A TECHNIQUE FOR SIMULATING COMPOSED
SAN-BASED REWARD MODELS

by
Roberto S. Freire

(©Roberto Satuf Freire, 1990

A Thesis Submitted to the Faculty of the
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfilment of the Requirements
For the Degree of

MASTER OF SCIENCE
WITH A MAJOR IN ELECTRICAL ENGINEERING
In the Graduate College
THE UNIVERSITY OF ARIZONA
1990

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfilment of requirements for an advanced
degree at The University of Arizona and is deposited in the University Library to be made
available to borrowers under rules of the library.

Brief quotations from this thesis are allowable without special permission, provided
that accurate acknowledgment of the source is made. Requests for permission for extended
quotation from or reproduction of thesis manuscript in whole or in part may be granted
by the head of the major department or the Dean of the Graduate College when in his
or her judgment the proposed use of the material is in the interests of scholarship. In all
other instances, however, permission must be obtained from the author.

SIGNED:

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

William H. Sanders Date
Assistant Professor of
Electrical and Computer Engineering

To Paula and my parents

ACKNOWLEDGMENTS

Working on my Master’s thesis was a very challenging and satisfying experience that
was made possible by the advice and support of a number of people. First of all, I am
thankful to Dr. Wiliam H. Sanders for constantly inspiring me to bring out the best in
myself. I am also grateful to the master’s committee members, Dr. Sy-Yen Kuo and Dr.
Jerzy Rozenblit, for reviewing my thesis.

I would like to acknowledge Intel Corporation, Digital Equipment Corporation and
Bell Communications Research. Their financial support made this work possible.

I'am also thankful to Manish Rai for his help and encouragement.

Finally, I would like to thank my family, friends and colleagues for their moral support

in bringing all my work together.

TABLE OF CONTENTS

LIST OF FIGURES ittt e e e e e e e s e 8
LIST OF TABLES et s e e e e e e e e e e 10
ABSTRACT . . . e e 11
1. Introduction e 12
1.1. System Evaluation i e 12
1.1.1. Modeling Techniques e, 13

1.1.2. Stochastic Extensions to Petrinets 14

1.1.3. Evaluation Packages Based on Stochastic Extensions to Petri Nets 15

1.2. Research Objectives 16

2. Stochastic Activity Networks 18
2.1 OVEIVIEW . o v v o i s e e e e e e e e e e e 18
2.2. Performance Variables e 23
2.2.1. Instant-of-Time Variables 24

2.2.2. Interval-of-Time Variable 25

2.2.3. Time-Averaged Interval-of-Time Variable 26

2.2.4. Time Between Completions Variable. 27

2.3. Composed SAN-Based Reward Model Construction 27

3. State Change Mechanism and Future Events List Management ... 33
3.1. Introduction 33
3.2. Traditional Method 34
3.3. Making Use of the Composed Model Structure 36
3.3.1. State Representation, 36

3.3.2. State Trees i i e e 38

3.3.3. Compound Events and Multiple Future Events Lists 42

3.3.4. Composed SBRM Execution Procedures for Simulation 46

3.3.5. Example State Generation 59

3.4. Comparison of Efficiency with Traditional Method 65

4. Simulator Execution and Variable Estimation 66

4.1, Introduction e e 66

4.2. Random Number Generator ''eo... 66
4.3. Confidence Interval Generation v v v v .. 68
4.4. Reward Variable Collection 71
4.5. Updating the Variables 75
4.5.1. Terminating Simulation 75
4.5.2. Steady State Simulation, 77

4.6. Basic Algorithms for the Simulators 78
5. Results e e e 82
5.1. Imtroduction e e e e 82
5.2. CSMA/CD LAN Model Description v v v v v v v v v v v oo 82
5.3. Variables L e 84
5.3.1. Transient Simulation 84
5.3.2. Steady State Simulation 85

5.4. Run Times for Different LAN Sizes 86
5.5. Terminating Simulation Results 86
5.5.1. Steady State Simulation Results 87

6. Conclusions and Further Research 93
6.1. Areas for Further Research 94
Appendix A. Simulation in UltraSAN i 96
A1, Data Structures v v v v v e e e e e e e e 96
A.2. Source Code File Descriptions 110
A2.1. actocheck.c L e e 110
A2.2. aITay.C « v i e e e e e e e 111
A23. batch.c e e e 112
A24. caseProbs.c. e e e 112
A.2.5. copylnitMarkTrans.c i i i e 113
A2.6. erTMSZ.C . . . i e e e e 113
A.2.7. executeSAN.c, genMaxComps.c, genPairCom.c and genPaths.c . . 113
A.2.8. genNewMarkSim.c. e 114
A.29. genRateRew.c 115
A2.10.nitTrans.c i e e e e e e e 115

A2 1%nitialize.c . . . L . L e e e e e 116
A2.12.isEnabled.c e e 116
A2.13.lnkListSim.c e e e 117
A2.14. manageSets.C. e e e e 117

A3 markSim.c 118
A.4. Variable Specification File 119
A.4.1. Steady-State Simulation 119

A.4.2. Terminating Simulation 124

A.5. Command Line Arguments for the Simulators

REFERENCES

....................................

2.1.
2.2,
2.3.
2.4.
2.5.

3.1
3.2,
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.

4.1.
4.2,

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.

5.7.

5.8.

5.9.
5.10.

LIST OF FIGURES

Petri Net Example e 19
Station Submodel 21
Example Composed SAN-Based Reward Model 30
Network Submodel 31
Example Composed SBRM for CSMA/CDLAN 32
Example Composed SAN-based Reward Model 37
Example State Tree 0 i i e e e e 41
A Possible State Tree for LAN model 45
Future Events Lists for a Possible State Tree 46
Another Possible State Tree 47
Station Initial Marking 59
Network Initial Marking 59
Station In New Marking 61
Node for Station In New Marking 62
Replicate Node for New State Tree v v v v v v v v v e a 63
Network New Marking it ittt e e 64
Variable Status Changes in Steady State Simulation 74
Time Averaged Interval of Time Variable Updating 76
Run Times for Five Batches - Steady State 87
Queue Length versus Time v v vt vttt et e 88
Probability a Propagated Message is on the Channel versus Time 88
Expected Queue Length versus Fraction of Full Load 89
Blocking Probability versus Fraction of Full Load 90
Fraction of Time a Propagated Message is on Bus versus Fraction of Full

Load o e e 90
Fraction of Time an Unpropagated Message is on Bus versus Fraction of

Fall Load e 91
Fraction of Time an Corrupted Message is on Bus versus Fraction of Full

Load o e 91
Fraction of Time Bus is Idle versus Fraction of Full Load 92

Expected Time Between Arrivals versus Fraction of Full Load 92

A.1. A State Tree Data Structure for the LAN Example

A.2. A List of Future Events

............................

LIST OF TABLES

10

11

ABSTRACT

Stochastic activity networks (SANs) have been used in the modeling of computer sys-
tems because of their suitability in representing distributed systems. SANs may be solved
by analysis or by simulation. When simulation is used, future events list management is
very time consuming, as with other simulation techniques. New methods that take ad-
vantage of the SAN model structure are presented which significantly reduce the cost of
future events list management. Multiple future events lists are used to reduce operations

required upon each state change.

12

CHAPTER 1

Introduction

1.1 System Evaluation

System evaluation techniques can be broadly classified into two categories: measure-
ment and modeling. Measurement requires that a real system be built, tested and func-
tioning. The advantage of this method is the accuracy of the results, since data is collected
from the actual system. However, its use in evaluating large and complex systems is ex-
tremely difficult and costly.

Modeling is the alternative to avoid measurement drawbacks. Instead of experimenting
with the real system, a model is built and characteristics are estimated from the model.
When specifying a model, assumptions are made about the system. Although the actual
system is not evaluated, if the assumptions are made correctly, the results obtained by
use of the model yields correct answers.

Modeling has several advantages over measurement. First, a model can be constructed

at any phase of the system life-cycle. Second, it is typically much less costly.

13

Models can be solved by analysis or by simulation. If it is simple enough such that
mathematical solution is possible, analysis should be the choice. Unfortunately, in gen-
eral, that is not the case. Models that cannot be solved by analysis must be solved by

simulation.

1.1.1 Modeling Techniques

Modeling techniques can be classified as: deterministic or non-deterministic. Turing
machines are an example of deterministic models. A non-deterministic model can either
be probabilistic or non-probabilistic. Petri nets fall in the latter category. This technique
is useful when modeling concurrent, distributed and parallel systems. However, their
non-probabilistic nature makes them unsuitable for performance/dependability evalua-
tion. Probabilistic models can better represent real systems for performance evaluation
purposes. These include: failure, repair and service rate models, reliability graphs, fault
trees, queueing networks and stochastic extensions to Petri nets [7]. While the first three
are convenient for modeling system inputs, the remaining ones are used to model system
behavior. Reliability graphs and are also categorized as combinatorial models. These enu-
merate all the combinations of failed and working elements to represent either a success
or a failure of a system. These models suffer from the problem of state space explosion
and become prohibitive if modeling is to be done under a certain level of detail.

Queueing network theory is well known and widely used but are limited in modeling
power. Stochastic extensions to Petri nets provide much of the power lacking in queueing

networks.

14

1.1.2 Stochastic Extensions to Petri nets

Petri net theory was introduced by Carl Adams Petri [17]. Petri nets were developed
for modeling systems graphically and mathematically. As systems grew in complexity,
a need for extensions to Petri nets was realized. Due to there non-probabilistic nature,
standard Petri nets are not suitable for performance/dependability evaluation [16].

First efforts were to add probabilistic delays to the transitions of the net [12, 15, 24].
This extension enabled the modeling of complex concurrent systems, but there was need
for further extensions. Next, delays other than exponential were added followed by the
creation of transitions with zero time delays. Finally, the development of additional
constructs to ease in the representation of systems without changing the probabilistic
behavior of the net.

Transitions with zero delays were introduced in “Generalized Stochastic Petri Nets”
(GSPNs) by Marsan, Balbo, and Conte [11]. To determine the probability of the firing of
an immediate transition (i.e. zero time delay), a random switch was used. States in which
some time was spent were called tangible. Otherwise, the state was termed vanishing.
A model construction technique was proposed to eliminate vanishing states reducing the
state space.

“Extended Stochastic Petri Nets” are another generalization that allowed transition
delays to have arbitrary distribution functions [4]. Probabilistic arcs were introduced to
create uncertainty about state trajectories.

A third independent extension proposed was “Stochastic Activity Networks” [13]. In-

stantaneous activities represent events that take negligible amount of time and timed

15

activities represent probabilistic delays. Cases for activities create uncertainty about
state trajectories. For convenience in representing large systems, input gates and output
gates between activities and places were introduced. Several evaluation tools based on

these extensions to Petri nets have been developed.

1.1.3 Evaluation Packages Based on Stochastic Extensions to Petri Nets

Although there are several tools based on stochastic extensions to Petri nets, only a few
support solution by simulation. “GreatSPN”, developed by Chiola [2], allows solutions
both by simulation as and analysis. Based on GSPNs, it allows formal validation of
quantitative behavior of the underlying Petri nets. The simulator generates confidence
intervals using Monte Carlo simulation.

METASAN [22] is based on stochastic activity networks. It supports evaluation either
by simulation or by analysis. Four analytic solvers are provided. Terminating and steady
state simulation is supported for estimation of means, variances, percentiles and intervals.

The most recent tool available is SPNP [3]. Only analytical solutions are supported.
Reward model specification at the net level is supported as in [20].An automated sensi-
tivity analyzer is provided.

Other tools based on stochastic Petri nets include Simula by Torn [25], FORCASD
based on “evaluation nets” by Behr [1], FUN [5] and DEAMON [10] based on “function

nets”,

16

1.2 Research Objectives

While there exists simulators based on stochastic activity networks, little work has
been done to improve solution times. Composed SAN-based reward models [20] exhibit
structural properties that can be used to improve simulation times of highly replicated
systems such as distributed systems. The goal of this study is to develop a tool, based on
composed SAN-based reward models, for solution of models by simulation. This simulator
should take advantage of the structure of the composed model to reduce solution times.

More specifically, we will:

a) Provide an efficient technique to generate possible state trajectories of a composed

SAN-based reward model.

b) Develop both a steady state and a terminating composed SAN-based reward model

simulators.

¢) Hlustrate the usefulness of the new technique in simulating a highly replicated sys-

tem.

Chapter 2 provides an overview of SANs. Basic SAN definitions are given followed
by the composed SAN-based reward model construction methodology. An example of a
composed model is given.

Chapter 3 is presents the procedures that are specific to composed SAN-based reward

model state generation. An example state generation is given at the end of the chapter.

17

Chapter 4 explains the algorithms and calculations performed by both terminating and
steady state simulators. The procedures presented in Chapter 3 are encapsulated in the
main simulator loops.

Chapter 5 presents an example study to illustrate the usefulness of the techniques
introduced in this thesis. A 100 CSMA/CD local area network is simulated for several
variables in steady state and transient phase.

Chapter 6 summarizes the results of this thesis and suggests areas of further research.

18

CHAPTER 2

Stochastic Activity Networks

2.1 Overview

Stochastic activity networks originated from Petri net theory [14, 16]. A Petri net
is a network of places connected to transitions by directed arcs. A place connected to a
transition is an input place or an output place to the transition, depending on the direction
of the arc, which determines the flow of tokens held by the places. The marking of a Petri
net is a vector of positive integers representing the number of tokens in each place. An
arc can have a weight, a positive integer. A transition fires removing a number of tokens
from its input places and depositing a number of tokens on the output places equal to
weights of the corresponding arcs. It may fire when it is enabled in a marking, meaning
that there are at least as many tokens in each of its input places as the weights for the
corresponding arcs.

Figure 2.1 is an example of a Petri net. Transition #; is enabled in this marking because
its input place p; holds three tokens (represented by the dots) which is more than two,
the weight of the connecting arc. Hence, it may fire removing two tokens from p; and

depositing three tokens in output place p, and one token in output place ps.

19

Figure 2.1: Petri Net Example

The non-determinism in Petri nets is not quantified probabilistically. For instance, in
Figure 2.1, activities ¢; and t3 are enabled. It is not clear which transition should fire
first. Also, delays before a transition fires cannot be modeled. Although it is a powerful
modeling technique for verifying certain system properties, performance and dependability
evaluation is not possible.

A stochastic activity network (SAN) [13, 20] is a stochastic extension to a Petri net.
Such as in Petri nets, SANs have places and tokens. Petri Net transitions find equivalents
in activities, which can be timed or instantaneous. Timed activities have probability
distributions associated with them to represent delays. While transitions fire, activities
complete. Instantaneous activities complete as soon as they are enabled. Activities may
have cases, each case associated with a probability. When an activity completes, a case
is chosen according to the probability distribution defined for the cases. Unlike Petri
nets, SANs have input gates and output gates connected to activities. An input gate
connects an input place to an activity. It has a predicate function and an output function
associated with it. An output gate connects an activity to an output and only has an

output function. An activity is enabled in a marking u if all the input predicates are true.

20

An enabled activity completes and executes both the input and output gates’ output
functions. Note that an enabled timed activity that would have completed after a certain
delay is aborted if, during this period, the SAN reaches a “stable marking” where the
activity is no longer enabled. A stable marking is a marking such that no instantaneous
activities are enabled. The behavior of a SAN is characterized by a sequence of markings
and activity completions.

Finally, a reactivation function is specified for each timed activity. This function relates
each marking to a set of reactivation markings for an activity. Whenever an activity is
activated, i.e. becomes enabled, it will be reactivated, i.e. aborted and immediately reac-
tivated, if a marking from its set of reactivation markings is reached before it completes,
given that it was activated in a specific marking. The reactivation function is useful when
representing a process that should abort and start over given certain conditions of the
system are met.

In order to be solved by simulation, SANs must be “well specified” [20]. Informally, a
SAN is well specified if, given that more than one instantaneous activity is enabled in a
marking, the probabilities of reaching the possible next stable markings are the same no
matter which instantaneous activity completes.

As an example of a SAN, take Figure 2.2, Table 2.1 and Table 2.2. They specify a
SAN model of a station for a CSMA/CD local area network. The model comprises of a
graphical representation, depicting the structure, and tables that specify functions for the
gates and time distributions for the timed activities. Timed activity arrival is enabled in

the present marking because the input predicate of the input gate size, MARK(A) < 2,

size

21

sense_channel

arrival
C
Figure 2.2: Station Submodel
Gate | Type | Enabling Predicate | Function]
size input MARK(A) <2 identity
intra output -

sense_channel | input

MARK(channel)—‘Q) I
MARK(channel)==

if (MARK channe%::O) {

else if (MARK(channeI)....l) {

else if (MARK(channeI)-—2) {

MARK

MARK(A) = MARK(A) +1;}
else if (MARK(channel) 3){

MARK(C) = 1;

MARK(A MARK(A) +1;}

MARK(channel) = 0;

MARK(channe
MARK(B) =1;}

=1;

MARK(channel) = 3;
MARK(C) = 1;
MARK(A = MARK(A) +1;}

Table 2.1: Gates for Station Submodel

22

[Activity [Distribution Type | Parameter (Rate)

|

arrival exponential varied
access exponential 10 (normal prio. station)
finish exponential if (MARKSchannel)::2)

rate =
else
rate = 5

Table 2.2: Activity Parameters for Station Submodel

is satisfied. If it completes, the output function for size, identity (i.e., do nothing), will

be executed. Then the output function for each output gate of arrival would have been

executed, if some existed. Finally, the number of tokens of the output place A will be

incremented by one, the number of incoming arcs. Arcs, in SANs, act the same way as

in Petri nets. Now, both arrival and access are enabled.

In order to aid in the understanding of the following chapters, it is helpful to define,

more formally, several concepts related to SANs. In particular:

1. If P is the set of all places in a stochastic activity network, then the marking of the

network is a mapping p: P — IN.

2. Similarly, if S is a set of places (S C P), the marking of S is a mapping ps : S — IV.

We say that pug is a restriction on the marking u to the places in 5.

3. Markings can also be represented as a vector, as in Petri nets, where each of its com-

ponent is the number of tokens in a particular place. The correspondence between

the components and the places is achieved by designating each component of the

vector to a place of the set of places considered. This is usually done by assuming

23

the usual lexicographical ordering based on place names. Then, the marking of a

place p € P, u(p), is n, a positive integer component of p.
4. For a marking p, the set of enabled activities in y is denoted as En,,.

5. For an active activity a there is a set React, of reactivation markings. This is the

notation used in the procedures described in the next chapter.

2.2 Performance Variables

The purpose of a modeling technique is to provide methods that allow solutions to
questions about a system. To solve these questions, it should be possible to conveniently
describe the variables that represent these questions. Traditionally, performance variables
for stochastic Petri nets have been specified at the state level. This can be very cumber-
some, considering the high degree of complexity of present computer systems. SAN-based
reward models have variables that are specified at the network level, which is more natural
to the modeler [21].

The variables that have been used with SANs are specified in terms of reward structures
[6]. Informally, a reward structure associates behaviors of the system with performance
variables. This is done by specifying “bonuses” (or “penalties”) for certain events that
may occur in the system and reward rates for the system being in some “state”. For
SAN modeling, we associate a bonus with an activity completion and a rate reward with
a particular marking of the SAN. Since activity completions occur at instants of time,

we call these “bonuses” impulse rewards. An impulse reward with a rate reward form a

24

“reward structure”. Formally, an activity-marking reward structure of a stochastic activity

network with places P and activities A is a pair of functions [21]:

C:A— IR where for a« € A, C(a) is the reward obtained due to completion of

activity a, and

R :P(P,IN) — IR where for v € P(P,IN), R(v) is the rate of reward obtained

when for each (p,n) € v, there are n tokens in place p,

where IV is the set of natural numbers and P(P,IV) is the set of all partial functions

between P and IV. Elements of the set P(P,IN) can be considered as partial markings.

They are the results of the restriction of the function u on a subset of places of P.
Having defined a reward structure, we now present different categories of variables that

can be estimated by simulation.

2.2.1 Instant-of-Time Variables

A variable that measures the behavior of stochastic activity network at a particular

time ¢ is the instant-of-time variable V. It is defined as:

Vi= Y RW)-I+ Y C@)- I

UG'P(P,W) a€A

where

Iy is an indicator random variable representing the event that the SAN is in a marking

such that for each (p,n) € v, there are n tokens in p at time ¢, and

¢ is an indicator random variable representing the event that activity a is the activity

that completed most recently at time ¢.

25

If the indicator random variables converge in distribution as ¢ — oo, V; is considered
in “steady state”. It is then possible to evaluate the steady state reward at an instant of

time ¢ with the variable defined as

Vioo = Z R(V)) Itu-—-)oo + Z C(a) ' Ita_*oo’

veP(PIN) a€A
where
IY ., is an indicator random variable representing the event that the SAN is in a marking

such that for each (p,n) € v, there are n tokens in p in steady-state, and

I(l

00 18 an indicator random variable representing the event that activity a is the activity

that completed most recently in steady-state.

Characteristics such as queue length can be represented by these variables.

2.2.2 Interval-of-Time Variable

Interval-of-time variables are used to quantify accumulated benefits (or penalties) dur-
ing some interval of time. Although there are other variables defined in this category for
solution by analysis [20], we have chosen one to implement for solution by simulation. In
this case, the variable accumulates reward during an interval of time, thus expressing the
total reward for that period. We denote this variable by Y; and define it as:

Yiarg = Y, R@)-Jhqg + 3 C(a): Nf iy, and
veP(P.IN) aed

where

26

Jfi 141 is arandom variable representing the total time that the SAN is in a marking such

that for each (p,n) € v, there are n tokens in p during [¢,¢ +], and

N, [';,t +] is a random variable representing the number of completions of activity a during

[t,t+1].

2.2.3 Time-Averaged Interval-of-Time Variable

The final category of reward variables, the time-averaged interval-of-time variables,
quantifies accumulated benefits (or penalties) averaged during some interval of time. As
in the interval of time category, there are several types of variables of this type for use in
solution by analysis. We shall present the one we have implemented for simulation. This

variable is defined as:

Y4
Wi = %
where
I +) is a random variable representing the total time that the SAN is in a marking such

that for each (p,n) € v, there are n tokens in p during [t,¢ + 1], and

N[14y is a random variable representing the number of completions of activity a during

[t,t + 1].

The throughput of a system can be estimated using a variable of this type.

27

2.2.4 Time Between Completions Variable

While the reward variables described can be used to represent many measures of per-
formance and dependability, one useful variable that cannot be quantified is one that
represents the time between completions of activities. Since this is an important measure,
and can be estimated using simulation, we define a variable of this type. In particular,
let TBE; (i < j) be the time between the " and j* completion of activity a. Times
between arrivals of jobs to a computer system can be estimated by a variable of this type.

If TB}; converges in distribution, we can define a variable that amounts to the time

between completions of an activity a in steady state. We define this variable as:

TB, = lim TB{,;

2.3 Composed SAN-Based Reward Model Construction

Now that the model representation (SANs) and performance variables have been spec-
ified, we can define the structure on which the simulator will operate, a “composed SAN-
based reward model (SBRM)”. A composed SBRM is obtained by the use of the replicate
and join operations on a SAN-based reward model. A SBRM is defined in [20] as a SAN,
S, with places, P, together with a reward structure (C,R) and set of distinguished places
Pp C P. Formally it is a four-tuple (5, C, R, Pp).

The replicate operation replicates a SAN-based reward model a certain number of
times, holding some subset of its places (the “distinguished places”) common. It is through
these unreplicated places that the replicated submodels interact. Each replicate will have

values for impulse reward and reward rates specified in the same way as they were in the

28

original model but now they are are assigned respectively to the corresponding replicate
activities and partial markings.
The result of the replicate operation is also a SAN-based Reward Model. Formally, as

in [23], it is a SBRM (S, C, R, Pp) with places P and activities A, where :

1. S is a SAN constructed by replicating S n times. Pp C Pp is the set of places to
be used in the replicate operation. All activities and gates are replicated; all places
except those in Pp are replicated. Connections to each p € Pp are identical for

each replicated submodel in § and as in .

2. For each a € A and corresponding set of replicate activities a1, as,...,a, C A,

C(a;) = C(a) for each replicate submodel i.

3. For each v € P(P,IN) and corresponding partial markings v; € P(P,IN), R(v;) =

R(v) for each replicate submodel i. R(v) = 0 for all other v € P(P, V).
4. Pp C Pp is the set of places not replicated.

As the name of the operation suggests, the replicate operation is suitable for repre-
senting models that consist of several identical submodels. An operation that allows us
to combine models of different structure is needed. The join operation can be used for
this purpose.

The join operation acts upon individual SAN-based reward models combining them
producing another SBRM. It uses a list of places associated with each component SAN-
based reward model, where each list of places is a subset of the set of distinguished places

in the constituent SBRMs. As with replication, the component submodels interact with

29

each other through these places. In particular, the first place in each of the lists is merged
to form a single place in the new submodel, the second place in each of the lists is merged
forming another single place in the new submodel, and so on. Note that, unlike in [23], we
allow particular elements on the lists of places to be null, allowing the case where certain
places are created from places in a subset of the SBRMs that are joined. This extension
to [23] presents no problem with either solvability or support, but does introduce more
flexibility in defining SAN-based reward models.

The reward model for the resulting SBRM is obtained in a similar manner to that for a
replication operation. Each activity in the new model has assigned to it an impulse reward
equal to that in the corresponding activity in the original model and each partial marking
that had a reward rate associated with it will have a corresponding partial marking with
an equal reward rate assigned to it.

The composed SBRM is built using these operations, starting with individual SAN-
based reward models at the bottom. Graphically, we can represent the composed model
as a directed tree. To illustrate this idea, consider as an example Figure 2.3.

There are three types of nodes: model/reward structure nodes, replicate nodes, and join
nodes. The model/reward nodes represent individual submodels, defining a distinct SAN
S with impulse reward C and rate reward R. They will either be replicated or joined
to another SBRM depending on the operation situated at the parent node. Replicate
nodes have information regarding to the number of times its child is to be replicated
(represented by the integers nq,ng,...,n, € IV) and the set of distinguished places from

the set of places of the child submodel (represented by Dy, Dy, ..., D;,). Join nodes have

LI’[Z""

D
1

30

(5, C R)

o

Figure 2.3: Example Composed SAN-Based Reward Model

56 %)

31

L — prop_delay_intra

[\
O channel

[Gate [Type | Enabling Predicate | Funcfion |
| pda_gate | input | MARK(channel)=1 | MARK(channel)=2; |

| Activity | Distribution Type | Parameter (Rate) |
{ prop_delay_inira] exponential [20 |

Figure 2.4: Network Submodel

information regarding to the number of SBRMs to be joined (given as the integer M) and
lists of distinguished places for each of these SBRMs (given as Ly, La, ..., Ly). The arcs
tell us which SBRMs are used by an operation. Note that join nodes have a degree equal
to the number of SBRMs they operate upon. Replicate nodes always have a degree of one
since they act on a single SBRM. Although not necessary, for convenience in computer
programming, we create the restriction that only timed activities can be connected to
places in Pp.

To illustrate the composition on a more realistic application, consider a CSMA/CD
local area network with a certain number n of stations connected to it. The SAN model
for a station was presented earlier (Figure 2.2), and the model for the network is in Figure

2.4.

32

J
[channel],[channel]

n
R {channel} (SNETWORK >z Rz)

i

(SSTATION »Cgt »Rygt)

Figure 2.5: Example Composed SBRM for CSMA/CD LAN

Figure 2.5 shows how the tree for the composed model would look like if we assume
all stations are identical. Nodes with no outgoing arcs are the individual submodels for a
station and the network. The station submodel is replicated n times with a place called
“channel” from the set of distinguished places of SyrrTwork held as common to the
replicates. The produced SBRM is then joined to the network submodel by two places,
both named “channel”, from the respective set of distinguished places for each component

submodel. This model is actually solved via simulation and explained in Chapter 7.

33

CHAPTER 3

State Change Mechanism and Future Events List

Management

3.1 Introduction

The previous chapter presented a review of the concepts of stochastic activity networks
and how a composed SAN-based reward model can be constructed. Once the model
is available, it can be solved by simulation. An important aspect of simulation is the
mechanism for changing states and managing the list of future events. Efficiency in these
mechanisms is essential for simulation of large models. A method introduced in Sanders
[20] has been used for simulation of distributed systems modeled by SANs (METASAN?
[22]). While this method has been used to evaluate many computer systems and networks,
it suffers, like many simulation techniques, from long run times for large models. In this
chapter, we make use of the composed model structure to develop a new simulation engine
for SAN-based reward models. The method makes use of the idea of “compound events”
and the structure of the SBRM to improve the efficiency of the state change and future

events list management algorithms.

'METASAN is a registered trademark of Industrial Technology Institute

34

3.2 Traditional Method

In this method, which is described in [20], each activity of the model is an event type.
Every activity completion is an event. During execution, at each event, the model will
behave according to its event type.

Future events are scheduled based on potential completion times for the enabled activ-
ities. The term “potential” refers to the possibility of completion of an activity that has
been activated. The procedure GenerateEvent generates a potential completion time
for an activity enabled in a current marking,.

State trajectories are generated by completing the earliest activity scheduled to com-
plete. Procedure Earliest determines this activity, cur,, given the list of future events,
E. Informally, at every activity completion, a new marking, u', for the model is chosen
probabilistically from the set of next stable markings generated by ExecuteSAN. This
procedure executes a SAN submodel repeatedly until all possible next stable markings are
reached and the probabilities of reaching them are determined given a particular stable
marking and an activity completion. It is then necessary to check all scheduled events
to see if they are still enabled in the current marking and remove the ones that are not.
Also, if an activity should be reactivated, the corresponding event should be rescheduled.
Finally, since there could be activities other than the ones that were scheduled that should
be activated in the new marking, all activities in this condition are added to the future
events list.

The algorithm translated, from Sanders [20], is as follows:

35

Procedure 3.2.1 GenerateBehavior

Begin
E=90
w= INITIAL MARKING
Jor each a € En,
e, = GenerateEvent(a, u)
E=FEU{e}
while E #
cur, = Earliest(F)
E=F- {ecura}
p' = ExecuteSAN (cur,,u)
for each e, € E
ifa ¢ Enﬂ,
E=F - {e,}
for each e, € E
if u € React,
E=F- {e,}
Jor each a & En,,
ifa € E’I’L“l
e, = GenerateEvent (a, u')
E=FuU{e}
End.

We are particularly interested in the way future events list management is done in
this procedure. This is generally where most of the computation time for a simulation
run is spent. The procedure suggests keeping a list of events that represent potential
completion times, i.e. the times for enabled activities to complete if they are not aborted
prior to completion. Note that there is a one to one relationship between the set of enabled
activities in the composed model and the set of future events. Thus, all active activities
in p, replicates or not, will have to be checked for their status in u’ (enabled or disabled).

Furthermore, all active activities must be checked for reactivation at each state change.

Finally, the loop ends with another check on all activities to find the ones that were not

36

enabled in p but enabled in u/. As the composed model grows in size, the computation

time spent on these operations can make the solution by simulation infeasible.

3.3 Making Use of the Composed Model Structure

In this section, we develop procedures that make use of the composed SAN-based re-
ward model structure to reduce simulation time. The procedures are introduced after
some new concepts are presented. To illustrate the procedures, an example state genera-

tion is provided at the end of this section.

3.3.1 State Representation

A definition of “state” is needed to make possible the description of a composed model
execution procedure. Recall that a composed SBRM is a result of operations on SBRMs
that themselves may be also a composed model or just individual SBRM submodels. We
can represent this composition graphically by a tree, as described in Chapter 2. A notion
of “state” can be determined at each level of the tree structure. At a join operation,
we keep a vector of “states” for each joined submodel. The number of replicates in
each existing submodel “state” is kept at a replication node representing the operation.
Finally, at the lowest level, the “state” of a SAN model is its marking. The complete
state is then the impulse reward due to the last activity completion and the completion
and the composed state formed as above.

A convenient way of describing the state of a composed SBRM is to use equations that

relate SBRMs at on level to those at the next lower level based on the operation done at

37

J
D ,D
1’2
R2 (S.,C.,R,)
Dy J
b b
4’5
2 3
R R
Dy D,
Y
(S, CyoR,) (S5 G R,)

Figure 3.1: Example Composed SAN-based Reward Model

that level. Each replication operation is represented as a bag [16] of states of the replicate
submodels. Join operations are represented by a vector of states joined submodels. At the
lowest level of operation, the elements of the vectors or bags are the projected markings
of the complete marking on places of individual SAN submodels.

For example, consider the SAN-based reward model of Figure 3.1. The composed

state for that composed SBRM can be represented as the following;:

State = (C(a),V)

V = (B,ub)

38

Bl = < ‘/117‘/12 >
Vii = (Biu, B112)

Viz = (Bi21, Bi22)

Blll = < ”1111,11,1112 >

1121 1122 ,,1123
By = <p L uw >

B121 = < 'u1211,’u1212 >

223
B122 = < }1,1221,#1212,#1 >

Here, the letter B denotes a bag at the next lower level and the letter V' denotes a vector.
Bags are useful to represent replicate operations since the number of replicate submodels
in the same state can be found by the #(z, B) (number of occurrences of element z in
B) operation [16]. The superscripts designate projections of the global marking y on the
places of particular submodels. For instance, u!'?3 denotes the projection of the global
marking on the places of the first SBRM of the highest level of operation, the first SBRM
of the operation at the next level, the second SBRM of the operation at the third level
below the highest, and the third SBRM from the operation at the fourth level below the

highest.

3.3.2 State Trees

While the notation used in the previous section is convenient for formally describing

the state of a composed SAN-based reward model, it is not convenient for describing the

39

mechanisms of the state change and future events list management. We do this using a
state tree.

State trees have three types of nodes: join nodes, replicate nodes, and SAN nodes.
All leaves of a state tree are of type SAN. Nodes that are not leaves have types join or
replicate. A node of type SAN, in particular, also has a sub-type which relates the node to
an individual SAN model. The type of a node ¢ is referred to as type;. In the discussion
that follows, we denote the levels of the node by their distance from the root node, whose
level is 0.

The state treeis directly related to the description of state given in the previous section.
A vector of markings is represented by a join node. A replicate node represents a bag. A
SAN node represents a SAN in a particular marking.

Every node on the state tree has a corresponding node in the composed model diagram.
A node on a particular level on a state tree corresponds in type and level with a node on
the diagram. On both the state tree and the composed model diagram, nodes related to
SANs are at the lowest levels on the tree. Furthermore, each state tree node has associated
with it a subset of the distinguished places of the corresponding node in the composed
model diagram. These are the places that are distinguished at the node, but not to its
parent node. For convenience, we use the expression “a place at node 7" to characterize
this relationship between nodes in the state trees and places in the composed SAN-based

reward model.

40

Given this assignment of places to node in the state tree, we define u; as the restriction
of the global marking to the places at node 7. The marking p; appears next to a node ¢
and is ordered according to the alphabetical order of the places at that node.

Nodes are connected by directed arcs. An arc that connects a parent node ¢ to a node
J has an associated integer n;;, where n;; is the number of occurrences of the marking
of the SBRM represented by a node j in the bag corresponding to ¢. By definition, each
outgoing arc j from a join node ¢ has n;; equal to one, since there is one copy of each
constituent SBRM used in the join operation. Finally, for every node i representing an
operation, we denote its set of of children nodes as Cj.

To illustrate the use of state trees, consider once again Figure 3.1. In this figure, the
letters “D;” denote sets of distinguished places at certain levels in the composed model and
let Py, P, and Ps be the set of places for SAN submodels, Sy, S2 and Ss, respectively. Let
Py = {a,b,c,d}, P, = {e, f,g} and Ps = {h}. Furthermore, let D¢ = {e,g}, D7 = {h},
Dy = {e} Ds = {h}, D3 = {h}, D2 = {a} and Dy = {h}. A possible state tree for this
composed SBRM could be as in Figure 3.2. The vectors at the nodes represent possible
markings of the places at those nodes.

Nodes that do not have places associated with them, do not have a marking associ-
ated with them. The places that are distinguished at the represented operation are also
distinguished at the next higher level of operation. The place A of S3, for example, is at
the root node. This place was distinguished at the leaf and at every operation at the next

higher level up to the root level. The marking of this place is 0. Similarly, the marking of

J (0)

Y
S2(1) @®s3

Figure 3.2: Example State Tree

S1 (1,0,1)

41

42

place a, the distinguished place of Sy for the join operation represented by the root node,
is 0, as is the marking of place e of 5.

As can be seen on the 3.2, the representation of state tree closely parallels the repre-
sentation of the composed state using bags and vectors . The number on the arcs depict
the number of occurrences of a child (SBRM) in the possible bag or vector at the next
higher level of composition. Note that the union of the markings at the nodes on a path
from the root to a leaf results in a marking that includes the particular projection of the
global marking on the places of the submodel represented by the leaf. A path from the
root node to a leaf is referred to as a “route”. We define the route as a list of nodes that
are on a directed path from the root to a leaf. To refer to a node at position / on a route
to a leaf j, the notation route;[l] is used. For example, the route to the left most leaf

node is the list formed by all the left most nodes at each level on the tree.

3.3.3 Compound Events and Multiple Future Events Lists

The procedures described later in this chapter make use of the state tree to efficiently
perform future events list management. This is achieved by reducing the number of
activities that are checked for a change in their “status” (i.e., enabled or disabled) from
one composed SBRM stable state to a next stable state.

It is possible to achieve this reduction because of two facts:

1. If an activity e is in a particular status in some marking p, all replicates of this
activity which have their input places in the same marking as the input places of a

will be in the same status as a.

43

2. From one composed SBRM stable state to the next stable state, the only places that
could have had a change in their marking are the ones connected to the activity
that just completed. Furthermore, the only activities that could have had a change
in status are the those connected to these places. We can, thus, identify a region in
the composed SAN-based reward model that was affected by the state change. The
checks to determine how the state change affected the the status of activities can

be limited to that region.

Building upon the first fact, we define a representative activity as an activity that
“represents” the set of replicate activities a; € A1, a2 € Ag, ..., a; € A;, ..., @, € Ay,
where A; is the set of activities of a replicate submodel 7 of a set of n replicate submodels
of a particular type in identical markings. Each representative activity is an event type
in the new simulation technique, whereas activity completions are events.

As seen in the previous section, the state tree is organized in a manner that allows
for identification of sets of replicates in a particular marking, as well as the number in
that marking. During simulation, for list management purposes, instead of having every
replicate activity checked for its status in the current marking, we use the representative
activities. These checks are then reduced to a single check per set of replicate activities for
a set of submodels in identical markings. The events for each of these replicate activities
can be grouped into a list related to the representative activity. We call this list of poten-
tial completion times a “compound event”. More formally, we define a compound event
€, for representative activity a as the list of potential completion times {t1,%2,...,%,},

where 7 is the number of activities represented by a.

44

The number of submodels in a particular marking (n) can be found for every leaf,
using the state tree, by multiplying the numbers on the arcs on the route to the leaf.
Then, compound events can be built, each with n elements, from the list of future events
for each set of submodels represented by a leaf node.

The LAN example is useful to illustrate a possible state tree and corresponding multiple
future events lists. Specifically, consider the SBRM of Figure 2.5, where STATION is
the submodel of Figure 2.2. STATION is replicated three times holding place channel
as common. The result is then is joined with the network submodel of Figure 2.4, holding
the same place, channel, as common.

Figure 3.3 illustrates a possible state tree for the LAN model. The vectors beside nodes
represent the marking of the set of places at the nodes. Note that the SAN NETWORK
only has one place, the one used in the join operation. The nodes have labels that show
what they represent. Arcs to children nodes have an integer associated with the “number
of occurrences” of the child SBRMs in that state. There are two routes, one formed
by the nodes that lead to the leaf corresponding to submodels of type STATION in
marking (0)(1,0,1) and another by the nodes that takes us to the submodel NETWORK
in marking (0). Note that we use the notation (0)(1,0,1) to denote the marking of the
submodel STATION when the marking of channel is 0, the marking of Ais 1, B is 0, and
Cis 1.

Figure 3.4 shows how the multiple future events lists are formed. The compound
events are represented by the names of the corresponding representative activity. One

leaf is associated with the the set of compound events E; and the other with E;. Ej has

45

J (0)

R NETWORK

y
@ STATION (1,0,1)

Figure 3.3: A Possible State Tree for LAN model

two compound events scheduled, arrival and access. The first number of the subscript to
e relates it to a particular set, and the second identifies it with a representative activity in
SAN submodel of type STATION. Since there are three replicates of type STATION in
the same marking, the result of multiplying the integers at each arc on the route from the
node at the highest level to the leaf, arrival has three potential completion times. The
compound event access similarly has the same number of times. F3 has no compound
events, since there are no activities enabled in N ETWORK in this marking.

Figure 3.5 shows a possible state tree resulting from an activity completion, in this
case access, in one of the submodels of type STATION. Because this caused a change
in the marking of a place at the lowest level, there is one more leaf. Each leaf represents
a set of submodels of the same type in identical markings. For instance, the leftmost leaf

is representing a set of two submodels of type STATION in identical markings. The

46

J ©0)

R NETWORK
E2: g

Y
@ STATION (1,0,1)

El: {arrival, access}

arrival: {t111,t112,t113}
access: {t121,t122, t123}

Figure 3.4: Future Events Lists for a Possible State Tree

compound events for the future events list associated with this leaf have, therefore, two
elements each.

The procedures to execute a composed SBRM are presented in the next subsection.

3.3.4 Composed SBRM Execution Procedures for Simulation

Having introduced the notion of a state tree and compound event, it is now possible to
describe the methods that can perform the multiple future events list management. We

start with Procedure 3.3.1.

Procedure 3.3.1 Initialize(i, n, p)

(Initializes all sets of compound events associated with leaves on the state tree)

Variables :

¢ : a node on the state tree.
n : the number of submodels in same marking on a particular route on state tree.

NETWORK
E2: §
STATION (1,0,1) STATION (0,1,0)
El: {arrival, access} E3: {arrival}
arrival: {t111,t112} arrival: {t113}

access: {t121,t122)

Figure 3.5: Another Possible State Tree

i : a marking.
Begin :
p=pUp
if type;= REP
for each ¢ € C;
Initialize(c, n * n; ¢, p)
if type;= JOIN
for each ¢ € C;
Initialize(e, n, p)
if type; = SAN
E, =0
for each a € En,
form=1ton
e, = e,U Generate(a, m, p)
E;= E; U {e,}
End.

47

Procedure Initialize schedules all enabled activities on the multiple future events lists,

given the top node of an initial state tree. The parameters n and p should be initialized

48

to one and the the empty set, respectively, before the call to this procedure. It recursively
traverses the state tree performing the “number of occurrences” operation and forming
projected markings. At the leaf nodes, pairs of the type (n, 1) are available, where n is a
number of submodels of a particular type in identical marking p (a projection of the global
marking on the submodel represented by a leaf). Compound events are then formed with
n potential completion times for each activity enabled in p This is done by checking if
each representative activity is in the set En,, the set of enabled activities in marking
p. Recall that all replicates of an activity in replicate submodels in a particular marking
will have the have the same status. Thus, only one check per representative activity is
needed. Function Generate(a, m, 1) is used to generate a potential completion time and
a set of reactivation markings, React,, for activity a in the m** submodel, given that it
is activated in pu.

Procedure 3.3.2 generates a new state tree. The procedure recursively traverses the
path on the tree defined by the route to a representative activity with the earliest potential
completion time. When this procedure is called, ¢ is initialized to the root node on the
state tree, j is initialized to the leaf node associated with the submodel where the activity
completed and ¢ is the activity that completed. k is the position of the earliest time on
the list of potential completion times of the compound event associated with @ on the set
of compound events related to j. u is initialized to the empty set and level is initialized to
0. On each level of the reverse recursive traversal on the route to leaf j, BuildNewTree
returns the topmost node for a newly created subtree representing the child of the node

at the current level in the state tree for the new state. This child node will substitute

49

the child node that was on the route to the j in case there was a change in marking. The
new marking for the new state is also returned (y').

The projected marking for the replicate submodels represented by the leaf (u) is con-
structed by the unions at the beginning of the procedure. This submodel may then be
executed by completing the activity. The new marking ' for the submodel is generated
by procedure ExecuteSAN [18]. This procedure generates a set of possible next stable
markings for a submodel along with a probability distribution defined on the set. A new
marking is then chosen probabilistically using the probability distribution. Procedure
BuildNewTree will then check to see if u’ and u differ. If a difference is found, a set P
of places whose marking has changed is generated by Procedure Differ.

The distribution of this set of places on the state tree is very important in the generation
of the new state tree. In particular, by finding the highest level on the state tree (hid)
related to a place in set P, we can identify the subtree that contains the leaf nodes related
to the submodels that changed in marking. All other submodels need only be checked for
activity reactivations. The root of the subtree is the the node in the list of nodes in the
route to leaf j at level hld.

After this initial check is made for a difference in marking, the procedure will begin
to return recursively from the calls made on the route to the leaf node. If no difference
is found at the leaf level, the procedure will check u’ and u at each node, checking to
see if the marking of the places at that node differ. Once a difference is found, the flag
di f Below will be set to TRUE to signify that a new state tree should be built during the

remaining reverse recursive traversal of the tree. Assuming that difBelow is TRUE, at

50

each level where there is a replicate node when returning from recursion, the new state
tree built up to that level will be checked to see if this subtree matches any other child
subtree in the old state tree. If it does, the integer representing the number of replicates
in that marking will be incremented and their compound events will be merged together.
Otherwise, a new child node is created with the weight on the arc equal to one.

For the join nodes, the child in the old state tree on the route, will be replaced by
the new child configuration which was built on the way up. The subtree for a child that
is not on the route will be recursively copied. Different actions are then taken on the
lists of future events for the leaves of the copied subtree depending on the level of its top
most node. If this node is on a level above hld, the projected marking for the submodels
represented by the leaves will not have changed, and hence need only be checked to see if
any activities should be reactivated. On the other hand, if the level is lower than hld, a
set of activities connected to the places that changed in marking is created at each node.

These are the activities that need to be checked to see if they should:
1. be aborted, if they were active;
2. continue to be active;

3. be activated, if they weren’t active.

Since the events are now organized into compound events, only one activity check per
compound event is needed. The individual events will then be removed or scheduled n
times resulting in new compound events denoted by the e’ notation.

The old compound events for a particular leaf on the old state tree will gradually
decrease in cardinality as the potential completion times are removed or moved to new

leaves created by a split on the tree while the new state tree is being created. At the end

51

of this procedure, a new state tree with the new sets of compound events at the leaves
is the result if a difference in marking was found. If no change in marking was detected,

state tree is not modified.
Procedure 3.3.2 BuildNewTree(i, 7, a, k, u, level)

(Returns the root node for a subtree in state tree for new state and the new projected
marking on the places at the nodes on the route to j at and above the level at which the
procedure is called.)

Variables:
: a node on the state tree.
J: the leaf on the state tree corresponding to activity completion.
a: the activity that completed.
k: the position on the list of potential completion times of compound event for
activity that completed.
(: a marking.
level: level on state tree.
Begin:
= U
if type; = JOIN
(¢, 1) = BuildNewTree(route;[level + 1], 7, a, k, p, level + 1)
if di f Below = FALSE
if i # pi
P = Differ(y/, u)
hld = FindHighestLevel OfDiff(P)
if hld < level
di f Above = TRUE
i’ = BuildSubTree(i, dif Above, 1, u')
difBelow = TRUE
return (¢, p' — pt)
else return (7, u' — pf)
else
if hld > level
di f Above = FALSE
i’ = BuildJoinNode(¢, ¢/, dif Above, p', route;[level + 1])
return (¢/, ¢/ — ul)
if type; = REPLICATE
(¢/, ') = BuildNewTree(route;[level + 1], 7, a, k, u, level + 1)
if dif Below = FALSE
if pi # p
P = Differ(y/,)
hld = FindHighestLevel OfDiff(P)
if hld < level

52

dif Above = TRUE
i’ = BuildSubTree(:, dif Above, 1, p')
dif Below = TRUE
return (¢, p' — pt)
else return (7, p' — ul)
else
if hld > level
di f Above = FALSE
i’ = BuildReplicateNode(s, ¢, di f Above, ', route;[level + 1))
return (¢, ' — pt)
if type; = SAN
i = ExecuteSAN(a,)
if g # pa
P = Differ(y/, p)
hld = FindHighestLevel OfDiff(P)
i’ = BuildNewLeafNode(i, P, 1/, k)
difBelow = TRUE
return (¢, ' — pl)
else
dif Below = FALSE
return(z, p' — pl)
End.

Procedures 3.3.3 and 3.3.4 directly take actions on the future events lists. Procedure
BuildNewLeafNode creates a new leaf node and a new future events list for the node, if
a difference between y and p' was found at the leaf node associated with the activity that
completed. The parameters are the original leaf node (z), the set of places that changed
in marking (P), the new projected marking (4') and the position on the list of potential
completion times, within the compound event, for the activity with the earliest potential
time (k). It returns a leaf for the new state tree. The node is created with same type
and subtype of the original leaf node by procedure CreateNode. This is needed since
a new tree with a possibly different structure is being built recursively. The operations
are done once on each k** component for each compound event, where k is the index of

the earliest time on the compound event with earliest completion time. These include

moving a potential completion time from a compound event to another, deleting a time,

53

reactivating, and scheduling an activity completion. We make the assumption that the
indices of the remaining times on the lists of times of each original compound event that
are greater than index %k are decremented by one representing a decrease by one in the
size of each list.

A set of representative activities in the SAN submodel associated with node j connected
to the places that changed in marking, P, is generated by a procedure ActChanged(P,
7). This reduces furthermore the number of activities that need to be checked.
Procedure 3.3.3 BuildNewLeafNode(j, P, p/, k)

(Returns a leaf for the new state tree.)

Variables :

J: leaf node on original state tree.

P : set of places that had a change in marking.

p': the new projected marking on the places at i and nodes above.
Begin :

j' = CreateNode(j)

A = ActChanged(P, j)

Ey=90
foreachac A
ifa€ Eny
el, =0
if e, € E;
if 4’ € React,
e/ = e/,U Generate(a, 1, ')
else
el = eg Ui
€y = €4 — {tk}
else
e, = e,U Generate(a, 1, u')
Ejr = Ej U{ey}
else
ife, € E;
€a = €g — {tk}
for each e, € E;
ifag A
e, =0

if 4’ € React,
e;, = e,U Generate(a, 1, i)

54

else
e, = €, U {1k}
€y = €4 — {tk}
Ej = B; U {el}
End.

Procedure 3.3.4 copies a subtree and does future events list management. It performs
basically the same operations as Procedure 3.3.3, when there is a difference between the
new marking and the old marking of places at nodes that are at the level of the subtree
being built or above. A flag, difAbove, is passed to this procedure for this purpose. The
operations are done leaf by leaf while traversing recursively on the subtree. Every opera-
tion on a compound event is done n times, where n is the number of replicate submodels
represented by the leaf in the new state tree if no “merging” of leaves occur later in Pro-
cedure BuildReplicateNode (to be explained later). These include moving a potential
completion time from a compound event to another, deleting a time, reactivating, and
scheduling an activity completion. As in Procedure BuildNewLeafNode, the indices
of the remaining times in the original compound events change. In this case, they are
decremented by n, reflecting a decrease in size of the compound event.

The activities are checked only for reactivation if there is no difference in the marking of
the places related with nodes above the level of this subtree. The parameters for procedure
BuildSubTree are ¢, the root of the subtree on the original state tree, difAbove, the
flag mentioned earlier, n, an integer that should be initialized to 1, and u/, the projected
marking on places at nodes on the route to the leaf associated with the activity that

completed above and at the level at which the procedure was called. The root node of

the new subtree is returned.
Procedure 3.3.4 BuildSubTree(i, dif Above, n, u')

(Returns the topmost node of a subtree for the new state tree)

55

Variables :
i: a node on the state tree.
dif Above : a flag that indicates if there is a difference between the old and the new

marking on or above a level above this subtree.
n: the number of submodels in same marking on a particular route on state tree.

': the new projected marking on places at ¢ and nodes above.

Begin :
i’ = CreateNode(?)
W= U
if type; = REPLICATE
CZ'I - m
for each ¢ € C;
¢’ = BuildSubTree(c, dif Above, n * n; ¢, 1)
Nyt et = N
Cu=CpU {c'}
if type; = JOIN
Co=90

for each ¢ € C;
¢’ = BuildSubTree(c, difAbove, n, u')
Ny ot = 1
Cy=CyU {C’}
if type; = SAN
if dif Above = FALSE

Ez" = @
for each e, € E;
e, =10

if 4’ € React,
form=1ton
e, = e,U Generate(a, m, p')
else
form=1ton
el, =e U{ty}
es =€, — {tm}
Ey= EyU{e,}

else
A = ActChanged(P, i)
Eqy=90
foreacha € A
lf a € ETL#/
e, =0
if e, € F;

if 4’ € React,
form=1ton
¢!, = e/ U Generate(a, m, u')

56

€4 = €g _'{tm}
else
form=1ton
e =eg U {tm}
es = €g— {tn}
else

form=1ton
!

e/, = e,U Generate(a, m, u')
Ey;=FEyU {6;}
else
ife, € E;
form=1ton
€a = €q — {tm}
for each e, € F;
ifad A
el =0
if 4’ € React,
form=1ton
el, = e/ U Generate(a, m, u')
€y = €4 — {tm}
else
form=1ton
g = e, U {tn}
€q == €4 — {tm}
Ey=FEyu {e{l}
return(s)
End.

The algorithm described by Procedure 3.3.5 creates a join node on the new state tree.
It makes use of Procedure 3.3.4 to copy the subtrees on the original state tree of all the
children of the join node other than the child that contains the leaf for the submodel that
had an activity completion (oldChild). This child gets replaced by the new child that
. was built. Parameter ¢ is initialized to the join node on the original state tree. Parameter
¢’ is the child node on the new state tree that was built previously. difAbove is the flag
mentioned earlier and 4’ is the projected new marking on the places at node 7 and nodes

above its level on the route to the leaf associated with the activity completion. A join

node for the new state tree is returned.

57

Procedure 3.3.5 BuildJoinNode(z, ¢, di f Above, u', oldChild)

(Returns a join node for the new state tree)

Variables :
1 a node on state tree.
¢’: the child that will go in place of old child.
@'t the new projected marking on places at i or at nodes above.
oldChild: the child subtree where the activity completed.

Begin :
i’ = CreateNode(i)
Cyp=190

for each ¢ € C;
if ¢ # oldChild
¢” = BuildSubTree(c, dif Above, 1, i)
n,;I’CII = 1

Cop=CyU {C”}

else
nil’cl = 1
Cy=CuU {C'}
return (i)

End.

Finally, Procedure 3.3.6 builds a replicate node for the new state tree. This procedure
may actually split the tree by creating a new child node or merge two child nodes because
they are found to be the same. Two children are said to be the same if the markings
of the places associated with their nodes are the same. Since we are building the state
tree from the bottom up, returning on the route that took us down, it is known that the
markings for the places associated with the nodes above the replicate node on this route
will be the same. We may, thus, conclude that the projected markings on the submodels
represented by the leaves below will be respectively equal. If two nodes are merged, every
compound event for each set of compound events, E;, for a leaf ¢ on the “old” child (¢) can
be merged with the corresponding compound event on the new set E; for new leaf i/, on
the new child (¢’). This is done by a procedure (MergeEvents(c, ¢’)) that traverses both

children and performs the merge operation described above while at the leaves. As with

58

Procedure BuildJoin, the parameter i is initialized to the join node on the original state
tree. Parameter ¢’ is the child node on the new state tree that was built before the call
to the procedure. difAbove is the flag mentioned earlier and ' is the projected marking
on the places at node ¢ and nodes above its level on the route to the leaf associated with
the activity completion. A replicate node for the new state tree is returned.

Procedure 3.3.6 BuildReplicateNode(:, ¢/, dif Above, u', oldChild)

(Returns a replicate node for the new state tree.)

Variables :
7 a node on state tree.
¢t the child that will go in place of old child.
p': the new marking.
oldChild: the child subtree where the activity completed.

Begin :
i’ = CreateNode(?)
C,'/ = @

found = FALSE
for each c € C;
if ¢ # oldChild

if CompareSubTree(c, ¢’) = NOT_SAME_MARKING
¢ = BuildSubTree(c, dif Above, n; ., p')
Mgt et = N4 ¢
Cy=CyU {c"}

else
Nitet = Nye+ 1
MergeEvents(c, ¢')

Cy=CypU{c}
found = TRUE
else
ifn;c>1

¢ = BuildSubTree(c, difAbove, n;c — 1, p')
Nyt et = Ny — 1
Cy=CypU {C”}
if found = FALSE
n,v,c: =1
Cy=CyU {cl}
return (7')
End.

59

size sense_channel

arrival

Figure 3.6: Station Initial Marking

3.3.5 Example State Generation

We now illustrate how the procedures just presented can be used to generate new state
trees and future events lists. Take the LAN model composed of three replicates of the
station submodel of Figure 2.2 joined with the network submodel of Figure 2.4 as an

example. Assume an initial marking as described by Figure 3.6 and Figure 3.7.

— prop_delay_intra

/N
O channel

Figure 3.7: Network Initial Marking

60

The state tree for the composed model is as given in Figure 3.3. The elements on the
vector beside a leaf node of type STATION are u(A), u(B) and u(C), respectively. The
marking of place channel is in the vector besides the join node since this place is at that
node.

To create the future events list, procedure Initialize takes the root node, n = 1, and
initialized to the empty set. The procedure starts by including the marking of places
at the join node, i.e., the set y;, in g. Then Initialize is called again with 7 equal to the
replicate node, n = 1, and p = u;.

Now the node type is REPLICATE, and the union will be performed between p and
the marking of the places at this node. In this case, u is not changed since there are
no places at the node. Initialize is called once again resulting in a pair (n,u), where
n is now equal to three and y is the projected marking on the places of the submodels
represented by the leaf node for submodel STATION.

At this point, procedure Generate will generate three potential completion times for
each activity of this submodel enabled in marking u. The activities enabled are arrival
and access. These potential completion times are inserted in compound events with same
names as the enabled activities. Each compound event is inserted in the set F;, the set
of compound events for this leaf node.

Due to the recursive nature of the procedure, after several calls, we will get to the leaf
node for submodel NETWORK. By an argument similar to that above, the elements of
the pair (7, u) are now the integer 1 and the projected marking on the places of submodel
NETWORK. Activity prop_delay_intra is not in the set of enabled activities in p and
so an empty future events list is generated at this node. When the procedure terminates,

the result is the state described by Figure 3.4.

61

sense_channel

Figure 3.8: Station In New Marking

Assume now that the earliest potential completion time is #y93. This is a completion
time for the activity of type access in one of the replicates of the station submodel.
Procedure BuildNewTree takes ¢ equal to the root node of the current state tree, j
equal to the node that corresponds to the set of compound events that contains the earliest
potential completion time, a as representative activity related to this event type, p equal
to the empty set and level equal to the level at the root node, which is zero. Recall that
each leaf node has a route associated with it which takes us to that node. This procedure
starts by traversing the path on the route all the way to the leaf. At this point, p is
the projected marking of the submodel in which access will complete. ExecuteSAN
then generates possible next stable markings reached upon completion of the activity,
i.e., a set of projected markings on the places of the submodel type represented by the
leaf node which can result on the completion of access. Then a marking (u') is chosen
probabilistically from this set to be the new marking for the third replicate submodel.

The submodel of the station in this new marking is seen in Figure 3.8.

62

@ STATION (0,1,0)

E3: {arrival}
arrival: {1113}

Figure 3.9: Node for Station In New Marking

Since there is a difference between the old marking and the new marking in places at
the leaf node, a set of places of places that had a change in marking is generated along
with the highest level on the route at which a place had a change in marking. In this
case, the set is {4, B, C,channel} and the highest level of difference is 0, meaning that
all submodels had a change in marking.

Procedure BuildNewLeaf then creates a leaf node for submodel STATION in the
new marking. Compound events are now assigned to the new leaf node. The set of
activities that are connected to places in P is, in this case, the set of all its activities.
The only activity in this set that is enabled in u’ (the new submodel marking) is arrival.
A compound event will be, thus, be created for arrival and the potential completion
time #1153 will be moved from the compound event arrival in E; into the newly created
compound event of same name. The new compound event arrival will be inserted in
E3, the set of compound events corresponding to the new leaf. No activities need to be
reactivated, since the set of reactivation markings is null for each activity. Finally, this
compound event is inserted in the newly created set of compound events. Compound
event access in Ey has the 3"¢ potential completion time (¢123) deleted since the activity
access is no longer enabled in p'. Figure 3.9 shows the result of this procedure.

BuildNewTree then returns the new node from the recursion and calls Procedure
BuildReplicateNode. A new replicate node is created followed by a pass through the set
of child nodes. BuildSubTree is called to build the subtrees for the new replicate node.

When this procedure has control, the projected marking for the submodels represented

63

STATION (1,0,1) STATION (0,1,0)

El: {arrival, access} E3: {arrival}
arrival: {t111,t112} arrival: {t113}

access: {t121, t122}

Figure 3.10: Replicate Node for New State Tree

by the other leaf node is found using a union operation. It is known that there is a
difference above or at the level at which BuildSubTree was called. The activities in this
leaf node thus need to be checked for a change in status. We generate the set of activities
connected to the places of the set of places where changes occurred. For this node, the
only activity on this set is finish (the places at the leaf node for these station submodels
remained in the same marking), which is not enabled in the new marking. For all other
compound events in the old set, there will be created a new compound event of the same
type. Two elements will be transferred from each compound event to each newly created
corresponding compound event.

BuildSubTree then returns the new leaf node with the corresponding new future
events list. Since there is only one other child (the one from which the new leaf node was
created) we decrement its number by one. There are now only two submodels in identical
markings. Finally, both leaves are inserted in the set of children. Figure 3.10 is the result.

A join node will then be built by BuildJoinNode when Build NewTree returns from

the recursion to the highest level on the tree. Now all children except the child that has

64

prop_delay_intra

pda_gate

channel

Figure 3.11: Network New Marking

processed on the way back from the traversal (oldChild) will be copied recursively by
BuildSubTree. There is only one child other than the one that was on the route down
to the leaf for the station submodel where the activity completed. It is the leaf node for
submodel of type NETWORK. BuildSubTree builds the projected marking, in this
case the marking of place channel. This submodel is in a marking as illustrated by Figure
3.11.

The set of activities for this submodel connected to places that changed in marking
consists of the single element prop_delay_intra. This activity is not in En, and there
was no compound event for it in E; (it was not in En,). There is no other event in
E;. Therefore, a null future events list is created for this leaf node and the control
returns to BuildJoinNode. The node returned by BuildJoinNode is inserted in the
set of children for the join node as is the replicate node from Figure 3.10 node. When

BuildSubTree is finished, we have the state tree and future events as in Figure 3.5.

65

3.4 Comparison of Efficiency with Traditional Method

The example of a state generation just presented, although simple, is sufficient to
illustrate the advantages of the new procedures over the traditional method when there
are replications in the composed model. In the example, there were a total of six events
initially scheduled. To generate the new state, the traditional method would require a
total of six activity checks for the first step in future events list management. The checks
for reactivation would amount in the same number as in the method presented in this
chapter, since reactivations require that all activities which were enabled and continue
enabled be reactivated if they were activated in a given marking. This requires a total
check on the list of future events. The last step in the traditional method would result in
four checks (one for each of the three finish activities in the three replicates and one for
activity prop_delay_intra) in addition to the checks done in the first step. The total adds
to ten checks. The new method results in a total of five checks. BuildNewLeaf does
one check for each representative activity since all were connected to places which had
a change in marking. BuildSubTree does one check for representative activity finish,
when building the replicate node, and one on activity prop.delay_intra when building the
join node. This is a 50% reduction in the amount of times a costly operation is performed.
Simulation of composed SBRM models that contain large number of replications will thus

benefit significantly if the new methods are used.

66

CHAPTER 4

Simulator Execution and Variable Estimation

4.1 Introduction

The purpose of a simulation is to study the dynamic behavior of a system. This is
achieved by constructing a model that allows us to investigate several dynamic charac-
teristics of the system. These characteristics are represented by variables defined for the
model. Typically, the end results of a simulation are confidence intervals for characteristics
of the variables. Estimates of the mean and variance are, in general, most often wanted.
These can be obtained by inferences on the output data generated by a simulation.

This chapter explains how both a steady-state and a terminating simulator were devel-
oped, using the principles of the last chapter, for simulating composed SAN-based reward

model.

4.2 Random Number Generator

To truthfully represent real system events that occur randomly in time, the simulator
must have a random number generator that generates uniformly distributed [0, 1] random
numbers that appear to be independent. There are two uses for random numbers in a
composed SBRM simulator. In particular, every timed activity has a distribution func-
tion defined. Samples from this distribution are used to generate potential completion

times. In addition, after activity completions, a next stable marking needs to be selected,

67

probabilistically, from a set of possible next stable markings. These are done by transfor-
mations on random numbers. In a sense, we generate a possible numerical value that the
random variables “potential completion time” and “case chosen” can take on, according
to their distribution.

One of the most performed operations in simulation is random number generation. It is,
then, of tremendous importance that, besides being reliable, the mechanism for generation
of random numbers be fast. Tauseworthe generators are widely known random number
generators [9]. These generators exhibit very interesting characteristics. In particular,
they are very fast, independent of machine architecture and generate fairly good random
numbers with very wide period. This is the type of random number generator used in the
implementation of the simulator.

The algorithm is based on shift register operations. The algorithm is summarized

below, assuming that the seed U; is stored in a machine word X:
1. Copy X to T.
2. Left shift X by ¢ bits filling with zeroes.
3. Let X = X zor T, copy X to T (bitwise exclusive or)
4. Right shift T by ¢ — p bits filling with zeroes.
5. X = X zor T now contains U, 41

The values for p and ¢ were chosen to be 31 and 13, respectively, from a table in [19].
These values give maximum period, which is the length of the sequence of subsequent

values generated starting at the initial seed and ending before the initial seed is repeated.

68

4.3 Confidence Interval Generation

Confidence intervals are constructed for the chosen variables by generating several, say
n, independent realizations of model behavior, each of them resulting in an observation.
The confidence interval is then given by:

s*(n)

n

X(n) £ty 1,1-0/2

where X (n) is the mean for the estimators X 1, X2, ..., X, resulting from the n realiza-
tions, lp—1,1~a/2 i8 @ value from the students ¢ distribution, s?(n) is the sample variance
and 1 — /2 is the level of confidence. We iteratively generate realizations until the width
of the interval reaches an acceptable size.

The manner in which realizations are generated depends on the type of measure to be
estimated. If one wants to define measures relative to an interval or point of simulated
time, then a terminating simulation used. This type of simulation is normally used when
transient characteristics of the system are of interest. It terminates when all variable
observations are collected. If the goal is to estimate measures defined as limits as the
length of the simulation goes to infinity, we use steady-state simulation. In this case, the
length of the simulation is made long enough to produce “good” estimates of the measure.

The interval-of-time variable Y(t,t+41), the timed-averaged-interval-of-time variable W[; ;1
and the instant-of-time variable V; should be estimated with terminating simulation. In
addition, if one wants to estimate time between specific completions of an activity using a
variable of type T'B;, then terminating simulation should be used. Estimates of instant-
of-time variables V;_,,, and time between completions of activities, T B,, are estimated

using steady-state simulation.

69

Two estimators were implemented for each variable: the sample mean and the sample
variance. Both are calculated using methods that avoid problems of machine overflow,
which may occur when performing a long series of summations.

Terminating simulation is done using the method of independent replications [9]. It
works by running several simulations (replications) of the system, each with different
random number streams. By using different streams of random numbers, we make the
runs independent. Each replication is “terminated” when the variables for that replication
are collected. At each end of a replication a new observation for each variable is obtained
and confidence intervals for the estimates are generated. Additional replications are made
until the width of the confidence interval for each estimator is within the desired range.
This range is specified as a width relative to the sample mean, the relative width.

A confidence interval generation for the mean using this method is as follows:
1. Generate M independent replications X,..., Xas of the random variable.

2. Calculate the sample mean

4. Calculate confidence the interval half width, hw:

52
M-11-a/2 Wi

70

5. Find relative width hw/j

6. If relative width is acceptable stop, else continue.

7. M=M+1

8. Generate another observation, Xps and go to step 2.

For the variance, one could simply use s? as the estimate and build the confidence
interval similarly to the mean. However, the confidence interval for the mean was con-
structed making the necessary assumption that the X,, be normally distributed. Unlike
the the result for the mean, the confidence interval for the variance is quite sensitive to
deviations from the normal assumption. Use of this method could thus produce incorrect
estimates of the confidence interval width. Instead, we use a method known as jackknifing
[8], which is much less sensitive to the distribution of the X,,. Using this method, we find
the sample variance as in the method for the mean confidence interval, but we also find 3?

for j =1,..., M, the sample variance of Xy, ..., Xps with the observation X; removed:

1 M—1 .

2 _ 2 _ A2

% M—-QE. m = 27 =3 (K4
m#j

where

Next, we calculate “pseudovalues” Z; = Ms? — (M — 1)8?, for j = 1,...,M. The

expected value of Z; is the true variance, o2.

Now we calculate the sample mean Z of the Z;, j = 1,..., M and their sample variance,
52, where
_ 1 H¥
Z=17 Z Z;

Jj=1

71

and

The confidence interval is then

_ 52
Zxty 11-a/2 i

The method of batch means, used in steady-state simulation, parallels the method
of independent replications except that the sequences are adjacent, subsequences of the
output of a single simulation run. We first determine a length that can be used to partition
the sequence into batches of data. We then assume that two observations of the sequence
of output that are far enough apart such that they can be considered uncorrelated. Each
batch will thus be considered an independent experiment such as with the independent
replications but will generate one observation of the mean and one of the variance for the
variables.

To generate the confidence intervals correctly, the initial data that are found statisti-
cally correlated have to be extracted. This is done by specifying an initial transient cuttoff
point. Variables will only be collected after that point. The batches should be at least
the same size in length as the initial transient for them to be considered independent.
The mean and variance are estimated for each batch and will act as observations for the

confidence interval generation.

4.4 Reward Variable Collection

Several variables can be estimated by the simulators simultaneously. For the variables

types in the interval-of-time category, the terminating simulator has to be able to detect

72

the limits of their intervals. The variables should be collected during this period of time.
Similarly, the instants of simulated time specified for each instant-of-time variable have to
be detected to collect an observation of these variables. At each of these points in time,
the simulator has to take some actions related to the variables. We will call these points
“distinguished time points”.

As with the terminating simulator, the steady-state simulator has to act upon the
“status” of the variables. Specifically, at a time t;7,, the initial transient cutoff point for
variable Xy, the first batch for this variable should start. This is when the distribution of
Xt is considered to be in steady state and therefore the estimations for it can be collected.
At a time tgp, , a batch for the same variable should end. This point in time denotes the
end of an experiment with the model and we have an outcome for the chosen estimators
for the variables. A new batch for X; should, then, be started with a new time for it to
end. Variable updating at these times is done in a different manner than within a batch,
since ends of batches, as well as any other limit in time specified for reward variables,
might occur at times between two subsequent advances of the simulator clock.

One can think of these as points in time where an “event” occurs at which the simulator
must act upon the mechanisms of data collection for a variable. Similar to the future
events, a list of these distinguished time points is kept, now in increasing order.

The actions on the variable due to one of these time points can be performed by a
procedure such as ExecuteTimePointsList in the general procedures for both types
of simulators (Procedures 4.6.1 and 4.6.2, to be discussed later). At each new state,
before the simulation clock time advances to nextActivityCompletionTime, if the first
distinguished time point in the list is less than nextActivityCompletionTime, then the
list of distinguished time points is iteratively traversed until this is true. Then some

action is taken on the variable to which the time point was specified.

73

The distinguished time points can all be characterized as end points of some length
of time both in steady-state and terminating simulation. A time point may be a “start”
endpoint or an “end” endpoint. In steady-state simulation, each variable will have a start
time and a batch length. During variable initialization, the distinguished time points list
is created by inserting in the proper position on the list a time point of type “start”, t;r
for reward variable X; and another of type “end”, tgp,, which is obtained by adding
tiTy to the batch length. We are scheduling ends of batches.

When a time point ¢77, arrives, the “status” of X; is changed from NOT_STARTED
to JUST.STARTED and a time tsp,, a start time for the variable, is initialized to
trry. Observations of the estimates defined for X; are obtained when a tgp, arrives.
The confidence interval half widths and the relative widths for each estimate are then
calculated. If the relative widths are acceptable, the status of the variable is changed
to ACCEPTABLE. Otherwise, tgp, is assigned equal to tgp, which is afterwards
increased by the batch length and reinserted properly in the distinguished time points
list. The variable is re-initialized for the new batch to start. The variable changes from
STARTED to JUST.STARTED. Figure 4.1 shows these variable status changes for
different distinguished points. Times t;, 5, t3, and ¢4 are event times.

For terminating simulation, the limits of the intervals [t,t +] for variables of type
Y1440 and Yz 441}, and the instant of time ¢ of a variable of type V; are distinguished time
points. Every reward variable has a time ¢z on the list, which is the time to make the
observation and update the estimators. Variables of of the interval of time categories also
have a time tg. This is the start time of the interval [t,¢ + I]. Again, these distinguished
points in time are inserted in the list at variable initialization.

During execution, when a time tg arrives, the “status” of the corresponding variable

is changed from NOT_STARTED to JUST_STARTED. At time tg, time has come to

74

Yy JUST_STARTED
Y STARTED
|'__| NOT_STARTED

A

t1 tz2 |ts3 t4

trr teB teB

Figure 4.1: Variable Status Changes in Steady State Simulation

make an observation for the variable as mentioned. The variable changes in status from
STARTED (explained later) to EN DED and, if the variable is of the interval category,
its value is updated up to tg. Then the estimators are updated and confidence intervals
half widths and relative widths are calculated for the range check. The status of the
variable is changed from ENDED to ACCEPTABLE, if the check result is satisfactory.
When the last tg on the list arrives, if the all the reward variables have acceptable
confidence interval widths together with the ones for the time between completion variable,
the simulation has ended. Otherwise, the variables are re-initialized and a new replication
is started with a different random number stream.

After executing the actions for the time points in the list, we then advance the simu-

lation clock to the next activity completion time and proceed to update the variables.

75

4.5 Updating the Variables

4.5.1 Terminating Simulation

The variables need to be updated at each state change. This done differently according
to the type of index set for the variable. A sequence of time-between-completions variables
is a stochastic process {T'B{; | i € IN, j € IN, j > i}, whose index set is countable. In
terminating simulation, we fix the values of ¢ and j defining a random variable for which
we obtain one observation per simulation replication. We will then have a set of discrete
observations of T'B{; that enables us to estimate the mean and variance of the variable
and generate confidence intervals. More specifically, when an event of type a occurs for
the i** time, we wait for the j'* event of this type for an observation to be made. At
this point, the estimators are updated and the status of the variable is changed from
NOT_.OBSERVED to OBSERVED. The confidence interval is built and the relative
width is checked. If acceptable, the status of the variable is changed to ACCEPTABLE.

The variables of the interval-of-time categories are updated at each occurrence of an
event. A variable of type Y[, ;15 representing an accumulated reward during the in-
terval is updated according to its status. A JUST_STARTED variable of this type
will initialized to its rate reward in the current marking multiplied by the difference
(currentSimulationTime —tg), where tg is its starting limit. The status will be changed
to STARTED. When the variable is this status, the last simulation clock time is used
in place of tg to weight the rate reward to the time the rate was in effect. The result is
then added to the impulse reward of the last activity which completed and accumulated.

A variable of type Wy .4y is just the variable Y}, .4y averaged on the interval. The

variable is indexed continuously in time requiring. The mean of a continuous time process

76

1 | I I | [| | | I
t t t
S aq g tE
Figure 4.2: Time Averaged Interval of Time Variable Updating

can be evaluated iteratively by the following recursion:

_ timi—y 4 (T2 — t1)value
;=
123

To illustrate how this is done, consider Figure 4.2. This figure has a possible path for
the a possible reward defined for some variable. At ¢,,, an event of type a occurs causing
the variable to be initialized using value equal to the reward rate for the marking the
SAN is in during the interval [t5,%,,], &1 = ts —ts = 0, and 3 = t4, — t5. At t,,, We use
value equal to the impulse reward due to an activity of a; plus the reward rate for the
marking during interval [tq,,1,,]. Then, t; = t,, — {5 and i3 = t,, — t;. Finally, at time
tE, value is equal to the impulse reward for representative activity ag plus the reward
rate in the marking during [¢,,,tE], {; = t,, — s and ¢ty = tg —t,. After the last iteration,
m; is the time averaged observation.

Instant-of-time variables are not updated in this manner, since they are defined for a

particular time.

77

4.5.2 Steady State Simulation

Recall that, using the batch means method, the variables are collected throughout
the batches. There are new observations of the mean and variance at the end of each
batch. The confidence intervals are generated based on these observations, making the
assumption that they are statistically uncorrelated.

During a batch, at each event, the estimators for the batch are updated in a discrete
manner or a continuous manner according to the type of variable. While the reward
variable Vi_,., has an uncountable index set, the time between completion variable has
discrete index set and is, hence, computationally simple to collect. When an activity
completes, we need only subtract the current simulation time from the last time the an
activity of that type completed and a new observation is made. We then update the
estimators for the batch using the equations for means and variances of discrete samples.

The reward variables are indexed continuously in time, requiring methods of mean and
variance calculation similar to the weighting method used for the time averaged interval
of time variable explained in the previous section. The batch estimators are updated
also according to the status of the variables. This is done in an analogous manner, since
the starts and end of batches will act as the limits tg and tg for that variable. The
batch mean for a variable V;_,., is evaluated for intervals of length equal to the batch
size. We continuously observe the variable throughout the batch. The mean of the batch,
in particular, can be obtained using the same method used to collect the time averaged
interval of time variable in terminating simulation. The batch for the variance for the

batch can be obtained from the following derivation:

1 & 2
o} = E;Ak(xk—m) (4.1)

78

- L i ArXE - o i A Xy + L (4.2)
In i3 In = In

= = f: ApX}P - om ™ 4

= — kXi - 2mmN +m (4.3)
TN k=1

where Ty is the batch length, X} is the value at the &** interval, 7@ is mean of the batch
means, and mpy is the mean for batch N.

To avoid problems of arithmetic overflow, the first term is calculated recursively, again
using the method for the mean, since it is the mean of the X2. The variance for the batch
can be obtained at the end of the batch. The weighting of the averages are performed in

the same manner, substituting ts and tg for a variable of type Wit 40y bY trr and tgp.

4.6 Basic Algorithms for the Simulators

The previous sections provided general methods for simulation by independent repli-
cations and by the batch means methods. We now present algorithms which apply those
methods to solve composed SAN-Based reward models.

The algorithm for terminating simulator is as follows :
Procedure 4.6.1 Terminating Simulator

Begin
while estimators are not in relative width

InitializeVariables

currentTime = 0.0

p=>0

1 = ToplInitial StateTreeN ode

Initialize (7, 1, p)

CalculateRateRewards (i)

while distinguishedTimePointsList # NULL
nextActivityCompletionTime = Pop (lea fWithEarliest Event)
ExecuteTimePointsList (currentTime, nextActivityCompletionTime)
lastTime = currentTime
currentTime = nextActivityCompletionT ime

79

UpdateVariables (lastTime, currentTime)
J = leafWithEarliest Event
a = representative_Activity_for_FEarliest_Event_on_FarliestLeaf
k = position_of _Earliest_Event_on_EarliestLeaf
t = BuildNewTree(i, j, a, k, p, 0)
CalculateRateRewards (i)
change random number generator initial seed
End.

The algorithm starts with the basic initialization procedures. InitializeVariables
performs initialization of the variables after every replication. Procedure CalculateR-
ateRewards traverses the state tree collecting information about the marking to generate
values of rate rewards in the current state. Then, a realization of a simulation is gen-
erated. Before advancing the clock, the next activity completion time is obtained by
function Pop. This function takes a pointer to the leaf on the state tree corresponding to
the earliest event. By selecting the earliest compound event for the leaf followed by the
earliest time in this set, we obtain the next completion time. To avoid comparisons while
gradually building the new state tree with the new multiple future events lists, this event
is not yet removed from the list. Instead, we generate a new potential completion time
for it. If there should be a change from the current marking to the next marking, the
representative for this “possible” future event will actually be checked later in either pro-
cedure BuildNewLeaf or procedureBuildSubTree, depending on where at the tree the
the differences occurred. This “possible event” will be removed in case the representative
activity is no longer enabled. Otherwise, it is a future event and will be inserted in the
proper compound event formed when creating the new state tree. Finally, if there should
be no change in marking, the activity is activated again and its potential completion time
was now generated and the structure of the state tree and multiple future events list will

not change.

80

The checks on the reward variables which have distinguished time points greater than
the current time but less than the next activity completion times are then performed
along with any necessary variable collection operations described in Section 4.4 (Proce-
dure ExecuteTimePointsList). After advancing the simulation clock, we update the
variables according to the methods discussed previously (Procedure UpdateVariables)
and proceed to build the new state tree executing the composed SBRM. Once the model
is in the new state, we may calculate the reward rates in effect for the new marking.

When there are no more distinguished time points on the time points list, this run

should terminate and re-start with a new random number stream, if necessary.

The algorithm for the steady-state simulator is very similar:
Procedure 4.6.2 Steady-State Simulator

Begin
Initialize Variables
currentTime = 0.0
p="=0
t = ToplInitialStateT'reeN ode
Initialize(?, 1, p)
CalculateRateRewards (i)
while estimators are not in relative width
next ActivityCompletionTime = Pop (lea fWithEarliest Event)
ExecuteTimePointsList (currentTime, next ActivityCompletionTime)
lastTime = currentTime
currentl'ime = nextActivityCompletionTime
UpdateVariables(lastTime, currentTime)
Jj = leafWithEarliest Event
a = representative_Activity_for_Farliest Event_on_FEarliestLeaf
k = position_of _Earliest_Event_on_EarliestLeaf
t = BuildNewTree(s, j, a, k, 1, 0)
CalculateRateRewards (i)
End.

This procedure, at this level of abstraction, only differs from the terminating simulation
in that it executes a single run. The main differences are at the lower levels of details

where the batching for the variables is performed.

81

Both of the algorithms presented in this chapter were implemented in a performance
evaluation package called UltraSAN. The next chapter illustrates the usefulness of these

techniques through an example study of a CSMA/CD local area network.

82

CHAPTER 5

Results

5.1 Introduction

The LAN example discussed in earlier chapters was simulated using the procedures
presented in Chapters 3 and 4, both in transient and steady state. The goal was to
demonstrate the efficiency of those methods and to investigate the behavior of the LAN
with respect to different variables. First, the effectiveness of the procedures on the run
time was studied using the steady state simulator by varying the size of the LAN. Next
the use of SANs is illustrated in an investigation of the transient behavior of a ten station
CSMA/CD LAN. Finally, a 100 station LAN was simulated for an investigation on how

different loads influences several variables in steady state.

5.2 CSMA/CD LAN Model Description

Although the model of the LAN was presented earlier for illustration of composed
SBRM execution, we explain it in more detail here. The protocol employed is a variant
of the non-persistent CSMA/CD. In it, a station begins to transmit if it senses an idle
channel. Then, if the channel was actually idle, the transmission proceeds normally.
Otherwise, a collision occurs, since another station had begun transmitting but there was
not enough time for the signal to propagate to the first station at the time the channel

was sensed. If this is the case, the collision is cleared after an exponentially distributed

83

amount of time. When a busy channel is detected the station waits and attempts again
after a delay period. The model of Figure 2.2 represents a single station connected to
the channel. Figures 2.1 and 2.2 have the gates and activity parameters. Arrivals of
messages to the station queue are represented by completions of activity arrival. Place A
represents the queue. The number of messages waiting to be transmitted is represented
by the marking of place A. Gate size represents the maximum size of the queue by means
of its predicate. Activity arrival is only enabled if the number of messages in the queue
is less than the systems capacity.

A station sensing the channel is represented by a completion of activity access. When

this happens, the one of the following outcomes may take place:

1. If the channel is idle (marking of channel is zero), the marking of the place channel
is set to one signifying the start of a transmission. The marking of B is set to one

to indicate that a transmission is in progress for the station.

2. If the channel is being used but the signal has not yet propagated (marking of
channel is one), the marking of channel is set to three, indicating that there is
a corrupted message on the channel and the marking of A is incremented by one

meaning that a retransmission is necessary.

3. If a corrupted message is on the channel (marking of channel is three), the marking

of place A is incremented by one, since retransmission is necessary.

4. If a the transmission of a message is occurring on the channel for enough time to
propagate the message to all stations the marking of place A is incremented by one,
since the transmission was not possible, and the marking of place C is set to one

indicating that the station is, once more, waiting to seize the channel.

84

Completions of activity finish determine times required to transmit a message. Its dis-
tribution is dependent on the marking of channel having different parameters depending
on whether the message on the channel is corrupted or not.

The network submodel was also presented earlier (Figure 2.4). The time for the mes-
sage to propagate is represented by activity prop.delay_intra. The gate pda_gate activates
this activity when a unpropagated message is on the channel. When the prop.delay_intra
completes after an exponentially distributed time, the marking of the place channel is set
to two, to indicate that message has been propagated to all stations.

The composed model was obtained by the operations illustrated Figure 2.5.

5.3 Variables

5.3.1 Transient Simulation

The variables studied were queue length and the probability that propagated message
is on the channel assuming a load of 30% on the network. The reward structure for the

first variable defined for the station submodel was:

Cst(a) = 0, Va € A

i ifv={(A4,}
Rst(V) =

0 otherwise,

To determine the probability that a propagated message is on the channel at a partic-

ular time, we define a reward structure for the network submodel as:

Cn(a)=0, Vo€ A

85

1 if v = {(channel,2)}
Rn() = {()

0 otherwise,

When markings and activity completions of a submodel do not contribute to the vari-
ables, we define a “null” reward structure for this submodel such that the impulse reward
for all activities in the submodel and the rate reward for all markings of this submodel
are zero.

Variables of type E[V;] were used to estimate both variables at different points in times

using the terminating simulator.

5.3.2 Steady State Simulation

Expected queue length and fraction of time a propagated message is on the bus were
also simulated in steady state. Besides these variables, four reward variable and one time-
between-completions variables were investigated. The reward variables were: probability
that an incoming message is blocked due to a full queue, fraction of time the bus is idle,
fraction of time an unpropagated message is on the bus and fraction of time a corrupted
message is on the bus due to collision. The time-between-completions variable was used
to compute expected time between arrivals to the LAN.

Reward structures for the fraction of time various types of packets are on the bus
were specified in a similar way. The general form for the reward structure defined on the
network submodel was:

Cn(a)=0, Yae A

1 if v = {(channel,i)}
RN(v) =

0 otherwise,

86

where ¢ is the marking of the channel when the action on the bus was taking place.
To determine the blocking probability, the reward structure defined on the station

submodel was:

Cst(a) =0, Va€ A

1 if v = {(4,2)}
Rst(ll) -

0 otherwise,

5.4 Run Times for Different LAN Sizes

The steady state simulator was run for various number of stations to verify the effect
of the developed algorithms on simulator run times. The values were obtained for a fixed
number of batches when four variables were being estimated. The simulator was run on
DECstation 2100 with 20 Mbytes of memory.

As can be seen in Figure 5.1, the ten station model took almost 300 seconds to generate
five batches. When the number of stations was doubled, there was a very small increase
in time. Furthermore, the number of stations increased up to 1500% (a LAN with 150
stations), the run time only increased 300% relative to the time for the ten station model.
It can be seen that, at some portions of the curve, there was little increase in time,

although the number of possible future events increased significantly.

5.5 Terminating Simulation Results

The plot for expected total queue length at particular times given an initial queue

length of one at each station is given in Figure 5.2. The level of confidence of the confidence

87

| B
800_ m.ﬂ..‘,m.

700 1 P

Time (CPU Seconds)

- L P
500 +
400 -
3001 ...m.-_»
2004

1004

I] |] | | | | i]]] | |] |

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Number of Stations

Figure 5.1: Run Times for Five Batches - Steady State

intervals for the points is 95%. The expected individual queue lengths can be obtained
by dividing the result by the number of stations (10).

The results show that the initial transient phase ends little after ten seconds given that
there was one message at the queue per station at start time.

The plot for the expected values of the probability that a propagated message is on
the channel at times varying from one to thirty seconds is shown in Figure 5.3. Steady

state is reached at about 15 seconds given the initial marking.

5.5.1 Steady State Simulation Results

The results of how the seven variables estimated behave when varying the load on the
network in steady state are shown in plots. To simulate different loads, the arrival rate

parameter defined for activity arrival was modified according to the desired load. For

. . oy i
20 25 30 35
Time(sec)

Figure 5.2: Queue Length versus Time

e

e
B ,,_,,,,‘_::,M.,.
eslpii

o
w
|

Prob. Propagated Packet on Channel
o
'S
|

o
w
I

] | | | | l |
0 5 10 15 20 25 30 35
Time (sec)

Figure 5.3: Probability a Propagated Message is on the Channel versus Time

88

89

=
o
|

Queue Length
—
IS
|

0.0 #1 | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
Fraction of Full Load (100%)

Figure 5.4: Expected Queue Length versus Fraction of Full Load

example, for a load of 50%, a rate of .005 was used for each station. The results for
variable expected queue length and blocking probability should be divided by the number
of stations to obtain the answers for individual stations.

The results show that, even at high loads, the CSMA/CD performs very well. One
tends to expect large queue lengths as the load increases but the results show small queue
lengths.

The results for the variables defined for the channel show that at high loads there is

an increase in collisions and utilization but the performance is still very satisfactory.

90

Blocking Probability (1.e-3)
N
(=)
(=)
|

0.0 A O il I | !] ! i
0 10 20 30 40 50 60 70 80 20 100
Fraction of Full Load (100%)

Figure 5.5: Blocking Probability versus Fraction of Full Load

Fraction of Time Prop. Message on Bus
o
[+3}
1
*

I |] I] |]] | }
0 10 20 30 40 50 60 70 80 90 100
Fraction of Full Load (100%)

Figure 5.6: Fraction of Time a Propagated Message is on Bus versus Fraction of Full Load

91

Fraction of Time Unpropagated Message on Bus (1.e-2)

|] | ! |] |] |]
0 10 20 30 40 50 60 70 80 90 100
Fraction of Full Load (100%)

Figure 5.7: Fraction of Time an Unpropagated Message is on Bus versus Fraction of Full

Load

Fraction of Time Collision on Bus (1.e-2)

Y S | ! | |] | |
0 10 20 30 40 50 60 70 80 90 100
Fraction of Full Load (100%)

Figure 5.8: Fraction of Time an Corrupted Message is on Bus versus Fraction of Full Load

Fraction of Time Bus Idle
o
~J
1
-

0.0 (T N T (S IO T R
0 10 20 30 40 S0 60 70 80 90 100
Fraction of Full Load (100%)

Figure 5.9: Fraction of Time Bus is Idle versus Fraction of Full Load

—
—
[«

L

H
O o
o o
{ i

"1

Expected Time Between Arrivals
[e-]
(]
1

¢y

0.0 | ! | i]]] | | }
0 10 20 30 40 50 60 70 80 90 100
Fraction of Full Load (100%)

Figure 5.10: Expected Time Between Arrivals versus Fraction of Full Load

92

93

CHAPTER 6

Conclusions and Further Research

The objective of this research was to develop methods for efficient simulation of com-
posed SAN-based reward models, and to design and implement terminating and steady

state simulators based on these methods. To accomplish these objectives, we:

a) Developed a future events list management technique suitable for simulation of

composed SAN-Based reward models.

b) Developed and implemented steady state and terminating simulators for composed

SBRMs.

c¢) Mlustrated the effectiveness of the techniques presented in this thesis by evaluating

a CSMA/CD local area network.

The first objective was the most challenging. Much effort was made to make maximum
use of the composed model structure to reduce the the cost of future events list manage-
ment. We have provided formal algorithms to perform future events list management and
state generation for simulation of composed SAN-based reward models. Efficient meth-
ods to locate the differences between the new state and the old state were of fundamental

importance.

94

As for the second objective, the simulators were implemented in UltraSAN and will
soon be used in simulation of large realistic systems. Methods for collecting several
variables simultaneously were provided.

With regard to the third objective, we have verified the usefulness of the state gen-
eration methods for composed SAN-based reward models. we have simulated a highly
replicated computer system. The results show small increase in run times if considered
the large increase in number of possible future events. At some point, a decrease in run

time was observed.

6.1 Areas for Further Research

Simulation, in general, is yet to be a completely understood field. There are several
areas for future investigation. An interesting area is variance reduction. The traditional
method to achieve variance reduction is to run a simulation twice using symmetric random
number streams. By creating a SAN model exhibiting some symmetry in structure, one
might be able to reduce the variance of a variable during estimation.

Another area of interest would be to implement spectral analysis on the output data.
This method has been found to yield very accurate results, since correlation between
data is taken into account, rather than relying on assumptions that correlation has been
avoided.

As for the simulator implementation, it was found that most of the computational
time was spent with memory management. Efforts could be made to improve the data
structures in order to reduce memory allocation and deallocation. One way of improving
in this area would be to keep available the maximum number of possible child subtrees

for every replicate node on the state tree. In the worst case, the number of children nodes

95

for a replicate node is equal to the number of replications performed by the operation it
represents. This way, a subtree structure for a child of a replicate node will always be
available. Memory allocation and deallocation would be greatly reduced in exchange for
managing the available subtree structures.

Another way of reducing time spent in memory management is to have custom made
memory allocation and deallocation routines. Stacks of structures used to build a state
tree could be created making memory allocation less frequent. The structures would then
be “popped” or “pushed” into the stacks by some custom made routines to manage these

stacks.

96

Appendix A

Simulation in UltraSAN

A.1 Data Structures

A state tree depicts the number of tokens in the places of a composed model. Recall
that there are three types of nodes: replicate, join, or a subnet leaf node. The number of
children of a join node is fixed during execution but for a replicate node, it is variable. The
latter depends on the number of different elements in the bag of children for the operation
represented by the node at a particular time ¢. Only distinct projected markings of the
replicated SBRMs and the amount in these markings are kept track of. The leaves of the
tree represent subnets of a particular type that are in identical markings.

At each node, there is a vector of positive integers representing the restriction of the
global marking to the subset of places at that node. To obtain a projected marking for
a submodel, we traverse the tree from the root to the leaf representing that submodel
collecting the vectors in a set. When an activity completes, we generate a projected
marking as above using a route to the related leaf and obtain the new projected marking
that should result from this event.

Then, the new state tree is obtained and the new future events are generated using the
algorithms in the previous chapter. Figure A.1 illustrates a particular state tree structure

for a ten station LAN and a route to one of the leaves.

97

N € T)I : Join SIvensIRERERES wenee
Array of Common Places: jesseees -: channel: 1 ;
Array of Children Nodes: b— &

l

Node Type: Subnet
e Array of Common Places: null
Array of Children Nodes:

Subnet type: 2

H
R TLITTTYYTTTY)

Node Type: Replicate .
Array of Common Places: 3eseesed
Array of Children Nodes:

Number in Marking: 8 |

.

Number in Marking: 1 : Number in Marking: 1

Node Type: Subnet Node Type: Subnet Node Type: Subnet
Array of Common Places: Array of Common Places: j*: | Array of Common Places:
Array of Children Nodes: Array of Children Nodes: i | Array of Children Nodes:
Subnet type: 1 Subnet type: 1 i | Subnet type: 1

Figure A.1: A State Tree Data Structure for the LAN Example

Each node structure has a node type, an array of common places to keep the marking
of the places at the node, and an array of children nodes. There is an array of “number
in marking” for the children of a replicate node structure. This array is ordered only for
ease of comparisons between two children subtrees. The order is not essential. The leaves
have a subnet type, an integer to relate them to a position on the “subnet array”. The
nodes on the path determined by the dotted lines form a route.

A leaf node structure has associated with it a future event list structure, which has a list
of “compound event structures” and a pointer to one of its compound event structures
that has the earliest completion time. A compound event structure has a list of “time
structures” , a pointer to one of its time structure which has the earliest time and an
integer that identifies the event type. This integer is the position on the timed activity
array of the subnet on the subnet array associated with the leaf node. A time structure

has two elements. The first element is a value representing a potential completion time.

98

A time structure is generated either at initialization or when an activity is active but
was not active in the past state. Recall that an activity can be reactivated given that it
was activated in a particular marking. This marking is called the activation marking for
the activity. The time structure has also a flag indicating if this event was generated in
activation marking. In a later state, this makes it convenient to find if the event should
be rescheduled in case the marking is a reactivation marking. Note that for convenience
we have restricted the reactivation function to only one activation marking.

Figure A.2 illustrates how the future events are organized for the leaf representing the
set of eight replicates in the same marking (the leaf at the left of the figure) on the state
tree structure of Figure A.1. Since the number of replicates in the particular marking for
the submodels associated with that leaf is eight, both compound events of type arrival
and access have eight time structures. The earliest event is scheduled for time 122 because
it is the earliest time in the compound event of type access, which is the one with the
earliest time. Time structures for t21, t25 and t15 were generated in an activation marking
for an event of their types.

The SAN model is represented by an array of subnet structures. This structure contains
all the information about an individual subnet in the composed model. Each structure
of this type contains an array of “timed activity structures”, an array of “instantaneous
activity structures” an array of “place structures” and a function that returns a rate
reward given its projected marking. The maximum number of submodels of the type
represented by a particular element is kept in mazNumlInSameMarking.

The timed activity structure contains all the information about its inputs and outputs.
It has a list of input gates and a list of case structures. Each input gate structure has a
function that checks its predicate and a function that executes its input gate function.

A case structure has a function that returns the probability of the corresponding case

Earliest

Compound Event :

Figure A.2: A List of Future Events

Event Type : Event Type':

arrival access
—1 Earliest time Earliest time

False True
t11 21
False False
t12 22
False False

__tl3 23
False False
t14 24
True True
t15 125

—False False
t16 06
False _I'?alse
t17 27
False False
t18 128

99

100

being chosen in a particular marking and a list of “output gate structures” associated
with it. The output gate structure has a function that executes the output function of the
corresponding output gate. Timed activity structures also have a function that determines
if the activity needs to be reactivated in a particular marking. Another of its elements
is an array of impulse rewards for the activity in the various reward structures that one
may want for the model. Finally, the timed activity structure has a distribution function
and a function that returns the distribution function parameters for a particular marking.
The instantaneous activity structure has the same elements except the ones related to a
distribution function (the last two described above).

A place structure contains all the information necessary to access a marking of a par-
ticular place. It has an element offset and an element level that defines precisely where to
find its number of tokens in the set of projected markings on the places at each node on
a particular route. Each element of the subnet array has placeMap, which is a mapping
of the places on the array of places to the position on the arrays of common places of the
nodes associated with a particular place.

The data structures for a SAN model are specified in file sdp.h. The listing is given

below:

/%
* Created for use in UltraSAN, Copyright (c) 1990 University of Arizona

* *

W% AGY
* Ron Johnson and Manish Rai and Bob Freire

*/

#ifndef SDP_H
#define SDP_H

/*
* Macro defines
*/
#define MARK(i) *(x(subMark + place[(i)].level) + place[(i)].offset)

/*

* Defines for well specified check.
*/

#define MAX_NUM_PATHS 200

#define MAX_NUM_SUBMARK 200

#define MAX_PATH_LENGTH 200

/*
* General purpose typedefs
*/
typedef char* String;
typedef short Num;
typedef short Index;
#ifdef boolean
#undef boolean
#endif
#ifdef True
#undef True
#endif
#ifdef False
#undef False

#endif

typedef enum {False, True} boolean;
typedef boolean (¥Predicate) (J;
typedef double timeValue;
typedef short check;

typedef check (*Check) () ;

/*

101

* Place structure - contains the Place’s name, its marking via level and

* offset, and an array of the indices of the Activities of which this

* particular Place is an output.
*/

typedef short Level;

typedef short Offset;

typedef short OutputInstantActivityIndex;

typedef short OutputTimedActivityIndex;
typedef struct {

String name;

Level level;

Offset offset;

Num numOutputInstantActivityIndex;

OutputInstantActivityIndex *outputInstantActivityIndex;
Num numOutputTimedActivityIndex;

102

OutputTimedActivityIndex *outputTimedActivityIndex;
} Place;

/*
* DirPlace structure - contains the index number to find itself in the
* Place array, and the number of direct connections between itself and
* a given Activity.
*/
typedef struct {
Index index;
Num numConnections;
} DirPlace;

/*
* InhibPlace structure - contains the index number to find itself in the
* Place array, and the number of inhibitor connections between itself
* and a given Activity.
*/
typedef struct {
Index index;
Num numConnections;
} InhibPlace;

/*
* InputGate structure - contains the Input Gate’s name, its predicate
* and its function.

*/
typedef struct {
String name;
Predicate predicate;
Check function;

} InputGate;

/%
* QutputGate structure - contains the Output Gate’s name, and its
* function.

*/

typedef struct {
String name;
Check function;

} OutputGate;

/%

* Kase structure - contains the probability function, the number and

* array of the directly connected Places, and the number and array of

* Qutput Gates connected to it.

*/
typedef double

probValue;

typedef probValue (*Probability)();

typedef struct {

Probability probability;

Num

DirPlace

Num

JutputGate
} Kase;

/*

numDirPlaces;
*dirPlace;
numQutputGates;
*outputGate;

103

* Reactivation structure - contains the activation predicate function,

* and the reactivation predicate function.

*/

typedef struct {

Predicate activation;
Predicate reactivation;

} Reactivation;

/*

¥ X ¥ ¥ X O X

*/

typedef timeValue

typedef double

typedef paramValue

typedef Param
typedef double

typedef struct {

String
Num

Index

Num
DirPlace
Num
InhibPlace
Num

Activity structure - contains the Activity’s name, the number and
index of all Places connected to it, the number and array of all
directly connected Places, the number and array of all Places
connected by inhibitor Arcs, the number and array of all Input Gates,
the number and array of all Kases, the distribution type and
parameters, the number and array of reactivation functions and the
array of impulse rewards associated with it.

(*#DistributionType) ();

paramValue;
(*Param) () ;
Parameter[3];
*ImpReward;

name;
numPlaces;
*placeIndex;
numDirPlaces;
*dirPlace;
numInhibPlaces;
*inhibPlace;
numInputGates;

104

InputGate *inputGate;
Num numKases;
Kase *kase;
DistributionType distributionType;
Parameter parameter;
Reactivation *reactivation;
ImpReward impReward;

} Activity;

/*
* Subnet structure - contains the Place array, InstantActivity array,
* TimedActivity array, pointer to a function that that returns the
* rate reward in a given marking, a maping from a place in the
* submarking to its position in the place array, and the maximum
* number of subnets that can be in the same marking, for each subnet.
* The last two are used only in simulation solutions.
*/
typedef double *rateRewValue;

typedef rateRewValue (*RateReward)();
typedef struct {

String name;

Num numPlaces;

Place *place;

Num numInstantActivities;

Activity *instantActivity;

Num numTimedActivities;

Activity xtimedActivity;

RateReward rateReward;

Num **placeMap;

Num maxNumInSameMarking;
} Subnet;

#endif /% SDP_H */

The data structures for the state tree and compound events are specified in file
repjoin.h, located in directory usan/include. A state tree node is a RepJoin structure.
This type of structure has a code that will be set to zero, if it is a join node, a negative
integer, if it is a replicate node, or the index on the subnet array (sdp.h), if it is a SAN

node. A pointer, firstEleArr, points to the array representing the vector of markings of

105

the places at that node. The number in this array is numInArr. nextLevArris an array
of pointers to the next level structures having numNexztLevel as the maximum number of
children possible for the node. The next level structures may be another Repjoin struc-
ture, if the node is a join node, a Rep structure, if the node is a replicate node, or a
MidHeapStrct structure if it is a SAN node. The Rep structure has a pointer (repJoin) to
the child node and the number of replicates in the marking of that child node (numRep).

A structure of type MidHeapStrct has an array of pointers to the next node on the
path for each node from the root node to the leaf node (rout.midHeapSize is the number
of compound events on the set of compound events for the leaf node. An array of pointers
to structures of type FventStrct represents the set of compound events for a leaf node
heapPtr. The element earliest is the pointer to the compound event with the earliest
potential completion time and timeSetSize is the size of the set of times for the compound
events.

The compound events are represented by data structures of type FEwventStrct. This
data structure type has the offset of the activity it associated with on the array of timed
activities of the subnet associated with a leaf (actOffset). There is a pointer to an array of
pointers to structures of type TimeSirct, which is timeSet, and a pointer to the position
on this array associated with the earliest time in the set.

Finally, the structures of type TimeStrct have the potential completion time (time for
an activity represented by an associated compound event. The element actPred is a flag
that indicates whether the structure was generated during an activation marking or not.
A pointer of type TopHeap points to the leaf which is associated with the earliest potential
completion time of all.

Other structures that are in repjoin.h but not mentioned here are used by the reduced

base model generator. The file is as follows:

106

/* Created for use in UltraSAN. Copyright (c) 1990 University of Arizona
*

*

W NG
* Manish Rai and Bob Freire

*/

/%
* Reduced Based Model Construction header file.

*/

#ifndef REPJOIN_H
#define REPJOIN_H

struct repJoin;
struct rep;
struct midStrct;

/*
* Array of pointers to next level structures in a marking tree node
*/
typedef union {
struct repJoin **repJoin;
struct rep **rep;
struct midStrct *heapStrct;
}NextLevArr;

/%
* Each node in a marking tree structure
*/
typedef struct repJoin {
Num code;
Num numInArr;
Num *firstEleArr;
Num numNextLevel;
NextLevArr nextLevArr;
} RepJoin;

/*
* Intermediate structure between a replicate node and the next level node
* in the marking tree structure.
*/
typedef struct rep {
Num numRep;
RepJoin *repJoin;
} Rep;

107

/*

* Structure that keeps completion time for an activity and an element

* carrying the result of a check of the activation predicate for reactivation
* when it was scheduled. Used only in simulation.

*/

typedef struct time{
timeValue time;
boolean actPred;
}TimeStrct;

/*
* Future array of pointers to TimeStrct. Used only in simulation.

*/

typedef TimeStrct **TimeHeap;

/%

* Structure that contains information relevant to simulation. It has all the
* information needed for a scheduled event. Used only in simulation.

*

*/

typedef struct event{
Num actOffset; /*position on TimedActivity array on Subnet*/
TimeStrct *¥minTime;
Num timeSetSize;
TimeHeap timeSet;
}EventStrct;

typedef EventStrct **MidHeap;

/*
¥ Structure that contains information related to simulation. Every leaf on
* the marking structure has a pointer to one of these. Used only in simulation.

*/

typedef struct midStrct{
RepJoin **rout;

108

Num midHeapSize;
EventStrct **earliest;

Num timeSetSize; /*also needed here for time moving between heaps*/
MidHeap heapPtr;
Num subnetNum; /*position on Subnet array */

}MidHeapStrct;

/*
* Pointer to the leaf of the marking structure that has the earliest
* activity. Used only in simulation.

*/

typedef RepJoin *TopHeap;

/%
* Each element in the linked list of next states and rates to those states
* for a given state.
*/
typedef struct ratelList {
int stateNum;
double rate;
struct ratelList *next
} Ratelist;

/*
* A state
*/
typedef struct state {
RepJoin *mark;
double *rateRewArr;
double *impRewArr;
RatelList *firstRate;
Ratelist *lastRate;
} State;

/*
* Used by wellSpecCheck to return the list of next possible sub-markings and
* probabilities of reaching those markings.
*/
typedef struct {
Num numSubMarks;

109

Num ***subMarkArr;
double *probArr;
}SubStates;

/*
* Each element in the linked list of unchecked states.
*/
typedef struct stateList {
State *value;
struct statelList *next;
}Statelist;

/%
* Each element in the linked list used for compatibility set generation.
*/
typedef struct intList {
Num value;
struct intList *next
}IntList;

typedef struct markArr{

Num *arr;

struct markArr *next;
IMarkArr;

/*
* Each node in the AVL tree holding the set of all states
*/

typedef struct treeState {

State *ptr; /* pointer to entity associated w/this node */

int num; /* number assosiated with entity */

struct treeState *left; /* pointer to left child */

struct treeState *right; /* pointer to right child */

Num bal; /* balance facter of this node */
}TreeState;

/*

* An array of these elements form a path. The first configuration in a

* path contains the resulting marking of the path and probability of reaching

* that marking. Rest contain the submarking and activity that completed in
* that sub-marking.
*/
typedef struct {
Num **subMark;
union {

110

Activity *instAct;
double *prob;
} value;
} Confg;

#endif /* REPJOIN_H */

A.2 Source Code File Descriptions

This section describes the functions in each file of the source code for the simulators.
Every parameter that should be passed to a function is explained, as are the values

returned by them.

A.2.1 actocheck.c

This file contains the functions that identify the set of activities that that should be
checked for their status (enabled or disabled). To identify this set, a set of places per node
on the route from the root to the leaf associated with the activity completion is formed.

This is done by function genSetPlAffec. The parameters are :
1. The pointer to activity that completed, activity.

2. The pointer to the array of places of the subnet which had an activity completion,

place.

3. A bi-dimensional array which has the old markings of the places of the subnet per

node, oldSMark.

4. A bi-dimensional array which has the new markings of the places of the subnet per

node, newSMark.

111

This function returns a void, but creates a global structure containing linked lists of places
that changed in marking per node on the route from the root to the leaf node associated
with the activity completion.

Function genSetActoCheck generates a linked list of activities which might have changed
in status on the new marking based on the global structure created by genSetPIAffec. The

parameters are:
1. s, a pointer to an element in the subnet array.

2. lev, the depth on the state tree that determines which nodes on the route from
the root to the leaf related to an activity completion have places associated with a

particular subnet, identified by s.

The linked list is returned.

A.2.2 array.c

Function empArr compares array! to array2 up to length. A 0 is returned if the arrays
are equal. Otherwise, a 1 is returned when if, at the first point of difference, the element
of the first array is greater. A -1 is returned when it is the element of the second array
which is greater.

The function copyArr takes array and creates a copy of it up to length. A pointer to
the new array of integers is returned.

An array of integers is printed using printArr. It takes a pointer to the array and the
length of the array.

Function copyRteArr performs the same operations as copyArr on arrays of pointers
to node structures (RepJoin). These arrays represent a route from the root to a leaf. A

pointer to the new array is returned.

112

A.2.3 batch.c

This file contains two functions: readInF'ile and batchLoop. Both are for steady state
simulation only. The first function reads data related with the variables to be estimated.
Arrays of structures that keep all information for both reward variables and time between
completions variables are created and initialized. The parameter numSubnets is the num-
ber of subnets in the subnet array. inpPtris the pointer to the input file and mazBatches
is the maximum number of batches specified. The number of time between completions
variable read is returned (numActVar).

The second function takes a pointer to the initial state tree, repjoininit, and executes
iteratively the simulation, state by state. The variables are updated at each new state.
The parameter traceLev is the level of tracing on the model specified by the user. print-
Batch is a flag indicating that the results for the batches should be printed. prBatchLev
is an integer which specifies after how many batches since the results were last printed
should the results be printed once more. confCalc specifies at which batches of a variable,
that has a variance estimator specified, should the confidence intervals be calculated.

Finally, mazBatches is the maximum number of batches.

A.2.4 caseProbs.c

The function in this file is chooseKase. A case of activily is chosen based on the
discrete distribution function based on the marking. place is the array of places of the
subnet where there was an activity completion and oldSubMark is the projected marking
on the places of the submodel. The position of the case chosen on the array of cases of

the completed activity is returned.

113

A.2.5 copyInitMarkTrans.c

The functions in this file are related only to terminating simulation. They re-initialize
the state tree structure at every independent replication. Function copylInitMk takes the
pointer to the root node of the initial state tree repjoin and calls the recursive routine
recCopylInitMk to copy the initial state tree and initialize the sets of compound events for
each leaf node. newRepjoin is the pointer to the new copy and is returned by copyInitMk.
numReplications will have the number of replications of the submodels in identical mark-
ings represented by a leaf when it is reached during the recursive traversal. routeLevel is

the current level on the state tree during a traversal.

A.2.6 errMsg.c

This file contains the error messages and warnings for the simulators. Some of the
functions exit after printing the message. Other functions only print a message. There

are thirteen such functions.

A.2.7 executeSAN.c, genMaxComps.c, genPairCom.c and genPaths.c

The function ezecuteSAN and the functions it calls are explained in [18]. ezecuteSAN
takes the set of places of a subnet (place), the activity to complete (activity), the case
chosen (kase), and the projected marking on the places of the subnet represented by an
a pointer to an array of pointers to arrays of integers (subMark). The set of possible new
projected markings on the places of the subnet is generated along with the probabilities

of reaching the particular markings from the current marking. This set is global to all

files.

114

A.2.8 genNewMarkSim.c

This file contains the functions that build a new state tree for a given state tree an
activity completion. Function genNewMarkSim takes the pointer to the root node of
the “old” state tree, oldRepjoin, the route to the leaf associated with the earliest event,
roul, a pointer to an array of pointers to integers, oldSubMarkingPtr. Then, after some
initialization, the recursive function recGenNewMark is called performing the operations
described in Procedure 3.3.2. This procedure takes as parameters oldRepjoin (as explained
before), newRepjoinPtr, a pointer to the pointer to the root node of the new state tree to
be generated, rout, levelRecGenNewMark, the current level on the tree when traversing
the route, and oldSubMarkPtr. The new state tree is created and its root node will be
pointed by the contents of newRepjoinPtr.

Function buildSanHeap performs the operations described in Procedure 3.3.3. Instead
of the new leaf node being created by this function, though, it is created before the call.
It takes the pointers to the leaf node on the on the original state tree (sani), the pointer
to the newly created node (san2), the new projected marking on the places of the subnet
represented by the leaf (subMarking), and the linked list of activities that might have
changed in status (actList, also created before the call).

Function buildJoinSim builds a join node as in Procedure 3.3.5. The parameter
thisLevRepjoin is a pointer to a RepJoin structure that will be the join node. newRepjoinPtr
is a pointer to a pointer to the built subtree that will substitute the subtree at which the
root node was the child node on the route to the leaf associated with an activity com-
pletion. array is the array of integers representing the markings of the places at the new

join node. routOffset is a pointer to the root of the subtree to be substituted. levlis the

115

level of the state tree of the join node. The function copyMarkSim is called to build the
subtrees other than the one pointed by routOffset needed.

Function buildRepSim builds a replicate node as in Procedure 3.3.6. Its parameters
are as in function buildJoinSim. copyMarkSim is also called by this function. Function
insertRep is called to insert the root node of the built subtree in case there were no other
subtrees with a marking that matched the marking of the newly built subtree. The check

for this matching is performed by empMark.

A.2.9 genRateRew.c

Function genRateRew takes a pointer to the root node of the current state tree (repjoin)
and pointer to an array of type double (rateArray). Function recGenRateRew is, then,
called with extra parameters numReplications, used to obtain the number of replicates
represented by a leaf, subMark used to collect pointers to the arrays of markings of places
at nodes on the routes to each leaf, and level, used to keep track of the current level on
the tree while it is traversed recursively. At each leaf, the rate rewards defined for each
submodel for being in the current state are accumulated. When the function returns, the

array of rate rewards will have been updated.

A.2.10 1initTrans.c

This file contains functions used to initialize the state tree for terminating simulation
before the first replication is begun. Sets of empty compound events are formed for each
leaf while traversing recursively the initial state tree. The sets of potential completion
times are formed by function recCopyInitMk at every beginning of replication. Function
initTrans takes as parameter a pointer to the root node of the initial state tree. The

structure that will contain the linked lists of places per level which had a change in marking

116

is created. This structure is formed by two arrays of pointers, globPlaL ListArrFirst and
globPlaL ListArrLast. These will be pointers to the first and last elements of the linked
lists of places for every level on the state tree. The lists are created by genSetPIlAffec and
the functions that insert and delete elements are in file linkListSim.c.

A similar idea is used for the list of activities that need to be checked for their status.
Global pointers to the first and last elements of the list are created during this initialization
and used throughout the simulation. These are globFirstALL and globLastALL.

Function recInitTrans is called for the recursive traversal of the initial state tree. The
pointer to the root node is parameter repjoin, Parameter levelArrSubMark is used to
collect the arrays of markings of places at the nodes on different routes on the tree.
These are necessary for the check done by function isEnabled. tempLevelArr is used for
the generation of the placeMap structures for each subnet. tempRout is used for the
generation of the rout structures for each leaf on the tree. kis the number of replications

calculated during the traversal for each leaf.

A.2.11 initialize.c

This file performs the operations of the functions in file initTrans.c plus forms the
set of potential completion times for every compound event. The functions in this file
are used only by the steady state simulator. They are initialize and recInitialize. The

functions are analoguous to the functions in the previous sections.

A.2.12 isEnabled.c

This function takes an array of places for a submnet (place), a array of pointers to

arrays of marking of places at nodes on the route to a leaf representing a submodel type

117

(subMark), and a pointer to the activity in the array of activities of a submodel (activity).
The activity is checked to see if it is enabled in the marking represented by subMark. A

“False” or a “True” is returned.

A.2.13 linkListSim.c

This file contains functions that perform creation, deletion and insertion of elements
linked lists operations. “Dummy” structures for the first and last elements on the list are

created for efficiency. The procedures in this file are self explanatory.

A.2.14 manageSets.c

The functions that specifically handle the future events lists management tasks are in
this file. Function pushTime takes a pointer to a compound event (event) and a pointer
to a structure of type TimeStrct (timeS), which contains a potential completion time, and
inserts it in the next available space in the array for a compound event. The pointer to
the minimum time in the array is updated.

Function pushActivity is analoguous to the previous function, inserting a compound
event in a future events list. actSetStrctis the pointer to a structure of type MidHeapStrct
for a leaf node on the state tree. event is a pointer to a compound event. The pointer to
the compound event with minimum time in the set is updated.

The function that keeps track of the leaf associated with the earliest event is pushTo-
pLevel. At every creation of a new set of compound events, a global pointer (topLevel) to

the leaf associated with the set with earliest completion time is updated.

118

Function searchAct takes a pointer to a structure of type MidHeapStrct and an offset
that identifies an activity and searches for a compound event for this activity on a set. If
it is found, a pointer to the compound event is returned. Otherwise, a NULL is returned.

For deletions of the structures of type TimeSirct we use Function delTime. It takes
a pointer to a compound event event and removes the last structure from the array of
structures of type TimeStrcts. The pointer to the structure is returned.

Pop takes a pointer to a leaf and performs the same operations described in Chapter
4. Global variables earliestSubnetCode, currentEvent and currentActOffset are set by this
function. The value for the earliest time is returned.

Function mangeSetsGenNewOnes is called by reccopyMark to perform operations on
the future events lists associated with the leaves. san! and san2 are leaves on the original
state tree and the new state tree being constructed. subMark is the new marking for
the submodel represented by the new leaf. actList is the list of activities that need to
be checked for their status and n is the number of submodels being represented by san2.
This function is called when there is a difference between the places at the nodes above
or at the level at which copyMarkSim was called.

Finally, Function mergeSets transfers structures with potencial completion times from
set of compound events of sanl to san2. n is the number of times these transfers will
occur. sbMark is the marking for the submodels represented by san2. It is used only for

activity reactivation checks.

A.3 markSim.c

This file contains two important functions: cmpMark and copyMarkSim. The first

function compares two subtrees. repjoinl is a pointer to a topmost node of a subtree on

119

the original state tree, while repjoin2 is the pointer to the root node of a subtree on the
new state tree. A 0 is returned if the structures an the markings at the nodes are the
same.

copyMarkSim is based on Procedure 3.3.4. repjoin, a pointer to the root node of a
subtree that will be copied to a subtree pointed by nRepjoin. levelMarkChange is the
level at which this function is called. routeLevel keeps track of the current level on the
state tree while it is traversed recursively. calledByrecGenNewMark is a flag that indicates
if this function was called by recGenNewMark, n is a variable used to accumulate the
number of replicates. A pointer to the new subtree is returned.

The main functions were explained in this section. Figure A.3 shows the relationship

between functions. On the next section, we present the files for variable specification.

A.4 Variable Specification File

A.4.1 Steady-State Simulation

There are two variable types for steady-state simulation. Each variable is associated
with a code. An instant-of-time variable is associated with code 0. The time-between-
completions variable is associated with code 1.

The first element in the file is the number of time-between-completions variables. This

must be specified. Next, for each variable, the following elements must be included:

¢ Position in the corresponding array of variable information (for either type, a posi-

tive integer)
o Code for variable (0 or 1)

o Level of confidence (range: between 0.0 and 1.0)

120

initTrans genSetActoCheck pushTopLevel
copyInitMkTrans genSetPIAffec pushTopLevel isEnabled
enRateRew ivi
& uildSanHeap gz::f;iﬁ:“y pu:%ctmty
. . . pu me
simTrans trans genNeWMarkS'm\copyMarkSIm isEnabled A Enabled
calcHIfWdth buildRensSi genSetsNoDifr
uildRepSim
calcHIfWdthVar bui 'p . manageSetsGenNewOnes
uildJoinSim
calcNewVar genSetActoCheck
readInFileTrans
copyMarkSim
main initialize
genSetActoCheck
genRateRew genSetPlAffec

pushTopLevel
i hActivit
simBatch —batchLoop _genNewMarkSim bulldSanHeap<PUS ctivity

pushTime

calcHIfWdth copyMarkSimy, “isEnabled pushTopLevel
calcHIfWdthVar \buildRepSim , \\ genSetsNoDiff isEnabled
calcNewVar buildJoinSim.\ \ManageSctsGenNewOnes € pushActivity
genSetActoCheck pushTime
isEnabled
copyMarkSim

readInfile

Figure A.3: Call Relationships Between Functions

121

Relative width (range: between 0.0 and 1.0)

Number of estimates (1 or 2; A 1 indicates only the mean OR the variance will be

estimated, but not both. A 2 allows both to be estimated.)

Initial transient (a real number, for instant-of-time variables, or an integer, for

time-between-completions variables)

Batch size (a real number, for instant-of-time variables, or an integer, for time-

between-completions variables)

If the variable being specified is a time-between-completions variable, the following

additional elements are needed at this point:

— Position in subnet array for subnet associated with activity (integer greater

than 0; only used for specification of time-between-completions variables)

— Position of the activity in the activity array of subnet specified above (positive

integer; only used for specification of time-between-completions variables)

e Only one of the following should appear if the Number of estimates (see above) is

specified to be 1. Both are needed if the Number of estimates is 2.

— Code for mean estimator (Code = 0 indicates that the mean will be estimated.)

— Code for variance estimator (Code = 1 indicates that the variance will be

estimated.)

A file for three instant-of-time variables and two time-between completions variables

is given below:

2

.95

600.
2000,

O =

.95

600.

40000.

N

.95

€600,

20000,

10000
10000

.99
.15

300
350

O W N

122

123

In the file above, after the specification of the number of time-between-completions
variable (2), an instant-of-time variable is associated with position 0. The level of confi-
dence specified for it is 0.95 and the relative width required is 0.1. We are requiring one
estimator for this variable. The initial transient is assumed to be finished at simulation
time 600.0. The batch size is 2000.0 simulation time units and the estimator wanted is
the mean (code 0).

Two more instant-of-time variables were specified with different batch sizes (40000.0
and 20000.0) but with the same remaining specifications except for the position of each
variable in the instant-of-time variable array. The position specification should be such
that it matches the position of the variable name in the array of reward variable names
in a project header file.

Next, there are two time-between-completions variables. The first variable is assigned
to position 0 in the time-between-completions variable information array. Its variable type
is 1 and the level of confidence and relative width required are 0.95 and 0.1, respectively.
There will be one estimator for this variable. Both the initial transient and the batch size
are specified with the same value (10000). This a variable associated with the activity at
position 0 in the activity array of subnet in position 1 of the subnet array. The estimator
specified is the mean.

The next variable is in position 1 in the time-between-completions variable information
array. The level of confidence for the confidence intervals is 95% and the relative width
is 10%. Two estimators were defined for the variable. The initial transient is 300 and

the batch size is 350. The activity for this variable is in position 3 in the array of timed

124

activities of subnet in position 2 in the subnet array. Finally, the codes for mean and

variance appear at the end.

A.4.2 Terminating Simulation

The files for variable specification in terminating simulation are similar to the the files
for steady-state simulation. The codes for the variable types are: 0, for the time-between-
completions variable; 1, for the instant-of-time variable; 2, for the time-averaged-interval-
of-time variable; and 3, for the interval-of-time variable.

The file starts with the number of time-between-completions variables to be estimated.

Then, for each activity, we specify the variables in the following order:

e Position in the corresponding array of variable information (for either types, a pos-

itive integer)
o Code for variable (0, 1, 2 or 3)
o Level of confidence (range: between 0.0 and 1.0)
o Relative width (range: between 0.0 and 1.0)

e Number of estimates (1 or 2; A 1 indicates only the mean OR the variance will be

estimated, but not both. A 2 allows both to be estimated.)

e If the variable being specified is a reward variable, the following additional elements

are needed at this point:

— Start Time (a positive real number)

— End Time (a positive real number, for interval-of-time and time-averaged-

interval-of-time variables only)

125

e If the variable being specified is a time-between-completions variable, the following

additional elements are needed at this point:

First activity completion (a positive integer, for instance, 0)
~ Second activity completion (a positive integer, for instance, 5)

Position in subnet array for subnet associated with activity (an integer greater

than 0)
— Position of the activity in the activity array of subnet specified above (a positive

integer)

o Only one of the following should appear if the number of estimates (see above) is

specified to be 1. Both are needed if the number of estimates is 2.

— Code for Mean Estimator (Code = 0 indicates that the mean will be estimated.)

— Code for Variance Estimator (Code = 1 indicates that the variance will be

estimated.)

The following is an example file:

126

O O = = O = .

The file shows that there is one time-between-completions variable. Next, an instant-
of-time variable is specified. The mean is the estimator chosen and the instant of time to
collect the variable is 8.0. The remaining specifications are as in the previous section.

There is one time-averaged-interval-of-time and one interval-of-time variable. Both
have the same interval specifications (¢ = 8.0, [= 15.0). The mean will be estimated for
both variables.

Finally, a time-between-completions variable is specified for the 0** and 1% comple-
tions. The activity related to this variable is in position 0 of the activity array of subnet

in position 1 in the subnet array.

A.5 Command Line Arguments for the Simulators

NAME
Steady-State Simulator Command Line Options.

SYNTAX
project_name.sim [options]

DESCRIPTION
The main routines for the steady-state and terminating
simulators are called with options. These are the same for
both simulators.

OPTIONS
~-Pproject
The directory for a project. A directory must be speci-
fied. No default is assumed.

-vtrace
The markings of the submodels and the lists of future
events can be traced during simulation. There are three
trace levels. A trace level of one traces only the mark-
ings of the submodels. A trace level of two will also
show the earliest event type for each future events list
plus the activities scheduled to complete in each list. 4
trace level of three will, furthermore, show the poten-
tial completion times for each compound event in each
future events list.

~sinput
The input filename where the variables are specified. The
file should be in directory int for a project directory.
An extension will be appended to the filename depending
on which simulator is being used. If it is the steady-
state simulator, the extension will be .ssim. When the
terminating simulator is called, the extension will be
.tsim. A filename must be specified.

-ooutput
An optional output file may be specified. The default is
stdout.

-bn
The current results at every n batches or replications
are printed out.

-cn
The confidence interval of a variance estimator is only
calculated at every n batches or replications.

127

128

-mn
This option specifies a maximum number of batches or
replications. The partial results will be printed out if
this number is reached. The default is 1000 batches in
steady-state simulation and 50000 replications in ter-
minating simulation.

129

REFERENCES

[1] J. P. Behr, N. Dahmen, J. Muller and H. Rodenbeck, “Graphical modeling with
FORCASD?”, in Proc. Computer Applications in Production and Engineering, pp. 61—
630, Amsterdam, North-Holland, 1983.

[2] G. Chiola, “A software package for analysis of generalized stochastic Petri net models”,
in Proc. Int. Work. on Timed Petri Nets, pp. 136-143, Torino, Italy, July 1985.

[3] G. Ciardo, J. Muppala and K. S. Trivedi, “SNPN: Stochastic Petri net package”, in
Proc. Petri Nets and Performance Models, pp. 142-151, Kyoto, Japan, December 1989.

[4] J. B. Dugan, K. S. Trivedi, R. M. Giest and V. F. Nicola, “Extended stochastic Petri
nets: Applications and analysis”, in Performance 84, pp. 507-519, Amsterdam, North-
Holland, 1984.

[5] H. P. Godbersen and B. E. Meyer, “A net simulation language”, in Proc. Summer
Computer Simulation Conf., Seattle, WA, August 1980.

[6] R. A. Howard, “Dynamic Probabilistic Systems”, Vol. 2, Wiley, 1971.

(7] A. M. Johnson, Jr., and M. Malek, “Survey of software tools for evaluating reliability,
availability, and serviceability”, ACM Computing Surveys, vol. 20, no. 4, pp. 227-269,
December 1988.

[8] S.S. Lavenberg, “Computer performance modeling handbook”, Academic Press, 1983

[9] A. M. Law and W. David Kelton, “Simulation modeling and analysis”, McGraw Hill,
1982.

[10] M. Leszak and H. P. Godbersen “A tool for performance-availability evaluation of
distributed systems based on function nets”, in Proc. Int. Work. on Timed Petri Nets,
pp. 152-161, Torino, Italy, July 1985.

[11] M. A. Marsan, G. Balbo and G. Conte, “A class of generalized stochastic Petri nets
for performance evaluation of multiprocessor systems”, in ACM Trans, on Computer
Systems, vol. 2, no. 2, pp. 93-122, May 1984.

130

[12] M. Molloy, On the integration of delay and throughput measures in distributed pro-
cessing models, PhD thesis, UCLA, 1981.

[13] A. Movaghar and J. F. Meyer, “Performability modeling with stochastic activity
networks”, in Proc. 1984 Real-Time Systemns Symp., Austin, TX, December 1984.

[14] T. Murata, “Petri nets: Properties, analysis and applications”, in Proceedings of the
IEEFE, vol. 77, no. 4, pp. 541-580, April 1989.

[15] S. Natkin, Reseauz de Petri stochastiques, PhD thesis, CNAM-PARIS, 1980.

[16] J. L. Peterson, Petri net theory and the modeling of systems, Englewood Cliffs:
Prentice-Hall, 1981.

[17] C. A. Petri, “Kommunication mit atomaten” Bonn: Institute fur Instrumentelle
Mathematik, Schriften des IIM Nr. 3, 1962.

(18] M. Rai, Design and Implementation of a Reduced Base Model Construction Technique
for Stochastic Activity Networks, Master’s thesis, Univ. of Arizona, AZ, 1990.

[19] B. D. Ripley, “Stochastic Simulation”, Wiley, 1987.

[20] W. H. Sanders, Construction and solution of performability models based on stochas-
tic activity networks, PhD thesis, Univ. of Michigan, MI, 1988.

[21] W. H. Sanders and J. F. Meyer, A Unified Approach for Specifying Measures of
Performance, Dependability, and Performability, to appear in “Dependable Computing
and Fault-Tolerant Systems”, Vol. 4, (ed, J. Laprie), Springer-Verlag, 1990.

[22] W. H. Sanders and J. F. Meyer, “METASAN: A performability evaluation tool based
on stochastic activity networks”, in Proc. ACM-IEEE Comp. Soc. 1986 Fall Joint
Comp. Conf., Dallas, TX, November 1986.

[23] W. H. Sanders and J. F. Meyer, “Reduced Base Model Construction Methods for
Stochastic Activity Networks”, to appear in IEEE Journal on Selected Areas in Com-
maunications, January 1991.

[24] S. Shapiro, “A stochastic Petri net with application to modeling occupancy times for
concurrent task systems”, Networks, vol. 9, pp. 375-379, 1979.

[25] A. A. Torn, “Simulation nets: A simulation modeling and validation tool”, Simula-
tion, pp. 71-75, vol. 45, no. 2, August 1985.

