable markings and probabilities of these states
for each representative activity are computed using Algorithm II.1 or IL.3, rates to these
states are then found by multiplying the rate due to a single activity by the number of
replicate activities in the particular submodel marking. The following algorithm describes

this in a more precise manner.

Algorithm IV.3 (Generates the set, Y, of reduced states, representative markings, and

rates to these states from a representative marking u of a particular reduced state.)

Let Y equal the null set.

109

Let D be the set of pairs (a,n) where a is a representative activity and = is cardinality of
the set of replicate activities of @ in p.

For each (a,n) € D:
Compute the set of possible next stable markings reached upon compietion of @ in
(ie. NS{(a, 1)), the probability of reaching each of these markings (i.e. hiyq), and

check whether this distribution is invariant over possible sets of activity choices
(Use Algorithm IL.1 or I1.3)

If the distribution is not invariant over possible sets of activity choices then
Signal SAN is not well specified and abort algorithm.
For each p’ € NS(a, p):
H (9u, Yu, ¥r) €Y such that f(a,p') = 3, then
(%> s Y2) = (s Yo U + 7a(p) # 0 % B a (1))}
else
Let Y =Y U{(f(a, 1), 4y 7a(p) * 7 % By a(u'))}
Next p' € NS(a,p).
Next (a,n) € D.

An example illustrating the effectiveness of reduced base model construction methods

will be given in Chapter 6.

CHAPTER V

SOLUTION TECHNIQUES

Introduction

Model solution is the process of determining the probabilistic nature of the selected perfor-
mance variable from a lconstructed base model. As alluded to earlier, solution techniques
depend on the variable selected, the nature of the associated stochastic activity network,
and the construction method employed. At the highest level, solution methods can be
differentiated as to whether they use simulation or analysis to determine the nature of the
selected variable. Simulation of stochastic activity networks should be done directly at
the network level, and a method to do this is described later in this cha.ptér. Simulation
can be used to solve for both activity-marking oriented and more general variables.

Analysis techniques differ greatly depending on the constructed representation and
selected variable, but typically can be based in traditional stochastic process solution
techniques. Broadly speaking, analytical methods for the solution of activity-marking
oriented variables depend on the type of the selected variable, although some solution
methods may only be applicable to a particular class of reward structure instantiations
within a type.

This chapter is organized as follows. The following section briefly outlines methods
for the solution for activity-marking oriented variables using known stochastic process
solution techniques. No attempt will be made to provide a solution for every reward
structure instantiation within every type, but known methods will be applied whenever

110

ii1

possible. The next section details a specific solution method for determining the expected
value of interval-of-time and time-averaged-intervai-of-time variabies of systems that have
a finite “lifetime” (with probability one). The lifetime of a system is the time after which
no further reward is accumulated. “Accumulation” is this context refers to any change in
the accumulated reward, including negative as well as positive changes. The final section
presents a procedure that can be used to simulate a stochastic activity network at the
network level. Thelevel of detail of the simulation is such that all activity-marking oriented
variables can be estimated, as well as more general variables. These solution methods,
together with implementations of construction methods discussed in the previous chapter,
form the basis of an efficient performability evaluation package, which is discussed in the
Appendix.

Application of Known Stochastic Process Solution Methods

Once a base model has been constructed for a stochastic activity network, solution tech-
niques depend on the nature of the base model. When its behavior is Markov, many
traditional stochastic process solution techniques can be used to determine the proba-
bilistic characteristics of the chosen performance variables. This section will outline some
of these techniques and show how they can be applied to the activity-marking oriented
variables presented in Chapter 3.

Solution for instant-of-time type variables will be considered first. In this case, the
solution techniques depend on whether the variable refers to the status of the SAN at a
particular time ¢ or to its status as { — 00. Solution for the status of a SAN at a particular
time ¢ can be accomplished using techniques for transient solution of Markov processes,
since instant-of-time variables can be represented as functionals of these processes.

Many methods have been proposed to obtain transient solutions of Markov processes.
Perhaps the most direct approach is to recall that (according to Kolmogorov’s forward
equations [14])

d?l't

E = 7I'tA,

where A is a state-transition rate matrix and =, is a row vector representing the probability

112

of being in each state at time ¢. Thus (if the state space is finite) the solution for =
can be obtained using classical differential equation solution methods (e.g. the Runge-
Kutta method). These methods, however, are inherently expensive since they do not take
advantage of the linear, constant coefficient nature of the state transition-rate matrix [68).
Other metheds make use of the observation that

7y = moet

and attempt to compute e4? directly. A good survey of methods to do this is one by
Moler and Van Loan [68]. They conclude that 1) the problem is difficult, 2) there is no
“best” general purpose method for all classes of matrices, and 3) the utility of a particular
method varies depending on the nature of A.

Randomization {33,67] is a particularly suitable method when A is a state transition-
rate matrix. The method is based on the subordination of a Markov process to a Poisson
process. In particular, if we let P be the transition matrix for the subordinated Markov
chain, then P = -};A + I where A is the rate of the Poisson process. The solution is then
obtained by computing the infinite series

T = i ﬂoP"e‘MM

!
n=0 ni

which, in practice, must be truncated at some point. The error due to truncation varies
ﬁith the number of terms computed, and can be bounded [33]. It is also possible to
investigate the sensitivity of the solution with respect model parameters [35]. Because of
these properties, randomization has received increased attention in recent years, and has
been incorporated in several performance and/or dependability evaluation packages. For
example, it is used both in the System AVailability Estimator (SAVE) [29] to estimate
computing system availability and in METASAN (see the Appendix or [81]) to estimate
instant-of-time type variables. ‘

Solutions for instant-of-time steady-state variables can make direct use of known
stochastic process solution techniques since these variables can be expressed as a func-
tion of the long run state-behavior of the base model. The problem, then, is to solve the
system of equations

TA=0

113
)+ +...+7(n)=1

for the row vector m where 7(z) is the ith element of 7. As with the transient solution
techniques discussed above, there are many methods to do this; the merits of each depend
on the nature of the process being solved [28]. Broadly speaking, these methods can
be divided into “direct” and “iterative” methods. Direct methods are those that require
factorization of the state-transition rate matrix. Examples of direct methods include LU
decomposition and QR decomposition [28]. Iterative methods, on the other hand, do
not require factorization of the state-transition rate matrix, and produce a sequence of
approximate solutions, hopefully converging to the exact solution in the limit. The Gauss-
Seidel approach is an example of an iterative approach. Both of these general techniques
are useful for the sclution of steady-state instant-of-time variables.

Direct methods are useful in that they provide exact solutions (allowing for errors
due to round off) for all matrices. Their application, however, is limited to systems of
moderate size since the solution requires the factorization of the the state transition-rate
matrix, which typically requires a large amount of storage. The amount of storage required
increases as the factorization operation is performed and the total amount required is hard
to predict before performing the factorization. Iterative methods, in contrast, require no
more storage space than that required for the original matrix and can, therefore, be used to
solve significantly larger systems. They must be used with care, though, since the number
of iterations required for convergence depends on the chosen initial condition and, for some
systems, they will not converge regardless of the initial condition. Thus neither approach
suffices for all matrices, and methods based on both approaches should be inciuded in a
evaluation package.

Interval-of-time and time-averaged interval-of-time variables, unlike instant-of-time
variables, cannot be written as functionals of the minimal or discrete-time imbedded be-
havior of a base model. Instead they are “cumulative measures” and are a function of the
behavior of the base model over some time period. Solution for these types of variables
is, in general, more difficult than solution for variables from the instant-of-time category,
and no general solution methods are known that are applicable to all variables within a

category. For the most part, however, solution methods developed for more traditional

114

reward models can be applied to these variables. These methods were surveyed in Chapter
3, from the point of view of the type of reward structure they utilized. From the point
of view of solution methods, they fall into several broad classes. At the highest level, the
methods are distinguished as to whether they seek to determine the complete probability
distribution of a variable or whether they seek to determine only one or more moments of
a variable.

Solutions for the expected value and moments of a variable exist for general (cyclic
or acyclic) base models which are Markov, although they are generally limited to reward
structures that are rate-based. For example, see [40] where the authors provide a solution
for the moments (including the expected value) of an interval-of-time variable and a general
Markov reward model when the reward structure is rate based. Another example of work
in this regard is [52], where the authors provide a closed-form solution for the expected
value of interval of time variables when underlying process is acyclic and the reward
structure is rate-based.

Three general approaches have been used. to obtain the distribution of reward. The
first approach in the context of computer systems evaluation was a time-domain approach.
Using this approach, the distribution of accumulated reward is formulated as a definite
intergal, and the regions of integration are determined from the specific reward rates
specified. An early application of this approach was that of Meyer [62], who considered
the evaluation of a two-processor, single queue system. Furchtgott and Meyer [24,25] later
generalized this approach to provide solutions, using a time-domain approach, for general
stochastic processes where the reward rates are non-increasing with time (non-recoverable,
in the terminology of Wu [89]). Another solution technique that used a similar approach
was that by Goyal and Tantawi [31,32], who derived a closed-form solution for general
Markov processes when the reward rates were non-increasing with time,

Transform techniques have also been used to determine the distribution of reward. In
this case, all efforts have been limited to reward models where the reward structure is rate
based. This approach was based on the realization that the distribution of reward could
be formulated in a recursive manner, where the reward accumulated during some interval

[0,%] given a particular initial state is written in terms of the reward accumulated given

115

another initial state and a shorter time period. This equation is transformed twice, both on
the time and reward variable, to obtain a set of simultaneous equations in the frequency
domain. When the process is acyclic, these equations can be inverted to obtain the
distribution of reward. Early work using this approach was done by Donatiello and Iyer [18,
20] who used transform techniques to obtain the solution of the n-processor generalization
of the queueing system considered by Meyer in [62]. Later work includes that of Iyer et
al. [40] who obtained a solution in the transform domain for semi-Markov reward models.
Most recently, Ciciani and Grassi [13] obtained a solution, using transform techniques, for
general acyclic Markov reward models.

All of the efforts described above to obtain the distribution of reward are limited in that
they require the underlying base model to be acyclic. No closed-form solution is known for
cyclic base models. Although equations in the transform domain can be written for these
base models, they cannot be inverted symbolically. In this case, numerical techniques have
been used. The approach, in this regard, has been to derive a solution in the transform
domain and then invert this solution numerically to obtain the distribution of reward.
Algorithms to do this have been developed by Kulkarni et al. [47] and Smith [83] and
have been applied to the evaluation of multi-processor systems [84]. However, as is noted
in [83], these techniques are extremely expensive computationally; the solution of a 365
state system, using the algorithm of [83], requires 1 X 10! flops and 25 hours on a fast
minisupercomputer (a CONVEX C-1).

Solution for Expected Reward

The reward model solution methods surveyed in the previous section are not applicable to
variables where reward can be accumulated due to an impulse component as well as rate
compornent. The solution method developed in this section provides a closed-form solution
for the expected value of an interval-of-time variable Yp; where the reward structure has
bonuses due to both activity completions (entrances to states) and rates due to numbers

of tokens in places (time spent in states).

116

Derivation

To begin, observe that, if we let p and § be the state-level reward functions defined in
Chapter 4, then the reward accumulated during a period of time [0,] can be expressed

as

Yor= Y p(u)us+ > 8(u)Nyy
uel ueU

where
Ju,t is the total time spent in u during [0,], and
N, is the number of entries to u during [0, ¢], and
U is the state space of the base model (detailed or reduced) of the SAN in question.

Note that, in general, J, ¢ and N, ; are dependent random variables. However, due to the

linearity of the expectation operator,

E[Yod = Y p(w)E[Jus] +) 8(u)E[Ny] (5.1)
ueU u€U
and, hence, E[Yp;] can be determined from knowledge of E[J, ;] and E[N,g].

We now seek practical computational methods to determine E[Y;:] when the base
model process is Markov. By (5.1), this reduces to determining E[N,¢] and E[J,,] for all
u such that p(u) or §(u) is non-zero.

Solution of E[J,, ;] will be considered first. Since knowledge of the number and identity
of the activities that complete is not necessary, E[J,] can be determined from the minimal
behavior of the constructed base model. Conceptually, E[J, ;] could be determined by

direct integration by noting that

E[Ju = E| /0 " 14(Z,)ds]

where 1, is an indicator function whose value is 1 if Z, = u and 0 otherwise. Direct
integration is not easy, however, since this requires that the Pr[Z; = u] be solved as an

integrable function of t. Known algebraic solution methods do exist, though, when the

117

utilization period is unbounded. This algebraic method can be extended to bounded uti-
lization periods by decomposing the problem into two parts, each involving an unbounded
utilization. Each part can then be solved separately, and the solutions can be combined

to find the solution to the bounded interval problem. Specifically, note that

00 t o0
Juoo = / 14(Zs)ds = / 1u(Z2)ds + / 1u(2,)ds
0 (3] t

and, by rearranging terms,

Jug = / ” 1u(Zs)ds — / % 1u(Z,)ds.
0 t

A further substitution is made by observing that, since Z is time homogeneous (by

definition of a SAN)
) o _
/ 1.(Z,)ds = / 1,(Z%)ds
t ()

where Z is a process identical to Z except that the initial state distribution of Z is the
state distribution of Z at time ¢. This substitution yields:

(=] (>} -
Ju,t = / lu(Z‘,)ds _/ lu(Zs)ds
0 0

and, taking expectations,
' 00 00 _
ElJus] = B[/0 1,(Z,)ds] - E|]0 1,(Z,)ds]. (5.2)

Hence E[J.,] can be determined using methods applicable to unbounded utilization peri-
ods.

Methods for determining the times spent in states of a Markov process (in the long
run) are well known (see [14], for example) and, hence, will be reviewed here only briefly.
Determination of E[Jy,c] involves determining characteristics of both Z and the embedded
discrete time process. The first step is to construct the discrete-time embedded Markov
chain (denoted as Z in what follows) corresponding to Z. It can then be shown (again,
see [14]) for all states which are not absorbing,

E[f,]

—Au,u

E[Ju0] = (5.3)

118

where
N, is the number of times that Z enters u during [0, 0), and

Ay is the (u,u) entry of the generator matrix of process Z.

The solution of E[Jy o) is thus reduced to determining E[N,] for the discrete-time
embedded process associated with Z. This is determined by expressing E[N,] in terms of

expectations conditioned on the initial state of Z, i.e.

E[N,)= Y E[Ny; | Zo = w]Pr(Z = w). (5.4)
u; €U

Methods for determining E[Nuj | Zo = u;] depend on the nature of the process in

question. Since we presume a finite lifetime, the processes Z and Z have the following
properties. If a state is recurrent, the rate component of reward must be zero; otherwise
reward could be accumulated indefinitely. By a similar argument, the impulse component
of reward for all recurrent states which are not absorbing must also be zero. Absorbing
states can have non-zero impulse components, since they are entered at most once. There
are no implications regarding transient states; they can have non-zero rate and impulse

components. As a consequence of the above, all states for which we need to compute

E[IV,] are transient, and hence E[NV,] is finite. In this case,

E[Ny; | Zo = u] = Ty (5.5)
where
Tu;u; 15 the (u;,u;) entry of the potential matrix of Z restricted to non-absorbing states.

The potential matrix of Z restricted to non-absorbing states (denoted R) can be com-

puted directly from its transition matrix. In short (see [14] for details),
R=(1-p)"
where

P is the transition matrix of Z restricted to non-abscrbing states, and

119

I is the identity matrix.

It follows (from (5.3), (5.4) and (5.5)), that

Blue] = 2 (5:6)

where

mo is the row matrix representation of the initial state distribution of Z,

R(u) is the u-th column of the potential matrix of Z and is computed by letting Tuiu; =

Tui when «; is not absorbing and 7y;,; = 0 when u; is absorbing, and
Auu is as defined earlier.

Computation of the expected time spent in a state for the case of bounded utilization
follows immediately from two applications of (5.6) according to (5.2), and results in the
expressioﬁ

(w0 — ™) R(u)

_)\u,u

E[Jys] = (5.7

where
7¢ is the row matrix representation of the probability distribution of Z,
and 7o, R(u), and A, , are as defined earlier.

It is now clear that, subject to the assumptions previously stated, E[J,:] can be
computed by determination of m; and R(u) and application of (5.7).

We now derive methods for computation of E[N,s]. E[N,;] cannot be determined
from the minimal behavior of the base model since explicit knowledge of the completions
of activities is not preserved in this representation. This information can, however, be
inferred from the Markov chain (discrete-time, discrete-state Markov process) associated

with the base model behavior. In particular, let
P(ui,u5) = lim K(ui,u;,1)

where

120

K is the semi-Markov kernel representing the base model behavior of the SAN.

These P(u;, u;) are then the transition probabilities for a Markov chain X = {X,, |n €
N} with state spa.;:e U. It is known that, in the limit, the number of visits to a state by
a Markov renewal process is exactly the number of visits to a state by this Markov chain.
E[N,;] can then be determined by using a technique similar to the one used to determine
the expected time spent in a state during a bounded interval. Specifically, observe that
for a Markov chain X, the expected number of entries to a state u during [0,?] can be
expressed as

B:
E[Nyz = E[Zo 1u(Xn)]
n=

where
B; is the number of state transitions that occur during (0, #].

As with the explicit formula for the expected time spent in a state, determination of

E[N,,] is not easy since B; and the X, are not independent. Note, however, that

o) B [+
Nu,oo = Z lu(Xn) = Z l‘u(X'n.) + Z]--u.(Xn)-
n=0 n=0 n=B¢+1

Since X is time-homogeneous and the strong Markov property holds at time B;,

o0 0 _
Z lu(Xn) = 2 lu(Xn),
n=B; n=0
where X is a process identical to X except that the initial state distribution of X is the
state distribution of Xp,. Application of this substitution and a rearrangement of terms

yields

Nyp = i Lu(Xy) - f: lu(Xn) +14(XB,)

n=0 n=0

and by taking expectations,

E[Nyz = E[i 1.(X,)] - E[i 14(X»)] + Pr[Xp, = 4] (5.8)

n=0 n=0

121

Thus E[Ny4] can be determined from two computations of the number of entries to
a state assuming an unbounded utilization period and the probability distribution of X
at a single time. As was the case in determining E[J,], all states are assumed to be
either transient or absorbing. Determination of the number of entries to a state during

an unbounded utilization period was considered earlier for transient states (in terms of

Z) and will not be discussed further. When v is absorbing, determination of E[N,,4] is
easy and can be determined by observing Z;. Since each absorbing state can be entered

at most once, if u is absorbing,

1 ith='ll

u,t =
0 else
\

and hence E[N, ;] = Pr[Z; = u], which can be determined by known methods. The third
term of (5.8) can be determined similarly by noting that, since Xp, = Z;, Pr[Xp, = 4]
= Pr[Z; = u]. These observations permit us to write an explicit formula for E[N,;] in

terms of mp, ¢, and the potential matrix of X. Specifically,

(1o —) R'(w) + meI(u) if u is transient
E [N u,t] =

wI (u) if u is absorbing

where

I(u) is a column vector containing a 1 is the u-th position and 0’s elsewhere,
R'(u) is the e-th column of the potential matrix of X computed as described for R(«), and
7o and 7y are as defined earlier.

We can now make the appropriate substitutions to obtain an explicit formula for E[Yp ;]
in terms of characteristics of the base model, where E7 and F,4 denote the sets of transient

and absorbing states respectively and all other symbols are as previously defined.

E¥= Y (”(“)("j‘)R | 8(w)((mo — wt)R'(u)-}-mI(u))) + 3 (w)ml(u)

uEEp A‘u,u u€E,

122

Example

To illustrate the applicability of this method to performability modeling, we consider
the performability evaluation of the multiprocessor used in Chapter 3 to illustrate tradi-
tional performance and dependability variables. This solution method, together with the
decomposition technique developed in Chapter 4, allows us to consider “bottom-line” per-
formability measures that summarize aspects of system performance caused by both fault
and workload environments. To see this, we characterize the “total benefit” derived from
operating the system for some interval [t, ¢+ []. We assume that “benefit” is derived from
the completion of tasks and that costs are associated with the repair of processors. To
make the discussion more concrete, we attach a benefit of z dollars to each task completion
and a cost of y dollars to each processor repair.

Regarding solution, we construct a performability model which differentiates between
“performance” and “structure” related submodels as discussed in Chapter 4. These sub-
models are just the two SANs considered in the previous examples linked by two common
places. A stochastic activity network representing the multiprocessor is given in Figure
5.1. Places B and C are the common places. Since task completions are represented in
the performance submodel, the rate of task completions (i.e. throughput) in each struc-
ture state serves as the basis for the determination of the rate component of the reward
structure. Specifically, the rate of benefit derived for a structure state is the throughput in
that state multiplied by the dollar benefit associated with each task completion. Clearly,
the throughput is just the arrival rate of tasks to the system multiplied by the probability
that a task which arrives will be processed. In terms of the SAN model of the system, an
incoming task will be rejected if the sum of the number of tokens in places E and F is
equal to the sum of the number of tokens in places B and C (i.e., the system is full). Since
tasks arrive as a Poisson process, the probability that an incoming task is processed is one
minus the probability that the system is full. This fact allows us to define a reward struc-
ture for the performance submodel that permits the determination of system throughput

for each structural configuration of the system. In this case, different structural configura-

123

buffer_failwre / ©3
Gate Enabling Predicate Function
GO MARK(F) < MARK(B) and MARK(E) > 0 MARK(E)=MARK(E)-1;
MARK(F)=MARK(F)+1;
Gl | MARK(E)+MARK(F) < MARK(B)+MARK(C) identity
G2 - MARK(A)=MARK(B)=0;
MARK(C)=0;
G3 - _ MARK(A)=MARK(B);
MARK(C)=0;
Activity Rate Probability

4 case 1 | case 2 | case 3

processor_failure | v+ MARK(B) | cpl cp2 cp3
buffer failure | A* MARK(C)| cbl cb2 -

Processor-repair ¢ - - -

arrival a - - -
service B* MARK(F) - - -

Figure 5.1: Degradable Multiprocessor Model

124

tions are distinguished by the number of functioning buffers and processors. Specifically,
when the number of functioning buffers is m, the expected throughput can be obtained

using a reward structure where

C(a)=0, YVae A

R(w) = 1 if v={(E,m)}

0 otherwise,

and taking the variable to be
Thru(m,n) = a X (1 = Egm n)[Vit—ol)s (5.9)

where a is the rate of arrival of tasks to the system and E(nn) is the expected value of the
given variable when in there are m functioning buffers and n functioning processors. Costs
associated with processor repairs are represented in the reward structure by associating a
reward of —y with each completion of activity processor_repair. Under these assumptions,
the expected total benefit associated with operating the system for some utilization period

[0,] can be found using the reward structure

—y if @ = processor_repair

Cla) =
0 otherwise

R@) = z - Thru(m,n) if v = {(B,n),(C,m)}

0 otherwise,
and variable E[Y]o 4]
Explicit vaiues for this reward structure can now be obtained by solving the base model
associated with the performance submodel to obtain the throughput for each structural

configuration. This is done using METASAN? (see the Appendix or [81]), a software

package that assists in the construction and solution of performability models based on

1 METASAN is a Trademark of the Industrial Technology Institute

125

Buffers # Processors
1 2 3 4 5

.833 | 1.622 | 2.352 | 3.008 | 3.576
.968 | 1.859 | 2.656 | 3.338 | 3.891
.994 1 1.945 | 2.807 | 3.532 | 4.093
999 | 1.978 | 2.888 | 3.658 | 4.232
1.000 | 1.997 | 2.934 | 3.744 | 4.334
1.000 | 1.999 | 2.961 | 3.805 | 4.412
1.000 { 1.999 | 2.977 | 3.850 | 4.474
1.000 | 1.999 | 2.986 | 3.883 | 4.524
1.000 | 1.999 | 2.992 | 3.909 | 4.566
1.000 | 2.000 | 2.995 | 3.928 | 4.600
1.000 | 2.000 | 2.997 | 3.944 | 4.630

W 00 -3 O Ot v W N = O

—
o

Table 5.1: Throughput as Determined from Performance Submodel

stochastic activity networks. In the case of our example, steady-state state occupancy
probabilities for the performance submodel are solved for using the direct steady-state
solver in METASAN and throughput is determined using Equation 5.9. Table 5.1 contains
the (steady-state) throughput values obtained for different processor-buffer configurations
when a = 5.0 and 8 = 1.0. These throughput values, when multiplied by the benefit
associated with the completior of a task, serve as input to the structure submodel reward
structure.

For the example in question, the stochastic activity network of the structure submodel
and reward structure described earlier provide the input necessary to METASAN to de-
termine the expected number of repairs and expected benefit obtained during some uti-
lization period [0, t]. Solution is accomplished using the reward model solution technique
just described (implemented as the ex'pected solver in METASAN). Table 5.2 contains
the results for various numbers of initial processors and buffers when ¢ = 240 and the

parameter values of Table 5.3 are used.

126

Initial #processors | Initial #buffers | E[¥[o 4]
5 0 636.7
5 1 702.9
5 2 746.8
5 3 777.5
5 4 800.0
5 5 817.0
5 6 830.3
5 7 840.9
5 8 849.4
5 9 856.3
5 10 862.1
1 10 189.9
2 10 378.8
3 10 565.7
4 10 739.2
5 10 862.1

Table 5.2: Expected Benefit Derived from Multiprocessor

Parameter Name | Value
0t .002
A 001
¢ .50

cpl .80
cp2 .19
cp3 .01
cbi - .99
cb2 .01
X 1.0
y 100.0

Table 5.3: Parameter Values for Degradable Multiprocessor Example

127

Solution by Simulation

When solution of the desired performance variables can not be obtained by analytic meth-
ods, simulation is a viable alternative. Simulation is normally used when activity distri-
butions are not exponential or the state space of the base model is very large or infinite.
Conceptually, the simulation can be performed at two leveis. The first is the state level.
Using this approach, a state level (activity-marking or marking) representation is gener-
ated and then simulated, using traditional discrete-event simulation techniques. While
this approach has been used for stochastic extensions to Petri nets in the past [21], it is
not the most generally applicable method, since it can only be applied to systems that
have a finite state spaces. Another approach, and the one we take here, is to perform the
simulation directly at the network level. This approach does not require the generation of
a state-level representation and permits the study of systems with infinite state spaces.

The method is based on the section in Chapter 2 entitled “Stochastic Activity Network
Behavior” which presented an informal description of how a network executes in time by
completion of activities (both instantaneous and timed) and the selection of cases. While
this description provides insight into the functions of network primitives, it describes the
execution of a SAN at a greater level of detail than is necessary to characterize the types
of performance variables tha.t we are interested in. Since we are interested in possible se-
quences of timed activity completions and intervening stable markings, we can characterize
the execution of a well specified stochastic activity network in a higher-level manner. At
this level, an execution of a SAN can be thought of as a sequence of timed activity-stable
marking pairs (7, t1), (@2, B2),... with the interpretation being that for each activity
marking pair (@i, #:), a; is the timed activity that completed bringing the network into
stable marking g;. By convention, 7 € A is a fictitious activity that completes at time
t = 0 bringing the network into its initial marking.

Since the SANs we are interested in are well specified, trajectories of the type just
described can be computed directly, without considering possible completions of interven-
ing instantaneous activities, once the next stable marking probability distributions are
known. These distributions could be computed a priori, using Algorithm IL2, if the set

of reachable markings for the SAN is finite. However, since we want to consider SANs

128

whose sets of reachable markings are not finite, we compute h, o using Algorithm IL.1 or
I1.3 the first time marking u is reached and timed activity a completes. This result can
then be saved and used whenever p is reached and a completes in the future.

A procedure that generates trajectories is now presented, which is suitable to imple-
mentation by simulation. The term potential completion time refers to a time selected,
stochastically, from an activity time distribution function, and is the time the activity wiil

complete, if is it not interrupted.
Procedure V.1 (Generates an execution of a stochastic activity network)

Set list_of_active_activities to null.
. Set cur_marking to initial_marking.
Generate potential_completion_time for each activity which may complete in the

cur_marking and add to list.of_active_activities.

While list_of-active_activities # null:
Set cur_activity to activity with earliest potential_completion_time.
Remove cur.activity from list.of-active_activities.
X heur _marking,cur activity has not yet been computed then

Compute hcur.markz'n_q,cur.activity-

Select new cur_marking probabilistically from N S(curmarking,cur_activity)
using hcur.marking,cur.activity-

Remove all activities from list_of_active_activities that are not enabled in
cur_marking.

Remove all activities from the list_of_active_activities for which the cur_marking is
a reactivation marking.

Select a potential_completion_time for all activities which are enabled but not on
the list_of_active_activities and add them to the list.

While end.

A procedure such as this can be used to estimate the values of many performance vari-
ables, including the variables in activity-marking category, as well as other more general

variables. Specific performance variables, of the activity-marking category or others, can

129

be estimated by placing data-collection subprocedures in the appropriate places in the
procedure. For the activity-marking variables defined in Chapter 3, one need only collect
(probabilistic) information regarding the time spent in each marking and the number of
completions of each activity. More general variables, that depend on sequences of reached
markings and activity completions, can also be estimated. Details of how this is done are
tual implementation of

simulation procedure similar to the one given here is discussed.

APPLICATIONS

Introduction

To illustrate the applicability of stochastic activity networks to the modeling of realistic
systems, two applications are considered. The first is a performability evaluation of an
industrial computer network employing the IEEE 802.4 token bus protocol [39], where
the performance of the network is subject to noise bursts and token losses. The study
illustrates the use of simulation as a solution method. The evaluation results obtained
show 1) that stochastic activity networks are an appropriate model type for evaluating the
performability of local area networks and 2) that the IEEE 802.4 protocol is extremely
tolerant to token losses and noise bursts under moderate network loading,.

The second study is an evaluation of a CSMA/CD local area network. It both illus-
trates the state-space savings achieved through the use of reduced base model construction
methods and investigates the effect that a particular priority scheme has on the delay mes-

sages experience when trying to access the channel.

Token Bus Network

When designing and evaluating computer networks for industrial applications, it is im-

portant to characterize the performance and reliability of the network in this context.

130

131

HEAD

10 Mbits/sec

Figure 6.1: 30 Station Token Bus Network

For example, in manufacturing applications, it is important to determine if a given net-
work topology and architecture will satisfy the real time requirements imposed by certain
application processes. The Manufacturing Automation Protocol (MAP) [51] is one such
protocol that has been proposed for these applications. Work to date concerning the
performance evaluation of MAP and the IEEE 802.4 protocol has been widespread (see,
for example [10,11,42,80]), but limited by the assumption of fault-free operation. While
this assumption suffices for certain systems and environments, it is not realistic for net-
works operating in typically hostile manufacturing environments. Studies that account
for performance in the presence of faults are important in this case because, in the event
of failures, a communication network does not simply stop operating, but continues to
operate at a degraded level of service.

This work is a continuation of that reported in [72], which considered a detailed stochas-
tic activity network model of a single station. In the study that follows, we evaluate the
performability of a 30-station token bus network shown in Figure 6.1. The protocol used

in the network is the IEEE 802.4 token bus standard protocol which corresponds to the

132

physical and data link layers of the OSI reference model [39] and is a component of the
MAP network architecture. The performance variables considered are the mean response
time, the mean token rotation time, and the fraction of time various frames (data frames,
claim frames, token frames, and solicit successor frames) are on the bus for a variety of

workload, noise and token loss conditions.

Model Assumptions

Several assumptions are made in transforming the token bus network considered into its
model representation. In particular, our evaluation presumes a static network structure
of 30 nodes. This static structure dictates that 1) no station is allowed to leave the
logical ring formed by token bus protocol, 2) no new stations are allowed to enter the
ring, and 3) ring collapse is not allowed when the token is lost. Token loss is modeled in a
probabilistic manner via a specified probability (a parameter of the model) of token loss
during each pass of the token. Inter-arrival times of noise bursts are assumed to have a
normal distribution; the duration of a burst is fixed at approximately 4 slot times.

In addition, several assumptions are made concerning the individual stations. Specifi-

cally, it is assumed that

1. Each station is up and operational (i.e.,in the UP state), and will not be turned off
during the course of simulation. Thus, it is not necessary to consider the OFF_LINE

state.

2. All frames sent are of the type request_with-no_response (i.e., no acknowledgements
are expected at this layer). This allows the state AWAIT IFM_RESPONSE and
CHECK_ACCESS_CLASS to be combined. This is in accordance with the MAP 2.1

network architecture (i.e. IEEE 802.2 with class I option).
3. Each protocol machine implements only the highest priority class (class 6).
4. Each station always knows its successor and its predecessor in the logical ring.

Several additional assumptions are made concerning the network. In particular

133

Slot_Time Based Timers
Name ' I Slot Time Units | Value in us
bus_idle_timer 49 224
response_window_timer | 2 11.2
token_pass_timer 4 224

Octet Interval Timers
Name Octet Time Units | Value in us
token_rotation timer | 187500 150000
token_hold_timer 5000 4000

Table 6.1: Timer Values for Network Model

1. Frame generation is modeled as a Poisson process. Frame size is fixed at 1024 bytes.

2. The data rate = 10 M bits/sec, Octet_interval = 0.8 us, and Slot_time_interval =
5.6 ps.

Table 6.1 shows numerical values for the various timers, delays, and other network param-

eters.

Token Bus Network Model

The stochastic activity network model of the token bus protocol developed in this study is
based on the reduced state transition diagram given in Figure 6.2. This specification was
obtained from the standard access control machine (ACM) state transition specification
[39], taking into account the assumptions made in the previous section. In particular, note
that DEMAND_IN and DEMAND_DELAY need not be represented since the structure of
the logical ring is static. Additionally, it is not necessary to consider the OFF_LINE state
since it is assumed that no stations leave the ring voluntarily during the operation period.
Finally, state AWAIT IFM._RESPONSE and CHECK_ACCESS_CLASS can be combined

since all data frames sent are of the type “request_with_.no_response”.

134

no token

/_\ claim token
CLAIM send frame

\ USE
IDLE Y
4/1 receive token OKEN
pass successful no send

CHECK
ACCCLASS

do solicit successor
do pass token

CHECK
TOKEN PASS
AWAIT

RESP pass failed

Figure 6.2: Reduced State Transition Diagram

Preconditions for a change in protocol state and postconditions after the state change
are modeled by input gates and output gates respectively. Activity names are associated
with protocol transition names (i.e., receive_token, do_pass_token). The token bus itself
is represented by the place pbus in the model. The marking of this place indicates the
activity taking place on the bus. For convenience, each possible marking of pbus is referred
to by a textual label to aid in understanding node behavior. The markings for data frames,
data frames corrupted bj noise, claim frame, solicit successor frame, corrupted protocol
frame, and token frame are thus data_frame, corrupt_data, claim_frame, sol_succ_frame,
corrupt_protocol, and token_frame respectively. The marking representing an idle bus is
idle and the markings representing token frames are the non-zero integer less than or equal
to 30.

Given this bus representation, the model for the entire network is constructed by
developing a representation for a single station and replicating it 30 times, holding the
place pbus common among all the replicate station models. Communication between

stations is thus only through the bus, as it is in a real network. A stochastic activity

135

Activity Rate Probability
case 1 [case 2
tz_frame.gen exp(}) 1 -
data_frame_delay determ(800) 1 -
start_transl inst 1 -
token_hold timer determ(4000) 1 -
do_solicit_successor inst 1 -
do_pass_token inst 1 -
token_rotation_timer determ(150000) 1 -
no_send determ(0.1) 1 -
response.window timer | if (station.id==low_station_id) 1 -
determ(11.2)
else determ(5.6)

ss_failed inst 1 -
solicit_succ_frame_delay | determ(20.8) 1 -
token_frame_delay determ(20.8) 1 -
starttrans2 inst 1 -
pass_success ful inst 1 -
token_pass_timer determ(22.4) 1 -
get_token determ(.1) 1- prob_loss | prob.loss
bus_idle_timer determ(224) 1 -
starttrans3 inst 1 -
claim_token_delay determ(750.0%(station_id/kigh_station_id)) | 1 -
startiransd inst 1 -

Table 6.2: Activity Parameters for Network Node

network model for each station is shown in Figure 6.3. In order to make the diagram more

readable, several places (e.g., pbus) are pictured in several locations in the diagram, and

are filled with a unique pattern to indicate that they actually represent a single place in

the SAN. Activity, input gate, and output gate parameters are given in Tables 6.2, 6.3,

and 6.4 respectively.

Token losses in the network are modeled by assuming that there is a certain probability

that the token will be lost each time it is passed. This probability is represented by

the cases of the activity get_token in Figure 6.3. A stochastic activity network model

representing the generation of noise bursts is shown in Figure 6.4. Noise bursts are assumed

to arrive in a normally distributed fashion. The effects of noise bursts on the token bus

136

sewy ssed // oud snqd
CO&O— , : \\
Kejop w—n '0 6d ofbod Y
psuely v:_ ewel} .
uels uayo) pojej mmﬂ-u

seuty
e|pi"snq

v _
wEPy

Aetop
gsus)) usyol” E_u_o
yeis mmm

ged

m.._ d
. muc q nuc

1>

% e
> —(C——_ n
219 €9 3338:» ssed

uayoy 186 | P

‘o_mwoz_
v ’ 61d

ssed jsouedD . 91d

w

61d
819
usyo}
oo » p
o:_/, o
3 694 soun
N\
n”. 0}18}01
H—CQ
J0S3802N8
84 :u:oa
2susl) —
uels Jous|} o
>a.o_q eweyy MOPUIM
Josseoong @suodses v ‘
Hoyjos
oE
snqd \\\ I'A 6d

o:.

| >

po|[e) ss9 pojie) ss

ed
ewy)

p{oy uexol

E_ _
Jojeseueb
swwlj X}

Figure 6.3: Station Model

137

| Gate | Enabling Predicate | Function
Gl* MARK(P1)>1 and MARK(P2)==0 | MARK(P4)=MARK(P4)-1;
and MARK(P4)>1
G2 (MARK(P2)>1 or MARK(P1)==0) | if (MARK(P2)>1)
and MARK(P4)>1 MARK(P2)=MARK(P2)-1;
MARK(P3)=0;
MARK(P4)=MARK(P4)-1;
G3 (MARK(P6)==1 or MARK(PT7)>0) | MARK(P5)=MARK(P5)-1;
and MARK(P5)>1 if (MARK(PT)>1)
MARK(P7)=MARK(PT)-1;
if (MARK(P6)>1) MARK(P6)=0;
G4 MARK(P5)>1 and MARK(P7)==0 | MARK(P5)=MARK(P5)-1;
and MARK(P6)== MARK(P6)=0;
G9 MARK(P10)==1 and MARK(P10)=0;
MARK(P9)==
G10 MARK(P10)==1 and MARK(P10)=0; MARK(P9)=0;
MARK(P9)==
G18 station_id==MARK(pbus) MARK (pbus)=idle;
G23 1 if (station_id==high_station._id)
if (MARK(pzz)#£1)
MARK(pbus)=idle;
else MARK(pbus)=corrupt_carrier;
Gs31 1 if (MARK(pbus)==corrupt_data)
if (MARK(pzz)#1)
MARK(pbus)=idle;
else MARK (pbus)=corrupt_carrier;
else
MARK(pbus)=idle;
MARK(P1)=MARK(P1)-1;
G33 1 if (MARK(pzz)#£1)
MARK((pbus)=idle;
else MARK(pbus)=corrupt_carrier;
G35 1 if (MARK(pbus)s corrupt_protocol)
MARK(pbus)=nezt_station_id;
else if (MARK(pzz)#1)
MARK(pbus)=idle;
else MARK(pbus)=corrupt_carrier;
4 G371 MARK(pbus)#nezt_station_id and identity
MARK(pbus)#idle and
MARXK(pbus)#corrupt_protocol
and MARK(pbus)#corrupt_carrier
Gss_failed | MARK(pbus)==corrupi_carrieror | identity
MARK(pbus)==corrupt_protocol
Gelaim MARK(pbus)==idle) identity

Table 6.3: Input Gate Parameters for Network Node

138

Gate

I Function

G5

MARK(P8)=1; MARK(P9)=1;
MARK(P10)=1;

G6

MARK(P9)=0; MARK(P10)=1;
MARK(P8)=1;

G12

if (MARK(pzz)#1)
MARK(pbus)=token_frame;
else MARK(pbus)=corrupt_protocol;

G22

if (station_id=="high_station_id)
if (MARK(pzz)#1)
MARK(pbus)=claim_frame;
else MARK(pbus)=corrupt_CF,

G25

if (station_id==high_station._id)
MARK(P4)=1; MARK(P3)=1;
MARK(P7)=20;

else
MARK(P19)=1; MARK(PT7)=20;

G30

if (MARK(pzz)#1)
MARK(pbus)=data_frame;
else MARK(pbus)=corrupt_data;

G32

if (MARK(pzz)#1)
MARK(pbus)=sol_succ_frame;
else MARK(pbus)=corrupt_protocol;

G41

MARK(P7)=20;

Gceancel _pass

MARK(P16_previous_station)=0;
MARK(P19.previous_station)=1;
MARK(Ptoggle_previous_station)=0;

Gpass.-failed

if (MARK(Ptoggle)==0)
MARK(Ptoggle)=1; MARK(P9)=1;
MARK(P10)=1;

else
MARK(Ptoggle)=0; MARK(P9)=0;
MARK(P10)=1;

Gtloggle

MARK(Ptoggle)=1;

Table 6.4: Output Gate Parameters for Network Node

139

PxXX

noise_duration E

noise_generation

:Ztop_noise make_noise

pbus

Gate Function

stopnoise | if (MARK(pbus)==corrupted_carrier)
MARK(pbus)=idle;

else if (MARK(pbus)==corrupted_CF)
MARK(pbus)=claim_frame;

make_noise | if (MARK(pbus)==data_frame)
MARK (pbus)=corrupted_data;

else if (MARK(pbus)=idle)
MARK(pbus)=corrupted_carrier;

else if (MARK(pbus)=claim_frame)
MARK(pbus)=corrupted CF;

else MARK(pbus)=corrupted_protocol,

Activity | Distribution

noise_generation | normal(time_between_noise, time_betwween_noise * .2)
noise_duration determ(22.4)

Figure 6.4: Noise Burst Model

140

network are two-fold. If a noise burst affects a data frame, that data frame is retransmitted
and the effects are recorded by the corrupted data on the bus (marking of place pbus is
corrupt_data). I a noise burst affects any protocol frame, actions specified in the IEEE
specification are taken and the effects are recorded by the corrupted protocol on the bus

(marking of place pbus is corrupt_protocol).
Model Execution

Changes in the ACM state during network operation are represented by activity comple-
tions in the model and places represent the complete state of each network node. For
example, when a station receives the token from its previous station or generates a token
in the case of a token loss, the markings of places P8 and P4 are set to one. A marking of
one in place P3 enables the activity token_hold_timer which has an activity time equal to
the value of 5000 octets (see Table 6.1). The marking of place PI indicates the number
of outstanding packets that are queued at that station. Gate GI holds if the markings of
places P1 and P3 are non-zero and the marking of place P2 is zero (the marking of place
P2 indicates that token_hold_timer has not expired). This allows for the transmission of a
packet queued at the station. The start of transmission is signaled by the completion of the
activity start_trans! which changes the marking of place pbus to data_frame. The time for
transmitting a packet is given by the activity time of the timed activity data_frame._delay.
Packets are transmitted until there are nene to send or until the token_hold_timer expires
(i.e. activity token_hold_timer completes). When transmission ceases, the predicate for
gate G2 is satisfied, enabling the instantaneous activity no_send.

At this point, one of two things can happen, depending of the maximum inter-
solicit count, as represented by place P7. If the marking of P7is not zero, the to-
ken is passed, and if it is zero, successors are solicited. The token is passed by en-
abling the activity do_pass.token and successors are solicited by enabling the activity
do_solicit_successor. In the case of solicit successor, the predicate of gate G is satisfied
enabling activity start_trans2. Solicit successor frames on the bus are indicated by a mark-
ing of sol_succ_frame in the place pbus. Once the solicit successor is successful, the token is

passed. Upon completion of either a solicit successor operation or activity do_pass_token,

141

Activity Name Distribution Pammeteﬁs in us
tx_frame_generato: exponential | varied

data_frame.delay deterministic | 800.0
solicit.succ_frame.delay | deterministic | 20.8

token_frame.delay deterministic | 20.8

get_token deterministic | 0.1

claim_token_delay deterministic | dependent on station ID
noise_generation normal varied

noise_duration deterministic | 22.4

Table 6.5: Timed Activity Distributions for Network Model

the predicate for gate G10 is satisfied and a token frame is placed on the bus. This action
enables the timed activity token.frame_delay. The activity time of token_frame.delay is
equivalent to the token transmission time interval. If the token pass fails, the token pass is
tried a second time and if it fails again, a solicit successor is done to find the next station
to which the token is passed.

In the case of a token loss, signified by the completion of the timed activity bus.idle_timer,
the instantaneous activity start_transd is enabled to start a claim token phase. Claim to-
ken frames are indicated by a marking of claim_frame in the place pbus. Claim frames are
sent for $ period whose length is a function of station ID. At the completion of the activity
claim_frame_delay a token is generated and the network resumes normal operation.

Model execution thus mimics actual protocol operation. A change in protocol state,
an expiration of a timer, a frame arrival, etc., all cause a change in the marking of the
network. By observing the execution of the stochastic activity network model one can
infer the protocol behavior. Table 6.5 lists the timed activities associated with the model

with their corresponding distributions and parameter values.
Performance Variables

The performance variables studied include the mean response time, the mean token ro-

tation time, and the fraction of time each type of frame (data or protocol) is on the

142

bus, for a variety of workload and environmental conditions. Nine types of bus activities
are considered, corresponding to the different data and protocol frames that can be on
the bus together with possible error conditions. Each of these variables is formulated
as the fraction of time that the particular condition existed in steady-state. Specifically,
the following types of bus activity are considered: data transmission, idle bus, token on
the bus, solicit successor frame present, corrupted protocol frame present, corrupt caz-
rier present, claim frame present, corrupted data present, listen for solicit successor. The
name used for each variable in the input code and reporting of the results is, respec-
tively, data_on_bus, idle_bus, token.on_bus, soll_succ_frame, corrupt_pro, corrupt_carrier,
claim_frame, cdata_on_bus, and listen_soll_suce.

Response time characteristics of the network under a variety of conditions are also
evaluated. In this case, the mean number of packets at a node in steady-state (includ-
ing the one in transmission, if any) is estimated and Little’s result is used to obtain the
expected combined queueing and transmission time. Response times for several different
stations are studied to see whether position in the logical ring was a significant factor.
For the remainder of this study, the station next in the ring after the high station is re-
ferred to as the low station, and the station equally distant from each of these stations,
logically, is referred to as the middle station. Response times for the low and high stations
are estimated for all conditions studied. Response times for the middle station are esti-
mated only for high load conditions. In the results section, the variables num_in_sysHS,
num.in_sysLS, and num_in_sysMS refer to the expected number of packets at each station
(in steady-state) for the high, low, and middle stations respectively. Expected response
times are then computed by dividing these estimates by the chosen arrival rate at the
station. In addition, the expected token rotation time is estimated for each experiment.

In the tables given in next section, this variable is referred to as foken_rotation.

Discussion of Results

Three sets of simulation experiments were conducted to evaluate the performability of the
token bus network. The resulting performance variable values are given in Tables 6.6 to

6.10. All intervals reported in the tables are at a 90% confidence level.

143

5.00
n
£
£ 4.00
[++]
E B Low Station
i— . .
Q 3.00 & High Station
o
8
2
2 200
1.00 Sy . —

1] *
0.00 0.20 0.40 0.60 0.80 1.00
Fraction of Full Load

Figure 6.5: Response Time vs. Load

(Token Loss Prob. .001, Mean Time Between Noise Bursts 400 ms)

In the first set of experiments, network behavior was studied under varying arrival rate
of data packets to the station (5% to 85% of bus capacity and a Poisson arrival process).
Resulting values of the performance variables are given in Table 6.6. Figure 6.5 is the
response time at the high station and the low station. The response time is the sum
of queueing delay and the frame transmission time (in this case transmission time is a
constant 800 us).

The response time behavior was analyzed with a token loss probability of 0.001 and a
noise burst rate with an expected time between bursts of 400 milliseconds as the load on
the network was varied. The response time behavior for a 30 station model, even at 85%
load, is good and has an average value of 5.25 milliseconds. However, from Figure 6.5, the
operating point for the token bus network is the knee portion of the curve shown and is at

about 60% load. Though Figure 6.5 indicates different values for response time at the low

144

Time Between Noise Bursts 400 ms, Token Loss Prob. .001
Fraction of | data_on._bus idle_bus token.on bus | soll_succ_frame
Full Load | (frac. of time) | (frac. of time) | (frac. of time) | (frac. of time)
.05 051 £ .002 | .0228 + .0004 | .857 & .003 | .0331 £ .0006
25 250 £ .007 | .0177 £ .0004 | .679 & .007 | .0264 + .0007
.50 494 + .009 .012 £ .0004 457 £ .008 .018 + .0007
.65 .646 &+ .009 | .0085 + .0031 | .319+.008 | .0122 £ .0005
.85 847 £+ .006 | .0037 &+ .0002 | .137 £+ .005 .0052 £ .005

Time Between Noise Bursts 400 ms, Token Loss Prob. .001

Fraction of corrupt_pro corrupt_carrier claim_frame cdata.on_bus
Full Load (frac. of time) (frac. of time) | (frac. of time) | (frac. of time)
.05 .000024 + .000006 | .00003 £ .000006 | .031 £ .002 | .00009 £ .00008
25 .000023 + .000008 | .000020 & .000007 | .023 £ .001 .0002 & .0001
.50 000016 % .000009 { .000014 % .000007 | .016 £ .002 .0006 £ .0002
.65 .000009 + .000005 | .000009 £ .000004 | .012 £ .001 | .00007 £ .00002
.85 .000009 + .000003 | .000007 & .000003 | .0052 £ .0005 | .0009 £ .0002
Time Between Noise Bursts 400 ms, Token Loss Prob. .001
Fraction of | num.in_sys HS | num.in_sys LS | token.rotation
Full Load (ms)
.05 .0026 & .0007 | .0022 & .0007 | .718 £ .002
25 .013 + .002 .016 £ .002 90 £ .11
.50 035 + .004 039 £ .005 137 £ .07
.65 .062 £ .007 .061 & .006 1.96 + .07
.85 19+ .01 A8 £+ .01 461 6

Table 6.6: Experiments with Load Varied

145

: ;
| /
I

0 T T T T T

v T v v
0.00 0.20 0.40 0.60 0.80 1.00

Token Rotation Time in ms

Fraction of Full Load

Figure 6.6: Token Rotation Time vs. Load

(Token Loss Prob. .001, Mean Time Between Noise Bursts 400 ms)

station and the high station, response times are not statistically different. This response
time behavior is attributed to the increase in queueing delays as the load is increased. It
should be noted also that the high priority token hold time for each station in the network
was assumed to have the same value of 4 milliseconds.

The token rotation time for the network is shown in Figure 6.6. The token rotation
time shown in Figure 6.6 increases with increase in load and has an average value of 4.5
milliseconds even at 85% load. This behavior is due to the large value of high priority
token hold time used for the stations. It indicates that the network was not .sa.turated at
this combination of high priority token hold time, packet size, and load conditions.

The behavior of other performance variables is shown as bus activity in Figure 6.7.
These include: data frames, idle bus, token frames, solicit successor frames, claim frames,
and corrupt data and protocol frames. This behavior is shown to indicate that the model
developed for the network closely follows the expected behavior of the token bus network.

As depicted in Fignre 6.7, when the load increases; the percentage of time that the data

146

“

o ——
[/

“E’ B DataFrams

= E1 Token Frame
K} B Sol. Suc. Frame
5 Claim Frame

5 0 Idle Bus

ol

£

C

0.05 0.25 0.5 0.65 0.85
Fraction of Full Load

Figure 6.7: Bus Activity in Steady-State

(Token Loss Prob. .001, Mean Time Between Noise Bursts 400 ms)

l 50% Full Toad, Token Logs Prob, 001
Time Between | num.in.sys HS | num.in_sys LS | token_rotation
Noise Bursts (ms) (ms)
10 042 £ .004 047 £+ .00 146+ .3
20 .041 £ .004 .037 £ .004 1.38 £ .2
30 .036 £ .004 .042 + .005 1.38 + .3
40 037 £ .004 .045 £ .005 139 £ 4
130 .038 £+ .004 .037 £ .004 1.36 £ .2
220 .037 £ .003 .038 + .003 1.34 £ .15
310 .039 £ .003 .038 £ .003 1.34 £ .15
400 .035 £ .004 .039 £ .005 1.37 £ .07

Table 6.7: Experiments with Noise Burst Rate Varied, 50% Load

frames are on the bus increases and that of other frames decreases.

In the second set of experiments, the network behavior was studied with 50% and
85% load and varying noise burst rates (expected time between noise bursts was 10 to
400 ms). Resulting values of the performance variables are given in Tables 6.7 and 6.8.

The response time behavior at the high station and the low station under varying
noise burst rates is shown in Figure 6.8. It is interesting to note that token bus network
behavior is relatively immune to noise bursts. This is further emphasized by the fact that
the experiments were conducted under extremely high noise burst rates (expected time
between noise bursts was 10 to 400 ms). The average value of the response time under the
condition of 50% load and high noise burst rate is 2.2 ms and is statistically very close to
that with low noise burst rate (2 ms).

The behavior of the network under 85% load and varying noise burst rate is also
shown in Figure 6.8. In Figure 6.8, the response times at the low station, the middie
station, and the high station are shown for an 85% load. Figure 6.8 depicts an increase
in response time at high noise burst rates. This is attributed to the increase in chance
of noise burst affecting the data frames. However, it should be noted that the token bus
network generally exhibits high immunity to noise bursts, which is extremely important

in the context of plant floor applications. The average value of the response at 85% load

148

85% Full Load, Token Loss Prob. .001
Time Between | num.in_sys HS | num._in_sys LS | num.in_sys MS | token_rotation
Noise Bursts (ms) (ms)
10 39 £ .03 39 + .04 37+ .03 9.5+ .9
30 23 £ .02 24 + .02 23 + .02 56+ .3
130 A7 £ .02 20 £ .02 19 + .02 46+ .3
310 A7 £ .02 20 + .02 20 £ .02 44+ 3
400 19 4+ .01 18 £ .01 9+ .01 46 L .6

Table 6.8: Experiments with Noise Burst Rate Varied, 85% Load

12.00

10.00 +
» |
S
£ 800 B 50%LS
@ - ¥ 50%HS
E 6.00 - O 85%LS
> _ ° 85%MS
2 £.00 + B85%HS
5
o 2.00 -Egm—u - B

e e U —
0 100 200 300 400

Mean Time Between Noise Bursts in ms

Figure 6.8: Response Time vs. Noise Condition

(Data Transmission Time .8 ms)

149

10.00
c 8.00 .
o
E I
l; 6.00] L\A 8 50% Full Load
2 : o——4 * 85% Full Load
5 400
T J
c E
2 2.00
*9 . f&e__—hg E a

0.00 . r . ' . . .

0.0 100.0 200.0 300.0 400.0

Mean Time Between Noise Bursts in ms

Figure 6.9: Token Rotation Time vs. Noise Condition

(Data Transmission Time .8 ms)

and high noise burst rate is 11 ms.

The token rotation time for the network under 50% and 85% load and varying noise
burst rate is shown in Figure 6.9. It should be noted that there is no appreciable difference
in the token rotation time behavior for the network under 50% load and low noise burst
rate (expected time between noise bursts was 400 ms) and that for 50% load and high
noise burst rate (expected time between noise bursts was 10 ms). The token rotation time
is doubled with 85% load and high noise burst rate when compared to that at 85% load
and low noise burst rate.

In the third set of experiments, the network behavior was studied under 50% and 85%
load and varying token loss probability (0.001 to 0.1). (Note that a token loss probability of
0.1 implies that on the average one token is lost for every 10 token passes. This represents
an extremely severe condition in the network.) The token loss probability indicates the
probability that a station will lose the token when passing it to the next station. Further,

it is assumed that this token loss will not'bring down the entire logical ring. Resulting

150

50% Full Load, Mean Time Between Noise Bursts 400 ms

Prob. of Token | num.in_sys HS | num.in_sys LS | token_rotation
Loss per Pass (ms)
.001 035 £ .004 .039 £ .005 1.37 £ .07
.005 .038 £ .003 .040 £ .003 1.46 £ .01
.01 .040 £ .003 .042 4 .003 1.6 £ .2
.03 .044 £ .005 051 £ .004 21+.3
.06 .051 £ .004 .054 + .004 23+ .35
1 .069 £ .007 066 £ .007 25+ .3

Table 6.9: Experiments with Token Loss Probability Varied, 50% Load

85% Full Load, Mean Time Between Noise Bursts 400 ms

Prob. of Token | num._in.sys HS | num.in.sys LS | num.in_sys MS | token.rotation
Loss per Pass (ms)
001 19+ .01 18 £ .01 19+ .01 46+ .6
005 .202 £ .026 194 £ .025 213 £+ .025 51+.3
.01 217 £+ .035 24 £+ .03 23+ .04 57+ .5
03 23 £ .02 24 % .02 30 £ .02 72+ 4
.06 33 £ .02 35 £ .02 57+ .04 85+ 4
1 47 + .05 .54 £ .06 97 £ .09 83+ .5

Table 6.10: Experiments with Token Loss Probability Varied, 85% Load

values of performance variables are given in Tables 6.9 and 6.10.

behavior at the high station and the low station is shown in Figure 6.10. Though the
response times differ for the high and the low stations, they are not statistically different

because of their confidence intervals. The response time of the token bus network increases

The response time

from 2 ms to 3 ms at 50% load and token loss probability varying from 0.001 to 0.1.

The response times at the low station, the middle station, and the high station under
an 85% load are shown in Figure 6.10. Note that the response time increases with increase

in token loss probability. The response time for the middle station increases from 4.5 ms

with 0.005 token loss probability to 27 ms with 0.1 token loss probability.

151

30

25

20

15

~

-~

10

Response Time in ms

5 =

0

| = — X

]

0.00

T ¥ 1) M 1 v 1]
0.02 0.04 0.06 0.08
Probability of Token Loss During Pass

T

Figure 6.10: Response Time vs. Token Loss Probability

(Data Transmission Time .8 ms)

0.10

ool e X

50% LS
50% HS
85% LS
85% MS
85% HS

152

B
" g

8.00 <z

-

6.00 / //
] B 50%

Mean Token Rot. Time in ms

4.00 ® 85%
—tt t]
2.00 -B——-:'—r;'_—,-:v—"‘a_
0.00 ¥] =] 1 v LI M
0.00 0.02 0.04 0.06 0.08 0.10

Probability of Token Loss During Pass

Figure 6.11: Token Rotation Time vs. Token Loss Probability

(Data Transmission Time .8 ms)

The token rotation time for the network as a function of the token loss probability is
shown in Figure 6.11. At 50% load, one notes relatively little influence due to changes in
token loss probability. Indeed, when there is a very high loss probability (0.1), the token
rotation time still has a reasonable value (2.5 ms). The token rotation time behavior at
85% load is shown in Figure 11. The token rotation time increases from 4.5 ms to 8 ms
when the token loss probability is varied from 0.005 to 0.1. Again, the token bus network

performs relatively well even under severe token loss rates.

Conclusions

Hostile environment conditions persisting in factory floors result in noise bursts and to-
ken losses which must be accounted for when modeling the network. Stochastic activity
networks and performability are appropriate for studying networks of this type which, in
the presence of failures, continue to operate at a degraded level of service. Failure effects

are taken into account at the SAN model level in an explicit and a systematic manner.

153

The results obtained in this study provide new and important information regarding
the behavior of IEEE 802.4 token bus networks. Noise bursts and random token losses
have been shown to have minimal impact on network performance in the case moderate
(50%) network loading. In addition, it has been shown that even severe noise bursts and

token losses have a manageable impact on token bus networks operating at very high

(85%) loading.

CSMA/CD Local Area Network

The second study is an evaluation of a CSMA/CD local area network. The purpose of this
study is two-fold: to illustrate the state-space savings achieved through the use of reduced
base model construction methods, and to investigate the effect of a particular priority
scheme on the delay that messages experience when trying to access the network channel.
The protocol employed is a variant of non-persistent CSMA/CD. When a station has
something to send, it waits an exponentially distributed amount of time before attempting
the transmission. After this delay, it senses the channel. If the station detects an idle
channel, it begins to transmit. One of two events will then occur: either 1) the channel
was actually idle, so the transmission begins normally, or 2) a collision occurs, since another
station had begun transmitting, but its signal had not propagated to the first station at
the time the channel was sensed. If a collision occurs, it is cleared after an exponentially
distributed amount of time. If the station detects a busy channel, it returns to the wait
state and after the delay period once again attempts to gain access to the channel.

Two scenarios are considered. In the first, all stations in the network are identical. In
the second, one station is considered to be a high-priority station, and all other stations
are considered to be normal priority. Here the priority of a station is determined by the
mean time it waits before trying to access the bus; the high-priority station waits (on the
average) one-tenth the time of the other stations. A variety of performance variables are
considered. Specifically, we determine the average queue length at each node (normal and
high priority) and the fraction of time the channel is: idle, transmitting an unpropagated

message, transmitting a propagated message, or clearing a collision.

154

size
channel sense_channel
™
A
arrival access
C

Figure 6.12: Station Submodel

Stochastic Activity Network Model and Variables

A stochastic activity network representing a single station connected to the channel is
given in Figure 6.12. The gate and activity parameters for the model are given in Tables
6.11 and 6.12, respectively. The station represents either a high or normal priority station,
depending on the duration of the expected wait between attempts to access the channel.
Each completion of activity arrival represents the arrival of a message to the station queue.
The station queue is represented by place A. The marking of place A represents the number
of messages waiting to be transmitted. The finiteness of the queue is represented by gate
size . Gate size specifies (via its predicate) that activity arrival is enabled only when the
number of messages in the queue is less than the system’s capacity.

Completion of activity access signals that the station is sensing the channel. This
results in one of four outcomes, as stated above, which are implemented by gate intra.
If the channe] is idle (i.e. the marking of channel is 0), the marking of place channel is
set to one to indicate the start of a transmission. In addition, the marking of B is set to

one to indicate that a transmission is in progress for the station. If the channel is in use,

155

Gate | Type | Enabling Predicate | Function
size input MARK(A) <2 identity
intra output - if (MARK(channel==0) {

sense_channel | input

MARK(channel) = 1;
MARK(B)=1; }
else if (MARK(channel)==1) {
MARK(channel) = 3;
MARK(C) = 1;
MARK(A) = MARK(4) + 1; }
eise if (MARK({(channelj==2) {
MARK(C) = 1;
MARK(A) = MARK(4) + 1; }
else if (MARK(channel)==3) {
MARK(4)=1;
MARK(A) = MARK(4) + 1;}

MARK(ckannel)==2) || | MARK(channel) = 0;

MARK(ckannel)==

Table 6.11: Gates for Station Submodel

Activity I Distribution Type] Parameter (Rate) |

arrival
access

finish

exponential
exponential

exponential

varied

10 (normal prio. station)
100 (high prio. station)
if (MARK(channel)==2)

rate=1
else
rate =5

Table 6.12: Activity Parameters for Station Submodel

156

but the signal has not received sufficient time to propagate (i.e. the marking of channel
is 1), the marking of place channel is set to three to indicate that a corrupted message is
now on the channel and a token is added to place A to indicate that a retransmission is
necessary. If a corrupted message which has not been cleared is present (i.e. the marking
of channel is 3), a token is added to place A to indicate that a retransmission is necessary
and the station goes back into the wait state. If the transmission of a message that has
been active long enough to propagate to all stations is in progress (i.e. the marking of
channel is 2), a token is returned to place A to indicate that no transmission is possible
at this time and the marking of place C'is set to one to indicate that that station is again
entering the wait state.

The time required to transmit messages (either corrupted or not) is controlled by activ-
ity finish, whose activity time distribution depends on the marking of place channel. This
distribution depends on whether a propagated or corrupted message is on the channel. If
a propagated message is on the channel, the distribution reflects the message transmission
time. If a corrupted message is on the channel (detected by gate sense_channel), the dis-
tribution reflects the time to clear the collision. The completion of a transmission occurs
when activity finish completes. When this happens, a token is added to place C.

The time to propagate a message is represented by the activity prop_delay.intrain the
network submodel. The network submodel is shown in Figure 6.13. Gate pda_gate senses
the presence of an unpropagated message (via its predicate) and, when it holds, activates
activity prop_delay.intra. After a prescribed (exponentially distributed) propagation delay,
activity prop_delay_intra completes, signaling that the propagation of the signal to all
stations has occurred. The subsequent execution of gate pd.gate sets the marking of place
channel to 2 thus indicating the presence of a propagated message.

Reward structures for the various performance variables are now considered. The first
performance variable studied is the expected queue length in steady-state at each type of

station. This can be obtained using the reward structure

i ifv={(4,:)}
0 otherwise

Rsz(ll) = {

157

C——> prop_delay_intra

Z& pda_gate
O channel

| Gate | Type LEnabling Predicate | Function |
[pda_gate | input L MARK(channel)=1 I MARK(channel)=2; |

| Activity I Distribution Type I Parameter (Rate) |
I prop_delay_inira | exponential l 20 |

Figure 6.13: Network Submodel

158
and variable E[V;-,.]. For the homogeneous system, the expécted queue length at an

individual station is then ﬂ‘-"ﬁ‘ﬁl, where N is the number of stations of the given type.
Since markings and activity completions in the network submodel do not contribute to
this variable, the reward structure for this submodel (Cz, Rz) is defined such that Cz(a) =
0,Va€ A and Rz(v)=0, Yv. -

Performance variables representing the fractions of time various actions are present on
the channel are constructed using a null reward structure for each station submodel (i.e,

(Cz,Rz)) and a reward structure for the network submodel such that:

Cn(a)=0 Vae A

(1 if v={(cha)}
'R«N(V)=i (_J if v = {(channel,?)}

otherwise

where ¢ is the marking of the channel when the action is taking place and E[V;_o)] is
the variable. For example, to determine the fraction of time a propagated packet is
on the channel, ¢ would be taken to be 2. The fractions of time that the bus is idle, an
unpropagated message is on the bus, and a corrupted message is on the bus, are determined
in a similar manner.

SAN-based reward models for the entire network are then constructed by replicating
the normal and high-priority stations the required number of times and adjoining them
with the network submodel and reward structure. The particular reward structures that
are used depend on the particular performance variable being solved for. For example, to
determine the expected queue length at a station for the homogeneous system (sce_na.rio 1),
the SAN-based reward model given in Figure 6.14 can be used. In this figure, SsTaTION
is the station submodel, SxgTwoRrk is the network submodel, and n is the number of
stations in the network. Similarly, if we define Sz to be a high-priority station submodel,
then a SAN-based reward model which can be used to determine the expected queue
length at the high-priority station is given in Figure 6.15, where n is now the number of
normal priority stations in the model. SAN-based reward models for the other variables

can be constructed in a similar manner.

159

I"[channel] » [channel]

LN\

n
{ channel }

NH’WORK

Cz+ Rz)

(S srarion » Cst + Fy)

Figure 6.14: Homogeneous Network

Ij[channel] » [channel] » [channel]

n
R{ channel }

(SHI ’Cst ’Rst)

v

(SNEI'WORK ’

CZ,RZ)

Figure 6.15: Normal/High Priority Network

Number of | Detailed Base Model | Reduced Base Model
Stations | am-states | m-states | Scenario 1 | Scenario 2
2 135 57 30 57

3 841 261 61 147

4 4277 1041 102 276

5 17820 3873 153 444

6 80000 13883 214 651

7 *% *% 285 897

8 %8 *% 366 1182

9 *% %9 457 1506

10 *9 %9 558 1869

11 *% *® 885 2271

12 *% *® 790 2712

state-space too large to be computed

Table 6.13: State-Space Sizes Obtained Using Various Construction
Techniques

Evaluation Results

State-level representations for each scenario were constructed using an extension to META-
SAN (see the Appendix or [81]) that permits the construction and solution of reduced base
model representations. Four state space representations were contrasted: the am-state
space, the m-state space, and the reduced base model state-space size for each scenario.

The results are presented in Table 6.13. One can see that for each network configuration
considered, the reduced base model construction technique generated significantly fewer
states compared to the marking and activity-marking states. Moreover, the rate of growth
of the state-space experienced by increasing the number of stations in the network was
much smaller for the reduced base model construction technique. In fact, the number of
states generated using this technique remained quite small even when the generation of
state-spaces using standard techniques became intractable.

The reduced base model representations were then used to investigate the performance

of a ten station network. Specifically, expected queue lengths and the fractions of time

Fraction of Expected Prob. Fraction of Time

Full Load | Queue Length | Blocking | Idle gnprop. | Prop. | Collision
10 .0022 .0000 |.8957 | .0050 |.0992 | .0002
20 .0072 0001 |.7939 | .0098 | .1955 | .0009
30 .0153 0005 |.6963 | .0143 | .2867 | .0026
40 0271 .0013 |.6046 | .0186 | .3711 | .0057
50 .0427 0027 |.5202 | .0224 | .4472 | .0103
.60 .0622 .0049 | 4438 | .0257 | .5138 | .0166
.70 .0857 .0081 |.3762 | .0285 | .5705 | .0248
.80 .1128 0125 |.3174 | .0309 | .6172 | .0346
90 .1432 .0182 | .2670 | .0327 | .6543 | .0459

Table 6.14: Performance of 10 Station Homogeneous Network

each type of packet was on the bus in steady-state were computed the network for various
network loads. The results of these experiments are presented in Table 6.14. In this table,
the second column is the expected queue length at each station and the third column is
the probability that an incomming message is blocked due to a full queue. The remaining
columns give the fraction of time the bus is idle, transmitting an unpropagated message,
transmitting a propagated message, and clearing a collision. As can be seen by Figure
6.16, the expected queue length grows with increasing load, but remains fairly short even
under heavy load conditions.

The second set of experiments investigates the effect of including a high-priority sta-
tion in the network. The high-priority station is identical to the normal priority station
described earlier, except that the mean time between access tries (i.e. one over the rate
of activity access) is one-tenth that of a normal priority stations. As before, a ten station
network is considered, but now nine stations are of the normal priority category and one
is a high-priority type. The results of these experiments are given in Table 6.15. As
can be seen by this table and Figure 6.17, the expected queue length of the high-priority
station remains very short even when the network is loaded very heavily. Furthermore,

while the other stations in the network experienced some increase in their average queue

162

Fraction of | Expected Queue Length | Expected Queue Length
Full Load | Normal Prio. Station High Prio. Station

.10 0022 0011

20 0072 0043

30 .0155 .0095

40 0275 0165

.50 0435 0251

.60 .0637 .0350

.70 0878 0459

.80 .1160 0575

.90 1477 0694

Table 6.15: Performance of a 10 Station Network with 2 Station Classes

length (compared to the homogeneous network considered earlier), this increase was slight

compared to the decrease in expected queue length at the high-priority station.

Expected Queue Length

Figure 6.16:

Expected Queue Length

Figure 6.17:

[y
[=}]
(VY]

0.05

0-00 LI v LI v] * 1 v
0.0 0.2 0.4 0.6 0.8 1.0

Fraction of Full Load

Expected Queue Length vs. Load for a 10 Station Homoge-

neous Network

0.15
0.10
Normal Prio. Station /
0.05
High Prio. Station
0.00 T ™ Y

r T v T v
0.00 0.20 0.40 0.60 0.80 1.00
Fraction of Full Load

Expected Queue Length per vs. Load for a 10 Station Net-

work with 2 Station Classes

CHAPTER VII

CONCLUSIONS AND FURTHER RESEARCH

Contributions

The objective of this research has been to develop construction and solution methods
for stochastic activity networks that permit the performability evaluation of realistic dis-
tributed systems. To accomplish these objectives, we have:

1. Provided formal definitions of activity networks, stochastic activity networks, and
related concepts and used these ideas to investigate when SANs can be used for
performability evaluation.

2. Defined a general framework for specifying performance variables at the SAN level. -

3. Developed construction techniques that make use of these variables and network
characteristics to reduce the size of the base model representation.

4. Investigated the use of traditional stochastic process solution methods, defined a
simulation procedure, and developed a reward model solution technique that can be
used to solve for the variables defined in Chapter 3.

5. Dlustrated the use to these methods by evaluating two distributed systems.

More specifically, with regard to the first objective, we have provided formal definitions
for SANs and investigated when they are well specified. This condition specifies when the
behavior of a stochastic activity network is probabilistically completely specified, and
hence, can be used for performability evaluation. With regard to the second objective, we
have defined a framework that allows performance variables to be specified at the network
level. A detailed discussion of one category of variables within this framework is given,

164

165

along with examples of how variables within this category can be specialized to traditional
performance and reliability variables. ‘

With regard to the third objective, we have developed construction procedures for de-
tailed and reduced base models, and defined conditions under which these models support
a chosen variable and are solvable. Detailed base models support large classes of variables
and are useful when the SAN in question is not too complicated (i.e., its base model rep-
resentation is not too large). Reduced base models are obtainable for certain classes of
SANs and variables. When they can be used, they typically have far fewer states then the
corresponding detailed base model.

Solution methods were also addressed, as per the fourth objective. In particular,
we investigated the use of, and implemented in METASAN (see the Appendix), several
solution methods. Steady-state and transient Markov model solution methods are used to
obtain instant-of-time variables and Markov reward model solution methods are used to
obtain interval-of-time variables. In addition, a solution method to find the expected value
of many interval-of-time variables was proposed and implemented in METASAN. Finally,
a simulation procedure was developed to obtain solutions for variables when analytic
methods can not be applied. Details of the implementation of these solution techniques,
as well as some of the construction techniques discussed in Chapter 4, are given in the
Appendix.

Finally, as per the fifth objective, the utility of these construction and solution methods
was illustrated via two evaluation studies. The first was an evaluation of an industrial
network employing the IEEE 802.4 token bus protocol. The study showed that noise bursts
and random token losses have minimal impact on network performance at moderate (50%)
network loading and manageable impact at very high (85%) loading. The second study was
an evaluation of a CSMA/CD local area network, and illustrated the state-space savings

that can be achieved through the use of reduced base model construction methods.

Directions for Further Research

Although the research objectives described in the first chapter were achieved, there are still

several interesting related research areas that deserve future attention. Broadly speaking,

166

they can be grouped into areas that further the model construction and solution work
presented here and into areas that use SANs for broader purposes.

Regarding model construction and solution, one area of further research is the defini-
tion and investigation of other categories of performance variables for use with stochastic
activity networks. While a large number of variables can be generated within the activity-
marking category presented in Chapter 3, this category does not subsume all conceivable
performance variables. In particular, while the value of an activity-marking interval or
time-averaged interval variable can be highly dependent on past history, the values as-
signed to activities and sets of places in the reward structure cannot depend on the past
history of the execution of a stochastic activity network. This precludes assigning a single
reward to a sequence of activity completions and intervening markings, even though this
sequence may represent a single operation in the modeled system.

Similar to the path variables discussed in the Appendix, this new category of variables
would assign rewards to completions of sequences of activities and intervening markings
and would assign reward-rates to being within particular sequences. Construction proce-
dures could then be developed that generate a process tailored to a particular variable
within the new category. This could be done by selectively keeping just enough past his-
tory in a state such that sequences could be detected. Conceivably, the replicate and join
operations could also be exploited in order to achieve further state-space space savings.

Another area of interest is to apply the reduced base model construction ideas pre-
sented in Chapter 4 to the construction of simulation programs from stochastic activity
networks. In particular, recall that the simulation procedure described in Chapter 5
treated each activity as an “event type” and, hence, the future event list contained the
potential completion times and names of all activities that were active in a current mark-
ing. We have observed that, for big models (on the order of a thousand activities, places,
and gates), a large percentage (over 70% in some cases) of the total simulation run time
is spent checking to see which activities are enabled in a current marking. Since activities
within replicated submodels are equivalent with respect to both their enabling conditions
and associated rewards, they could be considered as a single event type in the simulation,

greatly reducing the amount of time that is spent updating the future event list.

167

Although the reduced base model construction methods developed in this dissertation
have greatly extended the size of models that can be solved analytically (relative to meth-
ods that use detailed base models), there is still work to be done to avoid the “state-space
explosion” problem. One pessible avenue of research would be to investigate the applica-
tion of reversible stochastic process theory to SANs in a manner similar to that done for
product-form queueing networks (e.g., [6,41]). Some attempts in this direction have been
made [54] for GSPNs, but have been limited to a particular multiprocessor structure.

It would also be interesting to investigate the use of stochastic activity networks for
verification. Verification (in the sense intended here) is a validation method which uses
formal proof methods to establish that a system is “correct” with respect to a specification.
This type of validation is typically used to establish that certain logical properties always
hold for a given realization. While much work has be done concerning the use of traditional
Petri nets for verification [78], the generalization of these techniques to extended Petri nets
(such as GSPNs, ESPNs, and SANSs) is not straightforward. One area of interest would
be to identify sub-classes of SANs to which classical techniques could be applied; another
area would be to develop new verification methods that could be applied to larger classes
of SANs.

It would also be interesting to investigate the use of stochastic activity networks in the
design process. While current methods and tools yield results that can be used to make
design decisions, the incorporation of these decisions into a next-generation model of a
system must currently be done in an ad-hoc manner. By investigating the use of model-
based evaluation in the design process, one may be able to develop customized toocls that
permit design, evaluation, and verification to be interleaved in a systematic manner.

Finally, the methods and techniques reported on in this dissertation could be used
to evaluate the performability of other distributed systems. While studies to date have
been in the areas of computer architecture, computer networks, and factory scheduling,
applications may exist in such diverse areas as economics and business planning, sociology,

and biology.

APPENDIX

Implementation of Methods via METASAN

Introduction

Both the model construction and model solution methods discussed in this dissertation
provide a conceptual method to evaluate a large class of complex, distributed systems. In
order to be used in practice, however, they must be embodied in a computer automated
tool that facilitates entry of both models and performance variables and automates model
construction and solution. METASAN?, a software package developed at the Industrial
Technology Institute, is one such tool. It contains routines for both model construction
and solution, and includes both simulation and analysis as solution options.

Relative to the objectives of this dissertation, METASAN has served a dual purpose.
First, it provided an environment in which to test the usefulness of basic model definitions,
construction procedures, and solution procedures. Second, it was a tool that could be
used to evaluate the performability of realistic systems. The two applications presented
in Chapter 5 are examples of this use. Gther applications include the evaluation of a self-
exercising self-checking memory [61] and a BIBD (Balanced Incomplete Block Design)
computer network [1].

The development of METASAN paralleled the work on this dissertation. In some

cases, theory and algorithms from the dissertation were implemented in METASAN, in

1 METASAN is a Trademark of the Industrial Technology Institute.

168

169

other cases, an initial implementation in METASAN motivated a refinement in an idea
that was presented in the dissertation but not yet implemented in METASAN. Thus
the performance variables, construction algorithms, and solution algorithms present in
METASAN differ slightly from those presented in the previous chapters. This is natural
since the purpose of METASAN, relative to the dissertation work, was to provide a test-
bed for ideas as well as an efficient performability evaluation tool.

This appendix gives an overview of the current release (version 1.3) of METASAN.
More detailed information can be found in the METASAN user’s documentation [16].
The remainder of the appendix is organized as follows. The next section describes the
high level organization of METASAN. The following section discusses the model construc-
tion procedures implemented in METASAN. Likewise, the fourth section describes model
solution algorithms implemented. Use of the package is illustrated in final section via its

application to a specific evaluation problem.

METASAN Organization

METASAN was designed in a modular manner to allow for the addition of new solution
methods as they become available. It is written using UNIX? tools (C, Yace, Lex, and
Csh) and currently contains some 37,000 lines of source code. Versions are available for
both a SUN-32 running SUN UNIX and a VAX? running UNIX 4.3 BSD. Steady-state
and transient evaluation, via both analysis and simulation, are supported by the tool.
At the highest level, the analyst interacts with METASAN through a menu structure.
This menu (Figure A.1) permits access to the two basic files that make up a METASAN
model: a structure file and an experiment file. The menu also permits access to the
compilers for each of the description files and the solution modules. The structure file is
a direct translation of the SAN into a textual form that can be accepted by METASAN.
Specification of the desired performance variables and solution algorithm is done via either

a simulation experiment file or analytic experiment file, depending on the type of solution

2 UNIX is a registered trademark of AT&T.
3 SUN-3 is a Trademark of Sun Microsystems, Inc.

4 VAX is a Trademark of the Digital Equipment Corporation.

170

Copyright 1988 Industrial Technology Institute. All Rights Reserved. ###i#

METASAN (Version 1, Release 3) METASAN Simulatoxr Selections

F) Set Files
0) Set Options
S) System Commands

no trace options set
no verbosity set

no checkpoint set
fast execution

s) compile structure description
e) compile experiment description
¢) convert SAN to SAS

r) bind and solve model

u) update files and solve

vs) edit structure file
ve) edit experiment file
vi) edit a file

path: /users/bs/msan
model directory: multi
structure file: multil
experiment file: structure
q) quit METASAN object file: demo

R R R R R R R B R R R R R S R R R S R R B

H RS HHEHERERE SRR

HH R HRD
HHHEHE NN RS RER

Command:

Figure A.1: Main METASAN Menu

method used. Each of these files will be described in more detail in a following section.
Model construction consists of describing the structure of the system to be modeled using
the editor (option vs), compiling the description (option s), describing the experiment file
(option ve) and compiling the experiment file (c;ption e). The result of these actions is a
machine understandable description (a collection of C data structures and procedures) of
the system to be modeled and the desired performance variables. This representation can
then be directly executed, if the solution method is simulation, or be used to generate a
state-level representation (option c), if the model is to be solved via analysis. Selecting
model solution (option r) binds the machine readable description to the correct solution
routines and then executes them to obtain the selected performance variables. This process
can be automated by use of the “update files and solve” option (u). This option selectively
executes the commands described above, as necessary, without user intervention. The
decision as to whether a command needs to be executed is made by looking at the last
change date of the various model files. This makes it very easy to make changes to a single

mode] file, recompiling only those files necessary to insure the integrity of the solution.

171

A flowchart of this process is given in Figure A.2. Output from the solver depends on
the solver chosen, but contains either estimates or exact values of the chosen performance
variables.

Items in the pictured menu that are identified by a capital letter designate lower level
menus. “Set Files” allows the user to specify each of the files associated with a particular
model. “Set Options” offers a variety of options which, depending on the solution module
selected, allow the user to set various trace and debug options, run the model in the
background or on remote machires, and direct the output to several locations. “System
Commands” consists of a collection of commands to aid the user in creating new model

directories, removing or copying description files, etc.
Model Construction

In the context of METASAN, model construction consists of describing both the stochas-
tic activity network and chosen performance variables in a manner understandable to
the package and translating these descriptions into a form that is expected by the solu-
tion modules. This is accomplished in METASAN via three input languages and their

corresponding compilers.
Sanscript Model Description File

The SAN description language, Sanscript®, allows the analyst to specify the SAN in a
textual form understandable to the SAN compiler. Sanscript permits easy specification
of complex enabling predicates, activity time functions, reactivations functions and gate
functions. The language is illustrated via its representation of the SAN of Figure A.3.
Figure A.4 is the Sanscript representation of the portion of this stochastic activity
network that represents variations in the internal state and environment of the system;
activities representing fault occurrences are not represented. At a high-level, a Sanscript

description consists of four parts: a header, local variable declarations, definition of all the

s Sanscriptis a Trademark of the Industrial Technology Institate.

172

Sanscript Description
of SAN

Experiment

File

San Compiler

Perf Compiler

Binding to Selected
Solver

l

Execution of Selected
Solver

I Results

Figure A.2: METASAN Flow Diagram

173

diskoutl computeinl

computel

compute2b
trans1

computein3

compute2c

Disable All Activities

15 2 finish

tape_faults disk_faults

Figure A.3: Example Stochastic Activity Network

DESCRIPTION multii;

OBJECTS

place: A,7; B,0; C,0; D,0;
E,0; F,0; G,0; H,0;
I1,0; J,2; K,3;

activity: computel;
tape;

diskl; disk2;
compute2a; compute2b;
computelc;
computeini;
computein?2;
computein3;
Transi;
Trans2a;
Trans2b;
diskouti;
diskout?2;

input_gate:

output_gate:

SPECIFICATION
computel [cases 1: prob { .3 }
2: prob { .7}
input A;
exp { MARK(A) };
react {1} {11};1]
tape [case D;
inputs B; Transi;
inst;]
disk1 [case diskouti;
inputs C; Trans2a;
inst;]

disk2 [case diskout?2;

174

/* definition of places */

/* definition of activities */

/* definition of input gates */

/* definition of output gates */

C;
B;

inputs “C; D; Trans2b;

inst;]
computea [case i;
input computeini;
determ { MARK(E) };
react {0} {03} 1
compute2b [case 4;
input computein2;
determ { MARK(F) };
react {0} {0}]

Figure A.4: Example Description File

compute2c

diskout1

diskout2

computeini

computein?2

computein3

Transi

Trans2a

Trans2b

end.

175

[case A;
input computein3;
determ { MARK(G) };
react {0} {0};]

[outputs 1: E; 2 F; 3: G;
func { if (X1 == 0) X1 = 1;
else if (X2 == 0) X2 = 1;
else if (X3 ==0) X3 =1; }]
[outputs 1: E; 2: F; 3: G;
func { if (X1 == 0) X1 = 2;
else if (X2 == 0) X2 = 2;
else if (X3 ==0) X3 =2; }]

[inputs 1: I; 2: E; 3: H;
pred { X2 >= 1}
func { if (X2 ==2) { X1 =X1 - 1; X3
else X1 = X1 - 1;
¥X2=0; }1

[inputs 1: I; 2: F; 3: H;
pred { X2 >= 1}
func { if (X2 ==2) { X1 =1X1 - 1; X3
else X1 = X1 - 1;
X2=0; }1

[inputs 1: I; 2 G; 3: H;
pred { X2 >= 1}
func { if (32 ==2) { X1 =X1 - 1; X3

els X1 =X1 -1;

=0; }1]

[inputs 1: H; 2: J;
pred { X2 > X1 }
func { X1 = X1 + 1; }]
[inputs 1: I; 2: K;
pred { X2 > X1 }
func { X1 = X1 + 1; }]
[inputs 1: I; 2: K;
pred { X2 > X1 }
func { X1 = X1 + 1; }]

Figure A.4: Example Description File, Cont.

X3 - 1;
X3 - 1;
X3 - 1;

176

primitives used, and a specification of all functions, values, and interconnections associated
with each primitive.

In our example, the header specifies that the name associated with this SAN ismultii.
The local variable declaration section is not used in this example, but can be used to declare
variables that are local to specific gate, case and reactivation functions. Next comes the
declaration of primitives. Note that the initial marking for each place is specified directly
after the place name. The specification section follows. In any function, the current
marking of the place can be referenced by using the notation MARK(place), where place
is the name of the desired place. For an example specification, refer to the definition
of computel. As can be seen in the graphical representation, timed activity computel
has two cases, one connected to place C, and one to place B, and a single input place
A. The activity time distribution is specified to be exponential with parameter MARK(A)
and the case distribution is specified such that there is a 30% chance of choosing case
1 and 70% chance of choosing case 2 upon completion of the activity. The reactivation
function is specified so that for every marking (denoted by the 1 in the first set of brackets
after react) the set of reactivation markings is all markings (denoted by the second 1 in
brackets). In other words, the activity is reactivated at every state change. The reason for
this will be discussed in the example section. Note that any expression that evaluates to
the correci iype (real for prob and exp, boolean for react) may be given between the curly
brackets; complex interactions, activity time descriptions, reactivation functions, and case
distributions can be represented easily via a few C statements.

A wide range of activity time distribution types are available, representing all service
distributions normally used in evaluation. An activity time distribution function of inst
is used to denote an instantaneous activity. Of course, the choice of distribution affects
the nature of the underlying stochastic process and the solution methods that may be
used. Complex reactivation functions can be represented by specifying several pairs of
predicates, the interpretation being that the activity is reactivated if, a) the activity was
activated in the subset of the reachable markings specified by the first predicate, and b) a
marking in the subset specified by the corresponding second predicate is reached. Again,

if the activity is enabled in this second marking it is immediately restarted.

177

Gates are specified in a similar manner. For example, see the description of the input
gate computeinl in both the graphical and textual representation. The input places
associated with the gate are specified as an indexed list. This abbreviated notation allows
place names to be abbreviated in the predicate and function descriptions according to the
following rule: Xi denotes the i-th place specified in the associated input or output (in
output gates) place specification. An example of this can be seen in both the predicate
and input function description of computeinl. Note again that any legal C statements
may be placed within the brackets, as well as the abbreviated notation described above
and the MARK function notation. Qutput gates are specified in an identical manner
except that the keyword outputs is used in place of inputs and there is no associated
enabling predicate.

A macro-preprocessor is automatically invoked on execution of the compiler, and can
be used to define subnetworks in a para,meterize(i manner. Once this is done, specific
subnetworks can be constructed by a single macro call. This feature is particularly useful
when applied to stochastic activity networks which contain numerous similar subnetworks
(e-g., nodes in a computer network) that are replicated many times. Construction of these
subnetworks directly in Sanscript would be tedious.

After the specification of the SAN in Sanscript is complete, it is passed to the SAN
compiler to be translated into an internal form understandable by the solution modules.

The SAN compiler is written in Yacc (yet another compiler compiler), Lex and C.
Simulation Experiment File

The SAN description language is independent of the chosen solution method. In contrast,
there are two languages for the specification of performance variables to the package. The
first language is used when the intended solution method is simulation (either terminating
or steady-state); the second is used to specify variables when an analytic solution method
will be used.

Since simulation puts few limitations of the types of variables that may be estimated,
the class of variables that may be used is much larger than the activity-marking oriented

variables that were described in Chapter 3. Before discussing the syntax and options of

178

the simulation experiment file, it helps to describe the allowable variables in more detail.
In particular, we define a class of variables that can capture a “behavior” associated with
a sequence of activity completions and reached markings. An example of a behavior of this
type is a recovery operation in a multiprocessor, which may be modeled as a subnetwork
with several places and activities. Here, one may wish to determine the amount of time
spent doing recovery operations during a bounded or unbounded interval, or the number
of times a particular sequence of activities completes during the interval. Since these
behaviors are represented by a particular sequence of events in the subnetwork, they
cannot be detected by assigning rewards to single activity completions and/or markings
of sets of places.

The “path variables” presented here capture behaviors that are associated with se-
quences of activities. Recall (from Chapter 2) that a path is a sequence of configurations
C1,C3,Cs, .. ., Cy such that for each pair of configurations < p;, i, ¢; >< fit1,Gig1, Cip1 >
the completion of a; and choice of ¢; in y; results in p;4;. A path may be traversed during
an execution of a SAN. The following discussion makes this more precise. A completion
of a configuration < p,a,c > occurs at time #+ s when during an execution of a SAN the
configuration is found in a step (< p,a,¢ >,1,s) in some set of steps. An initiation of a
path occurs when the SAN reaches the marking associated with the first configuration in
the path. A completion of a path occurs when the SAN completes the final configuration
in the path after completing each configuration in the path in the order specified with-
out reaching any intermediate configurations other than those specified in the path. A
traversal of a path is the act of first initiating the path and then completing the path.

These definitions allow us to introduce a set of performance variables to study the
behavior of the SAN. Note that they are indexed either by time or number of occurrence

so that, if they converge in distribution, their limit can be studied.

N7(f,t) a measure of the value of the function f at time t+. f can be any real-valued
function on the marking of the net. Examples include the marking of a single place

and the sum of the markings of several places.

Ty(S,n) the time between n — 1th and nth completion of any path in a set of paths S.

179

Ty(S,n) the time to traverse the nth path to complete in a set of paths S.

I(T,?) an indicator random variable denoting the event of being in any configuration in a

set of configurations T at time #+.

Nrr(S,t1,12) the sum of the number of traversals of any path in a set of paths § during
[t1, 81 +22].

T1(S,t1,t2) the sum of the time spent traversing all paths in a set of paths § during
[t1,81 +122].

Note that there is a chance, depending on the definition of the sets of paths, that
two paths may complete at the same time. Since some of the random variables defined
above are indexed by the order of completion of the paths, a rule must be given to resolve
any ambiguity as to which path is which. To do this we use the convention that if two
pa.ths complete at the same time, the path which took the longest time to traverse will be
counted as completing first.

By varying the index of any of the first four variables above, one can construct a
sequence of random variables. Under certain conditions, the distributions of the random
variables in this sequence may converge to a single (steady-state) distribution. More
precisely, following the terminology in [49], for a sequence of random variables {V,,,n =
1,2,3,...}, we dafine

Fy(z) = Jim Pr{V, <z}

In terms of the random variables defined above, we have:

Frp(5)(2) = limgmoo Pr{N7(f,t) — z} the distribution of the value of function f in steady-

state.

Fr,(s)(%) = limp0o Pr{T}(S,n) — z} the distribution of the time between completions of
any path in a set of paths S in steady-state.

Fr,(s)(2) = limp—co Pr{T(S,n) — z} the distribution of the time between initiations and

completions of any path in a set of paths § in steady-state.

180

Fry(z) = lim¢oo Pr{I(T,t) — 2} the distribution of the event of being in any configu-

ration in a set of configurations T in steady-state.

Instances of the above path variables, along with their corresponding path sets, are
specified in a simulation experiment file. A simulation experiment file specifies the paths
sets, variables defined on those paths, definitions of any variables derived from previous
variables, and desired characteristics of the defined variables (i.e., mean, variance, per-
centile, or interval). Mean, variance, interval, and percentile estimators with confidence
intervals are available.

For example, consider an experiment file (Figure A.5) for the example of the SAN
of Figure A.3. Here the goal is to obtain the mean, variance, an interval, and several
percentile estimates of the time between firings of activity computel in the long ruz, so the
steady-state simulator is usgd. The experiment file requires definitions of configurations,
path sets, performance variables, and estimators for the defined variables. Configurations
are specified in a compact notation and path sets are built up from sets of configurations.
The meta-character “*” can be used to denote any marking, activity, or case, depending
on its position. In the example, (MARK(A) == 0, (*,*)) specifies all configurations such
that the marking of A is 0, any activity completes (denoted by the first *), and any
case is chosen (denoted by the second *). “==TIMED” and “==INST” can also be used
in the activity specification to denote any timed or instantaneous activity, respectively.
Path sets are then constructed from these configuration sets. The syntax “||” can be
used to “or” configuration sets together at either the CONFIGURATION or PATHSET level
in the experiment file. Although all of the path sets in our example consist of a single
configuration set, longer paths can be specified by naming a sequence of configuration
sets separated by commas. The interpretation of this notation (in the context of our
earlier theory) is that the set of paths included is all paths constructed by selecting a
configuration from each of the configuration sets in order. Two additional operators aid in
the definition of path sets. “¥()” denotes that the sequence of configurations within
the parenthesis must be repeated 0 or more times. “+()” denotes that the sequence
of configurations within the parenthesis must be repeated 1 or more times.

The user then specifies the desired performance variables in terms of the previously

181

PERF percent;

CONFIGURATIONS
CYCLE = (*, (computel,*))
CYCLEV = (*, (computel,*))
CYCLEL = (*, (computei,*))
CYCLE2 = (*, (computei,*))
CYCLE3 = (*, (computei,*))
CYCLE4 = (*, (computel,*))
CYCLEI = (*, (computel,*))

PATHSETS

Mean = [CYCLE]
Variance = [CYCLEV]

Percentilel = [CYCLE1]
Percentile2 = [CYCLE?2]
Percentile3 = [CYCLE3]
Percentile4 = [CYCLEZ4]

Interval = [CYCLEI]

MEASURED VARIABLES

SS_TB (Est_Mean, Mean, 100, 3200);
SS_TB (Est_Var, Variance, 100, 3200);
SS_TB (Per_05, Percentilel, 100, 3200);
SS_TB (Per_35, Percentile2, 100, 3200);
SS_TB (Per_70, Percentile3, 100, 3200);
SS_TB (Per_100, Percentile4, 100, 3200);
SS_TB (Interval_1, Interval, 100, 3200);

ESTIMATIONS

MEAN(Est_Mean, .01, .95)

VARIANCE(Est_Var, .01, .95)

PERCENTILE(Per.05, .03, .95, .05)
PERCENTILE(Per.35, .01, .95, .35)
PERCENTILE(Per_70, .01, .95, .70)
PERCENTILE(Per_100, .01, .95, 1.0)
PINTERVAL(Interval_l, .01, .95, .5, 1.5)

HALTING CONDITIONS

RESOLUTION RULES

TYPE

end.

{ compute_2a, compute_2b, compute_2a }

steady._state

Figure A.5: Example Simulation Experiment File

182

defined path sets. Each of these variable definitions is itself implemented in a low-level
language that makes it easy to create new variables. Experiment file section ESTIMATIONS
allows for specification of the estimator to be defined on the variables. Currently, mean,
variance, interval, and percentile estimators are supported, all with confidence interval
estimation. Examples of the syntax for each of these estimators can be found in Figure
A.5. In each case the user specifies first the relative confidence interval width (.01 in the
example) and confidence level (95%). For the interval estimator the user also specifies
the bounds for the interval to be considered. In the example, the bounds indicate that
the probability that the time is between .5 and 1.5 is to be estimated. For the percentile
estimator the user specifies the percentile for which the estimate is desired (.05, .35, .70,
and 1.0 in the example).

An identical experiment file syntax is used in conjunction with the terminating simula-
tion solver. The simulation experiment file is then passed to the simulation perf compiler,
where the specification is translated into a second collection of C data structures and
procedures that are understandable to a simulation solver. Experiment files used in con-

junction with analytic solvers are now discussed.
Analytic Experiment File

Analytic variables are specificed via a second experiment file language. Although the
language does not refer to them explicitly, it can be used to specify the activity-marking
oriented variables discussed in Chapter 3. In the language, variables to be solved for
are specified by writing them in terms of possible “solution vectors” for a given solution
method. For example, a solution vector produced by the steady-state state occupancy
solver is the probability of being in a state (or, for ergodic systems, the fraction of time
spent in that state) in the long run. Solution vectors for the transient solver are the state
occupancy probabilities at specific times. Variables that are expressed directly in terms of
these solution vector are called basic variables. Basic variables can then be used, together
with constants, to construct derived variables.

The analytic experiment file is broken up into six parts: a header, solution type spec-

ification, state type specification, input section, output section, and report section. An

183

example experiment file is given in Figure A.6. The header section specifies that the
name of experiment file is structure. The solution type specification specifies the solu-
tion method to be used. Five solution methods are available: direct.steady.state,
iterative steady state, transient, expected, and reward rate. Details of these
solvers are discussed in the section entitled “Model Solution”. The state type specifi-
cation specifies the type of base model that is to be used. An entry of m.state specifies
that the m-behavior is to be used; an entry of am_state specifies that the am-behavior is
to be used. Reduced base models are not supported in Version 1.3 of METASAN.

Next comes the input section. The input section is used to pass parameters to the cho-

sen solver, and hence, varies according to the solver used. No parameters are needed for the

direct_steady_state solver. The same parameter is used for the iterative steady_stats,

transient, and expected solvers, and is a specification of the desired relative precision
of the results. This is specified using the syntax “acc=value® where value is the rela-
tive precision of the solution vector. For example, if value = .001 then the answers are
guaranteed to two decimal places. A value of .00001 guarantees four decimal places of
accuracy. As the level of accuracy is increased, the running time of the solver increases.
The reward_rate solver requires the specification of a reward rate for each base model
state.

The output section contains the specification of the variables to be computed. The
first subsection specifies the basic variables in terms of solution vectors. The solution
vector used in the example experiment file is e_time, which is the expected time that
the model is in possible states during a specified period. For example, the assignment
“time 10[1]1[2] = (etime(10), {MARK(J)==1 && MARK(K)==2});” specifies that the
variable “time_10[1][2]” is to be set to the expected amount of time that the mark-
ing of place J is 1 and the marking of place K is 2 during the interval [0, 10]). As can be
seen from the example, loops can be used to make the assignment of multiple variables
easy. The “DERIVE” subsection permits the computation of derived variables from the
basic variables computed in the “ASSIGN” section. In the example analytic experiment
file, the expected reward for various utilization periods is computed by multiplying the

expected time in each base model state by the throughput in that state. Finally, the

184

EXPERIMENT structure;
SOLUTION expected;
STATE_TYPE m_state;

INPUT
acc = ,000001;

OUTPUT

LOCAL

{ int i, j;
double rewardio 0; double rewards0 0;
double rewardi00 = 0; double reward200 = 0;
double time_10[3]1[4]; double time_50[31[4];
double time_100[3][4]; double time_200[3][4];
double throughput[3]1[4]; }

ASSIGHN
for { i=1; i<=2; i=i+1 } [
for { j=1; j<=3; j=j+1 } [

time_10[i1{j] = (e_time(10), { MARK(J) == i && MARK(K) == j

time_B0[i] [j]
time_100[i1[j]
time_200[i1 [5]

(e_time(50), { MARK(J) == i && MARK(K) ==

]
]
DERIVE
{ throughput[2][3] = 1.409;
throughput[11[3] = .713;
throughput[2][2] = 1.177;
throughput{11[2] = .710;
throughput[1][1] = .588;
throughput [21[1] = .589;

for (i=1; i<=2; i=i+1) {
for (j=1; j<=3; j=j+1) {
rewardi0 += throughput[il[j] * time_10[il[j];
rewards0 += throughput[il[j] * time_S0[ilL[jl;
reward100 += throughput[il[j] * time_100[il[j];
reward200 += throughput[i][j] * time_200[i][j1;
3
}
}

REPORT

rewardi0, reward50, reward100, reward200;
end.

Figure A.6: Example Analytic Experiment File

i}
i®p

(e_time(100), { MARK(J) == i && MARK(K) == j });
(e_time(200), { MARK(J) == i && MARK(K) == j });

135

“REPORT” section is a list of the variables (basic or derived) to be reported to the user.
Base Model Construction

When an analytic solution method is used, a base model representation must be con-
structed before the model can be solved. The construction methods implemented in
METASAN differ slightly from those presented in Chapter 4. In particular, an inter-
mediate state-level representation is generated from SAN and used to construct the base
model. This representation was used in earlier work regarding stochastic activity networks
[66], and is referred to as a stochastic activity system (SAS). This representation provides
a common intermediate representation that can be used to generate activity-marking and
marking detailed models, but is not useful for generation of reduced base models.
Stochastic activity systems can be regarded as probabilistic extensions of Keller’s
“named transition systems” [43]. The most detailed description of an activity system’s
behavior are its state-activity sequences, i.e., for a given state, the possible sequences of
alternating states and activities that can result from a finite number of applications of
the transition relation. After the SAS corresponding to the SAN model is generated (see
[81] for details), a check is made to determine the stochastic nature of the associated base
model representations. The nature can be determined directly from the structure of the
SAS. If the behavior is Markov, the stochastic activity system representation can be used

to generate a base madel for analytic solution, if not, simulation should be used.
Model Solution

Given that the stochastic activity system is Markov, a detailed base model representation
(marking or activity-marking) can be generated. The choice of base model type is specified
in the analytic experiment file, and discussed in a previous section. After the base model
is generated, the prescribed solution is carried out. This section describes each available
analytic solution method.

Steady-state instant-of-time variables can be formulated in terms of the steady-state
state occupancy probabilities of the resulting stochastic process. Two methods for ob-

taining these steady-state state occupancy probabilities are available in METASAN. The

186

first is a direct approach based on the LU decomposition technique [28]. The implementa-
tion (the direct_steady state solver) uses the improved generalized Markowitz pivoting
strategy [75] to help preserve the sparsity of the matrix. An estimate of the relative error
of the result due to machine round-off is also generated from the condition number of the
matrix [28] ard reported to the user. The direct solver can be used with state spaces of
up to 10* states, depending on the on the sparsity pattern of the matrix. The solution
time is on the order of hours for large systems (2 1000 state system takes approximately
10 minutes to be solved on a VAX-11/785).

An iterative approach is available and is typically used when the matrix representation
is too large to be solved by the direct method. The method implemented is based on the
Gauss-Siedel technique [28]. Its implementation (the iterative_steady.state solver) is
straightforward and solutions can be obtained at small computational cost. Then main
drawback of the technique is that it does not converge for all matrices and initial guesses.
While necessary and sufficient conditions exist to determine whether the method will
converge for a particular matrix and initial guess [28], they are as computationally complex
as determining the solution and, hence, are not implemented. Instead, the can user enable
the reporting of intermediate results, if non-convergence is suspected, to empirically access
the situation. The iterative solver can be used for models with state spaces up to five times
larger than the spaces allowed by the direct solver. Both the direct and iterative methods
make use of sparse matrix representations to reduce storage requirements.

Instant-of-time variables for particular times are determined using the randomization
technique proposed by Gross and Miller [33,67]. The approach is based on the known
technique of subordinating a Markov chain to a Poisson process (see [14] for example). As
implemented (in the transient solver), randomization provides a computationally effi-
cient solution for the approximate transient state occupancy probabilities by conditioning
on the number of state transitions that may occur during the bounded interval under
consideration. Details of the method are given in Chapter 5. As with the steady-state
solution methods, sparse matrix techniques are used. In addition, estimates of both the
error due to truncating the series and the error due to machine round-off are reported to

the user. The randomization technique is implemented so that the computation of state

187

probabilities at several different times for the same model takes about the same processing
time as the computation for the largest of the times. The user can benefit from this feature
by specifying more than one time in the input section of the experiment description.

Interval-of-time and time-averaged interval-of-time variables are solved for using re-
ward model solution techniques. Two reward model solvers are provided in the package.
The first (the reward rate solver) determines the complete distribution of reward for base
models that are acyclic. The technique employed is a variation on a technique proposed by
Goyal and Tantawi [32]. The implementation first computes a conditional performability
distribution for each trajectory type using the technique described in [32]. The distri-
bution of reward is then obtained via knowledge of the probabilities of trajectory types
[25].

If only the expected reward is needed, the solution for expected reward described in the
third section of Chapter 5 is used (the expected solver). The method is applicable to both
cyclic and acyclic methods, as long as the reward model has a finite lifetime. Recall, from
Chapter 5, that the method requires the determination of one transient solution and two
steady-state solutions. The randomization and LU decomposition techniques described
earlier are used to do this. As with the other solvers, the estimates of the errors induced
due to round-off and truncation are reported.

Simulation is a useful solution method when complex reactivation functions are spec-
ified, activity time distributions are general, the desired performance variables are suffi-
ciently complex, or the state space of the underlying stochastic process is extremely large
or infinite. To fill this need, METASAN provides facilities for both terminating (transient)
and steady-state simulation.

The implementation is similar to that described in Chapter 5, except that completions
of instantaneous activities are considered as events. While this makes the simulator less
efficient, it allows one to specify path variables that have configurations with instanta-
neous activities. Two methods for confidence interval estimation are supported. The first
is an iterative method based on the replication approach, and is used for terminating
simulations. Using this method, one specifies the relative precision and level of confidence

desired as part of the experiment file input. Confidence intervals for steady-state simula-

188

tion are currently determined using an iterative batching procedure, where the user must
specify the length of initial transient, batch size, relative precision desired, and level of

confidence desired.

Example

Consider a distributed system where all resources needed are available locally except tape
and disk drives. Whenever a disk or tape drive is needed, the processor requests one
from a common pool. Time to process such requests is negligible, and the requests are
either immediately granted, or the process is blocked. As resources become available,
they are allocated to blocked processers in a FIFO manner. Each processor is running
an identical application program, whose goal is to process blocks of data. Each block
requires processing consisting of the following steps (see Figure A.7): 1) computation for
an exponentially (with parameter 8) distributed amount of CPU time, 2) allocation of
either a disk and tape, or just a disk, with fixed probabilities p and 1-p respectively, 3)
computation for a deterministic amount of CPU time equal to (@ X the number of resources
requested), and 4) release of all resources allocated. The disk and tape drive are used only
for temporary storage, and hence, are not specific to any processor. Upon completion of
the processing of a block of data, the processor immediately begins processing another
block.

Faults can occur due to the failure of a disk or failure of a tape drive. In each case, the
fault may be covered (i.e. the system degrades successfully to a less productive structure
state) or it may result in a total loss of processing capability (i.e. total system failure).
We assume further that faults in a tape drive and a disk occur as a Poisson process with
rates A and 7 respectively. The performance variable considered is the number of blocks

that are processed during a finite utilization period of t hours.

Construction of SAN model of system

Performability evaluation requires the construction of a SAN that corresponds to the

system being modeled and meets the characteristics required by the particular solution

189

l

Compute

prob (1-p) lprob)

Obtain tape

by

Obtain disk

!

Compute

'

Release Resources

Figure A.7: Processing Algorithm

190

algorithm. A seven processor case is examined. A SAN that meets these requirements
is found in Figure A.3. Here, tokens represent the jobs executing on the processors and
resources (tape and disk drives). Tokens in places A,B,C,D,E,F, and G represent the state
of jobs executing on the processors. The marking on the diagram is the initial marking
and corresponds to the state where all processors are executing the first compute in the
sequence of events. Since the length of this compute time is exponentially distributed with
parameter § for each processor, all first compute times can be represented via a single
activity. The activity time distribution function for computel is, thus, exponential with
parameter 3 x MARK(A). Since the rate at which computel completes is determined
by the number of tokens in place A, it should be reactivated at each state change to
insure that the correct rate is always used. Each completion of computel corresponds to
a processor completing the first compute. When this occurs, the process either requests
both a tape and disk or a disk only. This choice is represented by the cases associated
with computel, where case 1 is chosen with probability (1-p) and represents a request for
a disk only; case 2 is chosen with probability p and represents a request for a tape and
disk.
These requests are processed by instantaneous activities disk1, disk2, tape, and places
H and I. Place H represents the number of allocated tape drives. Place J represents
the number of functioning tape drives. Input gate Transl determines whether there is
an available tape drive. Completion of the activity tape results in the allocation of a tape
.drive to the requesting process and the addition of a single token to place H. The number
of tokens in place I represents the number of allocated disk drives and the tokens in place
K represent functioning disk drives. Input gates Trans2a and Trans2b determine if there
is an available disk. Similarly, completion of diskl or disk2 represents the allocation of
a disk drive to the requesting process. The function of gates diskoutl and diskout2 is to
keep track of the resources that each process possesses during the second compute phase.
Two tokens are placed in an output place if the process has both a tape and disk drive;
one token signifies the process possesses only a disk. Activities compute2a, compute2b,
and compute2c represent the second compute in the algorithm and have deterministically

distributed activity times. The compute times cannot be represented by a single activity

191

since the deterministic distribution is not memoryless. An activity is needed for each
process in this phase. Since the maximum number of functioning disk drives in this
example is three, only three processes can be in the second compute phase concurrently.
Hence, only three activities are needed to represent this phase. Completion of each of
these three activities represents the completion of the second compute for 2 process. The
action of the input gate for the activity is to subtract the appropriate tokens from H and
I to signify the release of the allocated resources. In addition, a token is added to the
output place of the activity (place A) to indicate that the process is again beginning the
first compute in the algorithm.

The arrival of faults and (possible) recovery of the system is represented by the re-
maining places, input gates, and activities. Here places J and K represent the number of
fault-free tape and disk drives respectively. Faults arrive to the system upon completion of

- activities tapes_faults and disk_faulis. The activity time distributions of these activities
are exponential with rates A * MARK(J) and v * MARK(K) respectively. Selection of
case 1 of either activity represents successful recovery. In this case, one token is subtracted
from the appropriate place to indicate the failure of the corresponding resource. Prob-
abilities ¢; and ¢, are associated with case 1 of activities tape_faults and disk_faults,
respectively. Selection of case 2 represents unsuccessful recovery. If this occurs, a token
is placed in L. Completion of the instantaneous activity Disable signifies total system
failure. This occurs when either recovery from a fault is unsuccessful (signified by a token
in L) or when the pool of functioning resources is exhausted (zero tokens in J or K).
When either of these events occur, instantaneous activity Disable completes and removes

all tokens in the network. No blocks are processed in this state.
Model Construction and Solution

In order to solve for the specified performance variable, we decompose the SAN into two
submodels, a performance submodel and a structure submodel as described in Chapter 4.
In Figure A.3, the places, activities, and gates above and including J and K comgprise the

performance submodel. The places, activities, and gates below and including J and K

192

| MARK(J) | MARK(K) | E[T3(S)] | Half Width | 1/E[Ty(S)] |

2 3 0.710 .003 1.409
1 3 1.403 .004 0.713
2 2 0.850 .001 1.177
1 2 1.408 .004 0.710
1 1 1.701 .002 0.588
2 1 1.699 .001 0.589

Table A.1: Results from Performance Submodel

comprise the structure submodel. Places J and K are common places (again, see Chapter
4), and represent the structural configuration of the system.

Evaluation then consists of determining a reward rate corresponding to each struc-
ture state, and solving the resulting reward model. In our example, the reward rate
is determjned.by noting that each completion of computel corresponds to a completion
of processing on a block of data. Hence, the rate of completion of block processing is
just the inverse of the expected time between completions of computel. In terms of
METASAN variables, this corresponds to 1/E[T}(S)], where (the path set) S is defined
to be < x,computel,* >. Note that E[T3(5)] is an estimator defined in the experiment
file in Figure A.5. Estimates of this measure were then obtained using the Sanscript and
experiment files presented together with the steady-state simulation solver. The initial
marking of J and K was varied to correspond to each possible structure state. Figure A.8
is the resulting METASAN output for the case MARK(J) =2, MARK(K) = 1.

The results for the mean time between completions of computel for each run are
given in Table A.1. “Half Width” refers to the half width of a 95% confidence interval
constructed about the estimate. The interpretation of each entry in the last column is
the rate at which blocks are processed in that structure state. These rates serve as the
reward rates in the subsequent reward model solution. This model was then solved using
the expected solver to determine the expected reward derived from operating the system
for various utilization periods. These results are given in Figure A.9, and are obtained

when A= .001, v = .005, ¢; = .98, and ¢4 = .99.

193

Steady State Simulation Results

Mean Estimations:
Measure Name Mean

Est_Mean[1.000000] : 1.699547

Variance Estimations:
Measure Name Variance

Est_Var[1.000000] : 1.024729

Percentile Estimations:

Measure Name Mean

Per_100[1.000000] : 5.256313
Per_70[1.000000] : 2.166901
Per_35[1.000000] : 1.212197
Per_05[1.000000] : 0.202781

Interval Estimations:

Measure Name Mean

Interval_1[1.000000] : 0.322656

Half Width Observations
0.002470 336
Half Width Observations
0.007801 336
Half Width Observations
0.052502 336
0.004645 336
0.008511 336
0.004589 336
Half Width Observations
0.002326 336

Figure A.8: Example METASAN Output

Expected Reward

Figure A.9:

194

[
<
Q

200 -

100

0

y—

! LB T T T T T Y T T
0 100 200 300 400 500 600

Utilization Period

Expected Reward Obtained for Various Utilization Periods

BIBLIOGRAPHY

195

196

BIBLIOGRAPHY

(1] B. E. Aupperle and J. F. Meyer, “Fault-tolerant BIBD networks”, in Proc. 18th
International Symp. on Fault-Tolerant Computing, Tokyo, Japan, June 1988.

[2] A. Avizienis and J. C. Laprie, “Dependable computing: From concepts to design
diversity”, Proc. of the IEEE, vol. 74, no. 5, pp. 629-638, May 1986.

[3] G.Balbo, S. C. Bruell, and S. Ghanta, “Combining queueing network and generalized
stochastic Petri net models for the analysis of some software blocking phenomena”,
IEEE Trans. on Software Engineering, vol. SE-12, no. 4, pp. 561-576, April 1986.

[4] G. Balbo, S. C. Bruell, and S. Ghanta, “Combining queneing network and generalized
stochastic Petri net models for the analysis of a software blocking phenomenon”, in
Proc. International Workshop on Timed Petri Nets, pp. 208-225, Torino, Italy, July
1985.

[5] G. Balbo, S. C. Bruell, and S. Ghanta, “Modeling priority schemes”, in Proc. 1985
ACM Sigmetrics Conf. on Measurement and Modeling of Computer Systems, pp. 15~
26, Austin, TX, August 1985.

[6] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios, “Open, closed, and
mixed networks of quenes with different classes of customers”, JACM, vol. 22, no. 2,
PP. 248-260, April 1975.

[7] J. P. Behr, N. Dahmen, J. Muller, and H. Rodenbeck, Graphical modeling with
FORCASD, in Proc. Computer Applications in Production and Engineering, pp. 61-
630, Amsterdam: North-Holland, 1983.

[8] B. Beyaert, G. Flozin, P. Lonc, and S. Natkin, “Evaluation of computer system
dependability using stochastic Petri nets”, in Proc. 11th International Symp. on
Feult-Tolerant Computing, pp. 66-71, Portland, ME, June 1981.

[9] A. Bobbio and A. Cumani, “Discrete state stochastic systems with phase type dis-
tributed transition times”, in Proc. International AMSE Conf. on Modelling and
Simulation, pp. 173192, Athens, June 1984.

[10] V. Chauhan and A. S. Sethi, “Performance studies of token based local area net-

works”, in Proc. 10th Conference on Local Computer Networks, pp. 100-107, Min-
neapolis, MN, October 1985.

[11] J. Y. Chien, “Performance analysis of the 802.4 token bus media access control

protocol”, in Proc. Factory Floor Communications Workshop, pp. 1-39, General
Motors Technical Center, Warren, MI, September 1981.

197

[12] G. Chiola, “A software package for the analysis of generalized stochastic Petri net
models”, in Proc. International Workshop on Timed Petri Nets, pp. 136-143, Torino,
Italy, July 1985.

[13] B Ciciani and V. Grassi, “Performability evaluation of foult-tclerant satellite sys-

tems”, IEEE Trans. on Communications, vol. COM-35, no. 4, pp. 403-409, April
1987.

(14] E. Cinlar, Introduction to Stochastic Processes, Englewood Cliffs: Prentice-Hall,
1975.

[15] E. Cinlar, Markov renewal theory, Advances in Applied Probability, Israel, 1969.

[16] Communications and Distributed Systems Laboratory, METASAN User’s Documen-
tation, Version 1, Ann Arbor: Industrial Technology Institute, 1987.

[17] A. Cumani, “ESP - A package of the evaluation of stochastic Petri nets with phase-
type distributed transition times”, in Proc. International Workshop on Timed Petri
Nets, pp. 144-151, Torino, Italy, July 1985.

[18] L. Donatiello and B. R. Iyer, Analysis of a composite performance reliability mea-
sure for fauli-tolerant systems, Technical Report RC10325, IBM Thomas J. Watson
Research Center, Yorktown Hts., NY, January 1984.

[19] L. Donatiello and B. R. Iyer, “Analysis of a composite performance reliability measure
for fault-tolerant systems”, JACM, vol. 34, no. 1, pp. 179-199, January 1987.

[20] L. Donatiello and B. R. Iyer, “Closed-form solution for system availability distribu-
tion”, IEEFE Trans. on Reliability, vol. R-36, no. 1, pp. 45-47, April 1987.

[21] J. B. Dugan, Eztended stochastic Petri nets: Applications and analysis, PhD thesis,
Duke University, 1984.

[22] J. B. Dugan, K. S. Trivedi, R. M. Geist, and V. F. Nicola, Extended stochastic
Petri nets: Applications and analysis, in Performance 84, pp. 507-519, Amsterdam:
North-Holland, 1984.

[23] D. Ferrari, Computer Systems Performance Evaluation, Englewood Cliffs: Prentice-
Hall, 1978.

[24] D. G. Furchtgott, Performability models and solutions, PhD thesis, Univ. of Michi-
gan, 1984.

[25] D. G. Furchtgott and J. F. Meyer, “A performability solution method for degradable,
nonrepairable systems”, IEEE Trans. on Computers, vol. C-33, June 1984.

[26] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations,
Englewood Cliffs: Prentice-Hall, 1971.

[27] H. P. Godbersen and B. E. Meyer, “A net simulation language”, in Proc. Summer
Computer Simulation Conference, Seattle, WA, August 1980.

[28] G.H. Golub, Matriz Computations, Baltimore: Johns Hopkins University Press,
1983.

198

[29] A. Goyal and S. S. Lavenberg, “Modeling and analysis of computer system avail-
ability”, IBM Journal of Research and Development, vol. 31, no. 6, pp. 651-664,
November 1987. .

[30] A. Goyal, S. S. Lavenberg, and K. S. Trivedi, “Probabilistic modeling of computer
system availability”, Annals of Operations Research, vol. 8, pp. 285-306, 1987.

[31] A. Goyal and A. N. Tantawi, Evaluation of performability for degradable computer
systems, Technical Report RC10529 (Revised), IBM Thomas J. Watson Research
Center, Yorktown Hts., NY, December 1984.

[32] A. Goyal and A. N. Tantawi, “Evaluation of performability for degradable computer
systems”, IEEE Trans. on Computers, vol. C-36, no. 6, pp. 738-744, June 1987.

[33] D. Gross and D. R. Miller, “The randomization technique as a modeling tool and
solution procedure for transient Markov processes”, Operations Research, vol. 32, no.
2, pp. 343-361, 1984.

[34] P. J. Haas and G. S. Shedler, “Regenerative simulation of stochastic Petri nets”, in
Proc. International Workshop on Timed Petri Nets, pp. 14-21, Torino, Italy, July
1985.

[35] P. Heidelberger and A. Goyal, Sensitivity analysis of continuous time Markov chains
using uniformization, in Computer Performance and Reliability, pp. 93-104, Amster-
dam: North-Holland, 1988.

[36] P. Heidelberger and S.S. Lavenberg, “Computer performance evaluation method-
ology”, IEEE Trans. on Computers, vol. C-33, no. 12, pp. 11951220, December
1984.

[37] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Reading: Addison-Wesley, 1979.

[38] R. A. Howard, Dynamic Probabilistic Systems, Vol II: Semi-Markov and Decision
Processes, New York: Wiley, 1971.

[39] IEEE, Token-Passing Bus Access Method, Std 802.4-1985, New York: IEEE Press,
1985.

[40] B.R.Iyer, L. Donatiello, and P. Heidelberger, “Analysis of performability for stochas-
tic models of fault-tolerant systems”, IEEE Trans. on Computers, vol. C-35, no. 10,
pp- 902-907, October 1986.

[41] J. R. Jackson, “Networks of waiting lines”, Operations Research, vol. 5, no. 4, pp.
518-521, 1957.

[42] D. Janetzky and K. S. Watson, Performance evaluation of the MAP token bus in
real time applications, in Advances in Local Area Networks, pp. 411-425, New York:
IEEE Press, 1987.

[43] R. M. Keller, “Formal verification of parallel programs”, CACM, vol. 19, pp. 371-
384, July 1976.

199

" [44] J. C. Kemeny and J. L. Snell, Finite Markov Chains, Princeton: D. Van Nostrand
Co., Inc., 1969.

[45] L. Kleinrock, Queueing Systems, Volume I: Theory, New York: John Wiley, 1975.
[46] Z. Kohavi, Switching and Finite Automata Theory, New York: McGraw-Hill, 1978.

[47] V. G. Kulkarni, V. F. Nicola, R. M. Smith, and K. S. Trivedi, “Numerical evaluation
of performability measures and job completion time in repairable fault-tolerant sys-
tems”, in Proc. 16th International Symp. on Fauli-Tolerant Computing, pp. 252-257,
Vienna, Austria, July 1986.

(48] J. C. Laprie, “Dependable computing and fault tolerance: Concepts and terminol-
ogy”, in Proc. 15th International Symp. on Fault-Tolerant Computing, pp. 2-11, Ann
Arbor, MI, June 1985.

[49] S. S. Lavenberg, Computer Performance Modeling Handbook, New York: Academic
Press, 1983.

[50] J. D. C. Little, “A Proof of the Queueing Formula L = A\W?”, Operations Research,
vol. 9, pp. 383-387, 1961.

[51] MAP Task Force, Manufacturing Automation Protocol, Version 2.1, General Motors
Technical Center, Warren, MI, 1985.

[62] R. A. Marie, A. L. Reibman, and K. S. Trivedi, “Transient analysis of acyclic Markov
chains”, Performance Evaluation, vol. 7, no. 3, pp. 175-194, August 1987.

[53] M. Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte, and A. Cumani, “On Petri
nets with stochastic timing”, in Proc. International Workshop on Timed Petri Nets,
pp. 80-87, Torino, Italy, July 1985.

[54] M. A. Marsan, G. Balbo, G. Chiola, and S. Donatelli, “On the product-form solution
of a class of multiple-bus multiprocessor system models”, Journal of Systems and
Software, vol. 1, no. 2, pp. 117-124, 1986.

[55] M. A. Marsan, G. Balbo, G. Ciardo, and G. Conte, “A software tool for the automatic
analysis of generalized stochastic Petri net models.”, in Proc. International Conf. of
Modelling Techniques and Tools for Performance Analysis, Paris, France, May 1984.

[56] M. A. Marsan, G. Balbo, and G. Conte, “A class of generalized stochastic Petri nets
for performance evaluation of multiprocessor systems”, in Proc. ACM/SIGMETRICS
Conf. on Measurement and Modeling of Computer Systems, pp. 198-199, Minn., MN,
August 1983.

[57] M. A. Marsan, G. Balbo, and G. Conte, “A class of generalized stochastic Petri nets
for performance evaluation of multiprocessor systems”, ACM Trans. on Computer
Systems, vol. 2, no. 2, pp. 93-122, May 1984.

[58] M. A. Marsan, A. Bobbio, G. Conte, and A. Cumani, “Performance analysis of
degradable multiprocessor systems using generalized stochastic Petri nets”, IFEE
Dist. Processing TC Neuwsletter, vol. 6, no. SI-1, pp. 47-54, January 1984.

200

[59] M. A. Marsan and G. Chiola, “On Petri nets with deterministic and exponential
transition firing times”, in Proc. Seventh European Workshop on Application and
Theory of Petri Nets, pp. 151-165, Oxford, June 1986.

[60] M. A. Marsan, G. Chiola, and A. Fumagalli, “An accurate performance model of
CSMA/CD bus LAN”, in Proc. Seventh European Workshop on Application and
Theory of Petri Nets, pp. 167-182, Oxford, June 1986.

[61] J. Meyer and L. Wei, “Influence of workload on error recovery in random access
memories”, JEEE Trans. on Computers, vol. 37, no. 4, pp. 500-507, April 1988.

[62] J. F. Meyer, “Closed-form solutions of performability”, IEEE Trans. on Computers,
vol. C-31, pp. 648-657, July 1982.

[63] J. F. Meyer, “On evaluating the performability of degradable computing systems”,
in Proc. 8th International Symp. on Fault-Tolerant Computing, pp. 44-49, Toulouse,
France, June 1978.

[64] J. F. Meyer, “On evaluating the performability of degradable computing systems”,
IEEE Trans. on Computers, vol. C-22, pp. 720-731, August 1980.

[65] J. F. Meyer, Performability modeling of distributed real-time systems, in Mathemat-
ical Computer Performance and Reliability, Amsterdam: North-Holland, 1984.

(66] J. F. Meyer, A. Movaghar, and W. H. Sanders, “Stochastic activity networks: Struc-
ture, behavior, and application”, in Proc. International Workshop on Timed Petri
Nets, pp. 106-115, Torino, Italy, July 1985.

[67] D. R. Miller, “Reliability calculation using randomization for Markovian fault-
tolerant computing systems”, in Proc. 13th International Symp. on Fault-Tolerant
Computing, pp. 284~-289, Milano, Italy, June 1983.

[68] C. Moler and C. Van Loan, “Nineteen dubious ways to compute the exponential of
a matrix”, SIAM Review, vol. 20, no. 4, pp. 801-836, October 1978.

(69] M. Molloy, On the integration of delay and throughput measures in distributed pro-
cessing models, PhD thesis, UCLA, 1981.

[70] A. Movaghar, Performability modeling with stochastic activity networks, PhD thesis,
University of Michigan, 1985.

[71] A. Movaghar and J. F. Meyer, “Performability modeling with stochastic activity
networks”, in Proc. 1984 Real-Time Systems Symp., Austin, TX, December 1984.

[72] K. H. Muralidhar and J. R. Pimentel, “Performability analysis of the token bus
protocol”, in Proc. IEEE INFOCOM °87, San Francisco, March 1987.

(73] S. Natkin, Reseauz de Petri stochastiques, PhD thesis, CNAM-PARIS, 1980.

[74] M. Neuts, Matriz-geometric solutions in stochastic models, Baltimore: Johns Hop-
kins Univ. Press, 1981.

[75] O. Osterby and Z. Zlatev, Lecture Notes in Computer Science: Direct Methods for
Sparse Matrices, Heidelberg: Springer-Verlag, 1983.

201

[76] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Englewood Cliffs:
Prentice-Hall, 1981.

[77] L. A. Prisgrove and G. S. Shedler, “Symmetric stochastic Petri nets”, IBM J. Res.
Develop., vol. 30, no. 3, pp. 278-293, May 1986.

[78] W. Reisig, Petri Nets, Berlin: Springer-Verlag, 1982.

[79] M. Rosenblatt, Markov processes. Structure and Asymptotic Behavior, Berlin:
Springer-Verlag, 1971.

[80] S.R. Sachs, K. Kan, and J.A. Silvester, “Performance analysis of a token-bus protocol
and comparisons with other LAN protocols”, in Proc. 10th IEEE Conference on Local
Computer Networks, pp. 100-106, Minneapolis, MN, October 1985.

[81] W. H. Sanders and J. F. Meyer, “METASAN: A performability evaluation tool based
on stochastic activity networks”, in Proc. ACM-IEEE Comp. Soc. 1986 Fall Joint
Comp. Conj., Dallas, TX, November 1986.

[82] S. Shapiro, “A stochastic Petri net with application to modeling occupancy times for
concurrent task systems”, Networks, vol. 9, pp. 375-379, 1979.

[83] R. M. Smith, Markov reward models: Application domains and solution methods,
PhD thesis, Department of Computer Science, Duke University, 1987.

[84] R. M. Smith and K. S. Trivedi, “A performability analysis of two multi-procéssor
systems”, in Proc. 17th Intenational Symp. on Fault- Tolerant Computing, Pittsburgh,
PA, July 1987.

[85] P. S. Thiagarajan, Elementary net systems, in Lecture Notes in Computer Science
254, pp. 26-59, Berlin: Springer-Verlag, 1987.

[86] A. A. Térn, “Simulation nets, a simulation modeling and validation tool”, Simula-
tion, vol. 45, no. 2, pp. 71-75, August 1985.

[87] J. P. Tremblay and R. Manohar, Discrete Matematical Structures with Applications
to Computer Science, New York: McGraw-Hill, 1975.

[88] K.S. Trivedi, Probability & Statistics with Reliability, Queueing and Computer Sci-
ence Applications, Englewood Cliffs: Prentice-Hall, 1982.

[89] L. T. Wu, Models for evaluating the performability of degradable computing systems,
PhD thesis, Univ. of Michigan, 1982.

[90] L.T. Wu, “Operational models for the evaluation of degradable computing systems”,
in Proc. ACM/SIGMETRICS Conf. on Measurement and Modeling of Computer Sys-
tems, pp. 179-185, Seattle, WA, August 1982.

[91] A. Zenie, “Colored stochastic Petri nets”, in Proc. International Workshop on Timed
Petri Nets, pp. 262-271, Torino, Italy, July 1985.

[92] W. M. Zuberek, “Performance evaluation using extended timed Petri nets”, in Proc.
International Workshop on Timed Petri Nets, pp. 272-278, Torino, Italy, July 1985.

