
Dependability and Performance Evaluation of
Intrusion-Tolerant Server Architectures ?

Vishu Gupta, Vinh Lam, HariGovind V. Ramasamy,
William H. Sanders, and Sankalp Singh??

Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign

1308 W. Main Street, Urbana, IL 61801, USA
{vishu, lam, ramasamy, whs, sankalps}@crhc.uiuc.edu

Abstract. In this work, we present a first effort at quantitatively com-
paring the strengths and limitations of various intrusion-tolerant server
architectures. We study four representative architectures, and use stochas-
tic models to quantify the costs and benefits of each from both the
performance and dependability perspectives. We present results char-
acterizing throughput and availability, the effectiveness of architectural
defense mechanisms, and the impact of the performance versus depend-
ability tradeoff. We believe that the results of this evaluation will help
system architects to make informed choices for building more secure and
survivable server systems.

1 Introduction

Intrusion tolerance [6] is an approach to handling malicious attacks, in which
the impracticability of making a system fully secure against all attacks is recog-
nized and intrusions are expected, but the system is designed to provide proper
service in spite of them (possibly in a degraded mode). Intrusion tolerance has
the potential to become a very useful approach in building server architectures
that withstand attacks. Several such intrusion-tolerant server architectures have
been conceived in both academia and industry, including KARMA [7], ITSI [14],
ITUA [3], and PBFT [2]. However, there has not been any comparative study of
their performance and dependability. There are many challenges in doing such
a study. First, it is difficult to identify representative architectures that cover
the various design possibilities for building intrusion-tolerant architectures. Sec-
ond, the problem of coming up with detailed yet reasonably high-level models of
chosen representative architectures that could be comprehensively evaluated is a
fairly complex one. The models should represent the design differences between
architectures without getting tied down to low-level details. Third, coming up
with appropriate measures that bring out the relative strengths and weaknesses
of the representative architectures is a complex problem in itself.

In this paper, the above challenges are addressed for the first time (to the best
of our knowledge), and a fairly comprehensive comparison of intrusion-tolerant
server architectures is presented. We realize that given the many variations in
implementing intrusion-tolerant systems, any comparative study is feasible only
? This research has been supported by DARPA contract F30602-00-C-0172.

?? Names are in alphabetical order. Authors made equal contributions to the research.



if we identify classes of intrusion-tolerant architectures and limit our comparison
to abstract architectures that are representative of these classes. In this work,
we identify four classes of intrusion-tolerant server architectures based on how
requests are handled and how decisions are made in response to intrusions. In
modeling the effectiveness of these classes of intrusion-tolerant architectures,
we realize that the performance and dependability of these intrusion-tolerant
systems cannot be quantified in a deterministic manner, because the systems do
not provide complete immunity to all possible intrusion methods. An attractive
option for evaluating intrusion-tolerant systems is via probabilistic modeling [11],
as shown by Singh et al. [15], who validated an intrusion-tolerant replication
system, with variations in internal algorithms, using probabilistic models.

In this paper, we evaluate and compare the strengths and weaknesses of the
four architectures in probabilistic terms. We use Stochastic Activity Networks
(SANs) [12] as our representation of the models for the architectures. By varying
the parameters of the models, we obtain information about performance and
intrusion tolerance characteristics of the different architectures.

2 Intrusion-Tolerant Server Architectures

We consider intrusion-tolerant architectures that follow a client-service sys-
tem paradigm (for example, a web browser as a client and a collection of web
servers as the service system). All such systems are based on replication of infor-
mation across a set of servers, and rely on a distributed architecture that routes
incoming requests among several server nodes in a user-transparent way. All such
systems also have some mechanism by which the incoming requests are spread
among the servers. We consider only those mechanisms for routing the requests
among the server nodes that do not require the clients to know that there are
replicated servers in the service system and that do not divulge any informa-
tion about which of the replicated servers actually service a particular client’s
request. This “hiding” of the servers from clients is necessary for anonymity and
security purposes. Client-based, DNS-based, and server-based routing mecha-
nisms (see [1] for a detailed classification of the various approaches for routing
requests among multiple servers) do not satisfy the requirement of “hiding.”
The appropriate routing mechanism is the dispatcher-based approach, in which
a single virtual IP address is used for the entire service system. The dispatching
mechanism could be centralized, in which case it would route requests to indi-
vidual servers, or it could be logically distributed among the servers, in which
case the requests would be multicast to the servers.

We explored the design space for intrusion-tolerant systems that satisfy the
above criteria, and identified the following dimensions along which architectures
can vary: (1) how the client requests get routed to the servers, (2) whether the
decisions to reconfigure the system in response to intrusions are made centrally
or in a distributed manner, and (3) whether multiple requests are served con-
currently by different servers. Based on the above, we partitioned the design
space into four classes. In this paper, we model four abstract architectures, each



of which is representative of one of those classes. All four architectures that we
evaluate have the following components in one form or another:

Client: The client is a program, like a web browser, that establishes connec-
tions to the service system in order to satisfy user requests.

Service: This component implements the protocols to service an incoming
client request. For example, it could be an HTTP server.

Intrusion Detector: This component could be a combination of multiple third-
party intrusion detection tools and protocol-specific intrusion detection (in which
violations of the protocol specification are treated as intrusions).

Configuration Manager Daemon: The Configuration Manager Daemon (or
CMDaemon for short) uses the Intrusion Detector component to keep track of
whether or not the service has been compromised, and implements strategies for
recovering from attacks. There is one CMDaemon component for each Service
component. Each CMDaemon monitors one Service component and may run in
the same host as that Service component.

Configuration Manager: The Configuration Manager receives reports from
the CMDaemons about the well-being of the Service Components that they
monitor. It decides how to recover when an intrusion is reported, and instructs
the CMDaemons about this decision. Each CMDaemon then implements those
instructions in their respective Service components.

Gateway: This is the component whose IP address is known to the clients as
the IP address of the service system. It serves as the dispatcher that controls the
routing of the client requests to the Service components, helping to mask the
identities of the Service components’ operating systems and the service applica-
tion. In architectures that do not have the Gateway component, all the servers
receive all the client requests. That is done in various ways; for example, all the
servers could be configured to be members of an IP multicast group. Clients
would send their requests to this multicast address.

Firewall: This component filters incoming requests based on certain policies.
Database: The Database component is the store for the information that

clients want to access. In this paper, we are not concerned about the exact
organization of this component. Interested readers are referred to [5].

The four architectures differ in how the above components interact with each
other, their placement, and which of them are trusted. A “trusted” component
is one that is assumed not to fail. We now describe each of the four architectures
in more detail.
Centralized Routing Centralized Management (CRCM) The goal of the
CRCM design is to employ a small number of trusted components to protect
a large set of servers and databases. In this design, a Firewall component fil-
ters the incoming requests, looking for signatures of commonly known attacks.
The Gateway is a trusted component. An incoming request passes through the
Firewall to reach the Gateway, which then forwards the request to a randomly
chosen server from the active server set. The Gateway also masks server-specific
and OS-specific information from all the replies. The service system consists of
a large collection of servers. They share the same filesystem, but may run differ-



ent operating systems and different web-server software versions. In addition to
the server software, each host that is part of the service system also runs a CM-
Daemon, which is responsible for detecting attacks via various mechanisms (e.g.,
integrity-checking of various critical files and checking of the process states). The
CMDaemons report the health of the local server to the Configuration Manager,
which is a trusted component. The Manager continually checks the integrity
of the CMDaemons. If there is an intrusion detection, the Manager cleans the
server state, and could roll back the potentially erroneous transactions commit-
ted by the intruded server. The Manager informs the Gateway about the current
active server set. The Gateway uses that information in the selection of servers
to process client requests.

Multicast Routing Centralized Management (MRCM) The MRCM ar-
chitecture achieves intrusion tolerance through hardened, heterogeneous plat-
forms. This hardening is achieved by embedding firewalls in each server host,
and having extensive alert and intrusion-detection capabilities in each server
host. Those capabilities form the CMDaemon component. There are no addi-
tional front-end firewalls like those in CRCM. Scalability is achieved through
the ability to add additional platforms easily, and maintainability is achieved
through the ability to remove and service platforms easily. All the servers re-
ceive all the requests sent to the single virtual IP address of the service. The
service rules on each server determine what traffic to process and what to throw
away. For example, rules could be based on the source IP address of the client. In
essence, those service rules form a load-balancing policy. The load-balancing pol-
icy could be changed at the behest of the Configuration Manager (for example,
when an intrusion is detected and the intruded host shut down), and the clients
previously serviced by the intruded host would need to be distributed among the
correct hosts. When an intrusion is detected, the Configuration Manager could
instruct the servers to implement the new load-balancing policy by giving them
an updated set of service rules. Through the CMDaemon on a host, the Config-
uration Manager could also update the filtering policies on the host-embedded
firewalls so that traffic from specified clients is blocked or audited.

State Machine Replication (SMR) The SMR architecture employs a state-
machine-replication-based approach [13] that tolerates malicious faults. A repli-
cation protocol that tolerates Byzantine faults, similar to [2], could be used (with
some modifications to ensure user transparency) for this architecture. The re-
quirement for an algorithm tolerating Byzantine faults is that it must have at
least 3f + 1 servers, where f is the number of simultaneous faults that need to
be tolerated. SMR does not require an extensive firewall like those in the CRCM
and MRCM architectures. Unlike CRCM and MRCM, there is no centralized
trusted Configuration Manager and local CMDaemons. Instead, the Configura-
tion Management is now distributed among the servers. The distributed Con-
figuration Management and Service components are integrated into one logical
unit. This integrated Management and Service unit is replicated across the set of
servers, and the Byzantine-fault-tolerant protocol ensures that all correct servers
maintain consistent state information for this integrated unit. As in MRCM, all



(a) Centralized Routing (b) Multicast Routing
Centralized Management Centralized Management

(c) State Machine (d) Multicast Routing
Replication Decentralized Management

Fig. 1. Architecture Block Diagrams

Table 1. Summary of the design features of the four architectures

Feature CRCM MRCM SMR MRDM

Parallelism in processing requests Yes Yes No Yes

Strict correctness of replies No No Yes No
guaranteed

Configuration Manager Centralized Centralized Distributed Distributed

Required number of servers for f+1 f+1 3f + 1 3f + 1
uninterrupted service when f
servers are compromised

Forwarding of client request by to a to all to all to a
Gateway randomly

selected
server

servers servers randomly
selected
server

Servicing of request by the based on by all by the
randomly source IP servers randomly
selected
server

selected
server

Trusted components 2 1 0 0



requests reach all the servers. The set of servers processes one request at a time.
The servers agree on the reply to be sent to the client, as well as on any updates
to be made to the back-end database, through a Byzantine agreement protocol.
SMR ensures that all replies sent to clients and updates made to the database
are correct, as long as there are no more than f simultaneous corruptions in the
system (we call this the Byzantine agreement requirement), but involves a large
performance overhead due to the fact that all the requests are serialized and
processed by the entire set of servers one at a time.
Multicast Routing Decentralized Management (MRDM) The MRDM
design is a hybrid of the previous 3 architectures, and tries to achieve a trade-
off between the better throughput performance achieved by the parallelism of
the CRCM and MRCM architectures, and the strict correctness achieved by the
SMR architecture, without relying on any trusted components. It does so by sep-
arating the service component in the SMR architecture from the configuration
management. As in the SMR architecture, the Configuration Manager is dis-
tributed across the host nodes. However, unlike in SMR, the server nodes do not
all process the same request at the same time. A firewall component embedded
in each host (similar to the one in MRCM) could be used to filter out incoming
requests based on specified policies. The incoming request is randomly routed
to one of the servers (like in CRCM). Each host runs a server component and a
configuration management component (which represents an integrated Configu-
ration Manager, CMDaemon, and Intrusion Detector component). The servers
can process requests independently from each other (unlike in SMR), but the
configuration management components across all the hosts coordinate with each
other, distribute knowledge about intrusions, and come to agreement about the
configuration changes that need to be made in response to intrusions. At the
core of the configuration management component could be an intrusion-tolerant
group membership protocol (such as the one in [10]) that requires the partici-
pation of at least 3f + 1 nodes to tolerate f simultaneous faults. By separating
the service component from the management component, we are able to retain
the parallelism of the CRCM and MRCM architectures, and by distributing the
management component, we remove the need for having a central trusted Con-
figuration Manager. However, MRDM does not guarantee strict correctness of
replies (as SMR does), since the intruded node could still be servicing some re-
quests, and potentially sending erroneous replies, during the time period between
the intrusion of a node and the detection of the intrusion. The SMR architecture,
on the other hand, masks the effects of a subset of intruded servers, as long as
the threshold requirement of f is satisfied.

2.1 Assumptions and Attack Model

We assume staged attacks, which means that there is a non-negligible time
between successive node infiltrations. That gives the defense some time to react.
None of the above architectures can defend against a situation in which all the
hosts are simultaneously intruded. They also cannot defend against a situation



in which the attacker intrudes the various nodes in stages, but the compromised
nodes show no observable signs of an intrusion until all the nodes have been
intruded (this is essentially the same as the first situation). For the staged attack
assumption to be true, node failures must not be strongly correlated. That could
be achieved, for instance, by running different implementations of the service
code and/or the operating system.

Within the staged attack model, there could be two kinds of attacks on a
single host: multi-phase attacks that require a sequence of attacks in order to
successfully compromise the host (for example, an attacker could upload a file
line-by-line using the Windows “echo” command), and single-phase attacks that
successfully compromise the host in one shot (for example, the attacker could
guess the correct password and gain root access on the first attempt).

The CRCM and MRDM architectures employ dispersion, i.e., because of the
random selection of servers by the Gateway, requests from the same client could
be processed by different servers. That decreases the probability that different
phases of a multi-phase attack will reach the same server. That, in turn, increases
the time required to exploit any single web server using multi-phase attacks.

3 SAN Models for the Intrusion-Tolerant Architectures

Stochastic Activity Networks, or SANs, are a convenient, graphical, high-
level language for capturing the stochastic (or random) behavior of a system.
A SAN has the following components: places (denoted by circles), which con-
tain tokens (the term “marking” is used to indicate the number of tokens in a
place) and are like variables; tokens, which indicate the “value” or “state” of a
place; activities (denoted by vertical ovals), which change the number of tokens
in places; input arcs, which connect places to transitions; output arcs, which con-
nect transitions to places; input gates (denoted by triangles pointing left), which
are used to define complex enabling predicates and completion functions; output
gates (denoted by triangles pointing to the right), which are used to define com-
plex completion functions; cases (denoted by small circles on activities), which
are used to specify probabilistic choices; and instantaneous activities (denoted
by vertical lines), which are used to specify zero-timed events. An activity is
enabled if for every connected input gate, the enabling predicate contained in
it is true, and for each input arc, there is at least one token in the connected
place. Each case has a probability associated with it and represents a probabilis-
tic choice of the action to take when an activity completes. When an activity
completes, one token is added to each place connected by an output arc, and
functions contained in connected output gates and input gates are executed. The
output gate and input gate functions are usually expressed using pseudo-C code.
The times between enabling and firing of activities can be distributed according
to a variety of probability distributions, and the parameters of the distribution
can be a function of the state.

We have modeled the four architectures described in Section 2 as composed
SANs. Atomic models were built for various components of each architecture,



(a) Composed Model

(d) SAN Submodel for Server

(b) SAN Submodel for
Client

(c) SAN Model for
Firewall

(e) SAN Submodel for
ConfigManager

Fig. 2. SAN Models for CRCM

and complete models were then built using replicate and join operations. The
salient features that we have modeled for each architecture include generation
of client requests and attacks, organization of firewalls and filtering of requests,
organization of servers and distribution of requests to servers, servicing of re-
quests and effect of attacks, detection mechanisms, system reconfiguration upon
detection of corruption, and repair of affected components. We have used expo-
nential distribution for the timed activities in all the models. We believe this
is a realistic assumption, because the request arrival process and servicing of
requests by servers (especially web servers) are largely memoryless, and hence
are well-represented by exponential inter-arrival times and exponential service
times. Single-phase attacks and the subsequent phases in a given multi-phase
attack are generated with some probability on the incoming requests; hence,
they also have an exponential distribution in our SAN models. We developed
that approach in order to keep the attack model fairly simple; we focused the
complexity in the models to reveal the differences among various architectures.
We understand that we may need sophisticated attack models in order to model
the intrusion response behavior of the architectures more accurately. That may
be the focus of another study. Due to space limitations, here we provide only
a high-level description of the models of the individual architectures. A much
more elaborate description of the SAN models is presented in [8].

Centralized Routing Centralized Management (CRCM) The com-
posed model for CRCM (Figure 2(a)) consists of four atomic SAN submodels:
Client, Server, ConfigManager, and FirewallGw. The Server submodel



is replicated NumServers times, where NumServers is a global variable indicat-
ing the number of hosts running servers. Since requests have to pass through
a firewall and a gateway before they are distributed to individual servers, we
have a single unreplicated Client SAN (Figure 2(b)) to model the generation of
incoming requests from the clients.

The FirewallGw SAN in Figure 2(c) models the firewall that filters incoming
requests with known attack signatures. We model general attacks, including the
ones that are not malformed client requests, as a part of the request stream.
That is acceptable, since the request stream models the path all attacks follow
(all packets pass through the firewall to reach the servers), and since effects of
single-phase and multi-phase attacks are similar (they result in corruption of a
server).

The Server SAN in Figure 2(d) models the centralized distribution of client
requests to individual servers, servicing of requests, corruption of servers due
to attacks, dispersion of multi-phase attacks, and detection of corruption and
the system’s response to it. The local place Corruption keeps track of the level
of corruption of this server. A marking of 0 implies no corruption at all, and
a marking of MaxPhases implies complete corruption, which is sufficient to in-
fluence the server’s behavior. A value in between indicates that some phases of
a multi-phase attack have been successful, but that the system is not corrupt
enough to behave incorrectly. We model dispersion by having the probability of
success of a phase in a multi-phase attack be the reciprocal of the marking of
NumActive, a shared place that keeps track of the number of servers online. That
accurately models the fact that each phase randomly goes to any of the active
servers. The probability of successful detection is proportional to the number of
changes that have been made to the configuration of the server (represented by
the number of successful attack phases, which is equal to the marking of Cor-
ruption). Because of model size and complexity, we do not model false alarms.
However, that does not constitute a shortcoming of our models, given that our
focus in the models is on the effect of intrusion reports. Hence, we model a
composite of actual attacks and false alarms (or, equivalently, correct and false
intrusion reports). Upon successful detection, the Configuration Manager causes
the server to be taken offline. The Manager informs the load-balancing gateway
about this change, and the latter no longer forwards new requests to the server.
The activity Repair represents the process of reinitializing the state of the server,
after which the server can receive requests again.

Multicast Routing Centralized Management (MRCM) The com-
posed model and atomic SAN submodels for MRCM are similar to those for
CRCM. Here we point out the major differences. Since a firewall is now present on
each host running the server, the FirewallGw and Server submodels are joined
to form a model of each host. The resulting submodel is replicated NumServers
times to form a model of the set of servers. Requests for each server are generated
separately; there is no centralized request generation as in CRCM. This is done
to model each request going to all servers, and exactly one of them picking it up



(a) Composed Model

(c) SAN Submodel for Server

(b) SAN Submodel for
Client

(d) SAN Submodel for
Synchronizer

(e) SAN Submodel for
Repair

Fig. 3. SAN Models for SMR

for service, while others discard it. We model the redistribution of requests when
a server goes offline by setting the rate of FilterRequests to be weighted by the
fraction of the total number of servers that are currently active. Since there is no
dispersion in this architecture, if the case corresponding to multi-phase attack
is chosen in ServeReq, the phase is always successful, resulting in an increase in
the marking of Corruption.

State Machine Replication (SMR) The composed model for SMR (Fig-
ure 3(a)) consists of four atomic SAN submodels: Client, Server, Synchro-
nizer, and Repair. The Client SAN in Figure 3(b) models the centralized
generation of incoming requests to the system, since each request is sent to all
the active servers. The Server SAN (Figure 3(c)) models the processing of client
requests by a server, attacks on a server, performance of Byzantine agreement
between servers before a reply is sent back to the client, exhibition of incor-
rect behavior by corrupt servers, the subsequent exclusion of corrupt servers
from the server group (provided there are enough uncorrupted servers for agree-
ment), restarting of new servers on standby hosts, and repair of excluded hosts.
Since the system reacts identically to single-phase and multi-phase attacks (since
each request is sent to all servers), we have modeled both by a single activity.
Also, since each server has a publicly visible IP address and there is no fire-



wall, we have modeled the attack generation explicitly, instead of having it be a
part of the request stream. On firing, the marking of the local place Corruption
is set to 1, and the marking of the shared place NumCorrupt is incremented.
The activity Service represents the processing of a client request by the server,
and the reaching of Byzantine agreement among the servers on the reply. If the
marking of Corruption is 1, the probability of the case corresponding to the out-
put gate ConvictReply is probMisbehavior, a global variable that represents the
probability that a corrupt replica will exhibit corrupt behavior during the agree-
ment process. Upon misbehavior, the server is taken offline, and the marking
of the shared place HostsToRepair is incremented, since the host on which the
server was running is also excluded, and we need to repair this host and bring it
back into the system. If the marking of Corruption is 0, the case corresponding
to the output gate SimpleReply is chosen with a probability of 1. The activity
StartupServer represents the starting of a new server on a standby host, to re-
place one that has been shut down. We include standby hosts for SMR, because
Byzantine agreement among hosts is the only way of detecting corruption, and
it is necessary to have the corrupt server replaced quickly (by a server running
on a standby host) to maintain the same level of intrusion tolerance. The SAN
representation of the Synchronizer submodel (Figure 3(d)) models the com-
pletion of the response to a client request. It is needed since the servers have to
maintain the same state. The SAN in Figure 3(e) models the repair process of
the excluded hosts, which results in their transition to the standby state.

Multicast Routing Decentralized Management (MRDM) The com-
posed model and atomic SAN submodels for MRDM are similar to those for
MRCM. The major differences are as follows. The composed model for MRDM
does not have a ConfigManager submodel, since the management decision is
taken in a decentralized manner using Byzantine agreement; in the Server sub-
model for MRDM, upon detection, a corrupt server is taken offline only if the
other servers can reach a Byzantine agreement on shutting it down. Since multi-
phase attacks are dispersed in MRDM, the probability of success of an attack
phase in the Server submodel varies inversely with the number of active servers.

4 Results

We used the Möbius [4] tool to build the SANs, define performance and
intrusion tolerance measures, design studies on the models, simulate the models,
and obtain values for the measures defined on various studies. The measures
defined on each model for use in the studies are as follows:

Productive Throughput: This measure characterizes the number of requests
that the system replies to correctly per time unit. We assume that all correct
servers reply correctly to the requests they receive, and all corrupt servers reply
incorrectly to the requests they receive. We study the expected value of this
measure averaged over a time interval.



Unproductive Throughput: This measure characterizes the number of requests
that the system replied to incorrectly per time unit.

Strong Unavailability for an interval: This measure characterizes the fraction
of time the service was improper in the given time interval. For this measure,
the service was defined to be improper (for the CRCM, MRCM, and MRDM
architectures) if at least one active server was in a corrupt, undetected state, or
all servers were offline for repair. For SMR, the service is improper if more than
a third of the active servers are corrupt. Hence, a strongly available system does
not send an incorrect reply to any request.

Weak Unavailability for an interval: Here, we use a weaker definition of proper
service. The service is proper if at least one correct server is online. This mea-
sure is not defined on models for SMR. The above two unavailability measures
characterize the survivability of the systems as perceived by a user.

Fraction of Corrupt Servers: This measure characterizes the fraction of active
servers that are corrupt at a given instant of time.

We designed several studies on the models to determine how various architec-
tures behave when we vary some important system parameters, and to determine
the range of parameter values for which a particular architecture is superior over
others, with respect to intrusion tolerance and performance characteristics. The
input parameters we varied are the number of hosts in the system, the rate of
single-phase attacks on the system, the rate of multi-phase attacks on the sys-
tem, the quality of the detection mechanism being used, and the rate at which
components taken offline are repaired and brought back into the system.

Unless otherwise specified, we used the values given below for various input
parameters. We need to emphasize here that the reader need not be particularly
concerned about our specific choice of parameter values, because the aim of these
experiments is to present performance and dependability trends/patterns of these
architectures relative to each other, rather than exact values. It is very hard (if
not impossible) to come up with any single universally applicable choice of val-
ues, because these architectures could be deployed in widely varying situations.
However, using our SAN models, we can quite easily conduct these experiments
for a large range of parameter values.

We consider a time unit of one minute. Request arrival rate was set to 100
requests (to the entire service system) per minute for all the architectures. Cu-
mulative attack rates were set to be 12 and 6 per hour for single and multi-phase
attacks respectively.

The local detection components running on each server check for corrup-
tion once every two minutes for CRCM, and once every minute for MRCM and
MRDM. That is justified because CRCM uses a centralized detection mecha-
nism with lightweight daemons running on individual hosts, resulting in slower
detection, whereas all the detection in MRCM and MRDM is done locally on
each host, resulting in faster detection. The probability of detecting a corruption
in each run is set to 0.5. Likewise, in SMR, a corrupt server misbehaves with a
probability of 0.5. (In Section 4.1, we explain why the probability of misbehavior
in SMR is equivalent to the probability of detection in other architectures.)



The probability that the centralized firewall in CRCM will detect and filter
out an attack in CRCM was set to 0.75. The probability that the local firewalls
on each host running a service component in MRCM and MRDM will detect and
filter out an attack was set to 0.4. We use a higher probability for CRCM since
it has a centralized firewall running on a dedicated machine that can detect and
filter out attacks more intelligently. However, we realize that the exact degree
of difference in a real setting will vary depending on the strength of firewalls
actually deployed.

The mean time to repair an offline server was set to 17 minutes in all the
architectures.

The total number of hosts was set to 12. So that all architectures would have
similar amounts of resources, that number includes the hosts running service
components as well as the hosts running trusted components. Hence, CRCM
had 10 hosts running service components and 2 hosts running trusted compo-
nents (the Configuration Manager and Gateway); MRCM had 11 hosts running
service components and one host running a trusted component (the Configu-
ration Manager); and SMR and MRDM each had all 12 hosts running service
components. SMR had 3 additional hosts in the standby state.

The time interval considered is [0, 30 minutes]. The fraction of corrupt servers
is measured at the end of this interval.

We used simulation to solve all the models; all results presented here have a
95% confidence interval.

4.1 Comparison under Varying Quality of Detection

For the CRCM, MRCM, and MRDM architectures, the quality of detection
is the probability with which an intrusion detection system can ascertain that a
system has been compromised, given that the system is actually corrupt. SMR
does not have a separate intrusion detection system, and detects intrusion pri-
marily through Byzantine agreement by the group; the group members can know
a corrupted member is corrupted only when it shows some misbehavior during
the agreement, by deviating from the protocol specification. That is modeled by
the probability of misbehavior. We varied the detection probability from 0.0 (no
intrusion detection) to 1.0 (perfect intrusion detection). For SMR, the probabil-
ity of misbehavior was varied from 0.0 (corrupt server does not misbehave at
all) to 1.0 (corrupt server always misbehaves).

Figure 4(a) shows that in the absence of an intrusion detection mechanism (or
equivalently, absence of misbehavior in SMR), the strong unavailability of any
architecture depends primarily on the architecture’s defense against intrusion
attempts. Thus, CRCM shows the best performance and the least unavailabil-
ity, because it has a strong firewall and better handling of multi-phase attacks.
All the other architectures suffer because of weaker firewalls; MRCM performs
the worst because it is most susceptible to multi-phase attacks, due to lack of
dispersion. When the probability of detection increases, all architectures become
more available, but among CRCM, MRCM, and MRDM, the CRCM architec-
ture remains the best and MRCM the worst for the same reasons. We notice that



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

S
tr

on
g 

U
na

va
ila

bi
lit

y

Detection/Misbehavior Probability

CRCM
MRCM

SMR
MRDM

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1

P
ro

du
ct

iv
e 

T
hr

ou
gh

pu
t

Detection/Misbehavior Probability

CRCM
MRCM

SMR
MRDM

(a) Strong Unavailability (b) Productive Throughput

Fig. 4. Varying Detection/Misbehavior Probability

SMR is initially very sensitive to any increase in the probability of misbehavior,
because as long as the Byzantine agreement requirement is met, any corrupt
misbehaving servers can be immediately eliminated. However, for large values
of the misbehavior probability, it becomes increasingly difficult for more than
one-third of the group to be corrupt at any one time (which is the criterion for
unavailability in SMR).

Figure 4(b) shows that SMR has the least amount of productive throughput,
because all servers process every request. Its throughput does not change for
misbehavior probabilities greater than 0.3, because above that value it is almost
always available. A trend that is observed in all architectures is that beyond a
certain detection probability (approximately 0.3 for the input parameter values
used in this study), throughput does not show an appreciable increase. The rea-
son is that throughput depends primarily on the system’s total service capacity
(given by the service rate) and the arrival rate, and these parameters were kept
constant in our studies. Among the CRCM, MRCM, and MRDM architectures,
the differences in productive throughput is due to the fact that MRDM has two
more servers than CRCM and one more server than MRCM.

4.2 Comparison under Varying Numbers of Hosts in the System

Varying the number of hosts in the system from 4 to 13 implies that the
number of hosts serving requests (servers) varies from 2 to 11 in CRCM, from
3 to 12 in MRCM, and from 4 to 13 in SMR and MRDM. For 4 hosts, SMR
and MRDM are more unavailable than CRCM and MRCM (see Figure 5(a)),
because they require Byzantine agreement in order to exclude corrupt servers,
and 4 servers can tolerate at most one corruption. Given enough time, it may
be easy to corrupt one server, and beyond that point, no further corruptions
can be tolerated, hence affecting availability. Also, MRDM performs worse than
SMR, because MRDM is considered unavailable in the strong sense even when
one server is corrupt, while SMR is considered available until one-third of the
servers are corrupt. SMR shows decreasing unavailability with an increasing
number of hosts, because larger group size enables it to tolerate a larger number



0

0.05

0.1

0.15

0.2

0.25

4 5 6 7 8 9 10 11 12 13

S
tr

on
g 

U
na

va
ila

bi
lit

y

Number of Hosts

 CRCM
 MRCM

 SMR
 MRDM

0

20

40

60

80

100

120

140

4 5 6 7 8 9 10 11 12 13

P
ro

du
ct

iv
e 

T
hr

ou
gh

pu
t

Number of Hosts

 CRCM
 MRCM

 SMR
 MRDM

(a) Strong Unavailability (b) Productive Throughput

Fig. 5. Varying Number of Hosts

of simultaneous faults. However, unavailability for CRCM and MRCM increases
with the number of hosts; that may seem counter intuitive, but the greater
number of hosts means that there is a greater chance that one host will be
corrupt and online. Like SMR, a larger number of servers makes it easier for
MRDM to detect corrupt servers and exclude them. On the other hand, a larger
number of servers makes it more likely that MRDM will have a corrupt server
online. Because of these opposing forces, MRDM’s unavailability initially remains
unchanged, and starts increasing later, because the negative effect of having
more servers becomes more dominant. We also note that CRCM does not show
an appreciable increase in unavailability above 10 hosts. The reason is that for
the chosen arrival rate and service rate of the individual servers, the waiting
time for any request (and hence any attack) is negligible for 10 hosts, and is
unaffected by a further increase in the number of hosts.

In SMR, all hosts process every request, so increasing the number of hosts
does not help in increasing throughput; rather, productive throughput (Fig-
ure 5(b)) actually falls a little, because of an increase in agreement delays.
MRCM and MRDM show steady increase in productive throughput, which is to
be expected from parallel processing architectures. On the other hand, CRCM
does not show an appreciable increase in productive throughput when the num-
ber of hosts goes beyond 10, because at that point the central dispatcher starts
acting as a bottleneck in the system, as mentioned before.

4.3 Comparison under Varying Single-phase Attack Rates

In this study, we varied the probability that an incoming request is a single-
phase attack from 0 to 0.009 (in increments of 0.001) for the CRCM, MRCM,
and MRDM architectures. That resulted in the single-phase attack rate varying
from 0 to 0.9 (in increments of 0.1), since the request arrival rate is 100. The
probability of multi-phase attacks was set to 0. For SMR, the attack rate was
varied along the same lines.

Figure 6(a) shows the variation in the fraction of active servers that are
corrupt for the CRCM, MRCM, and MRDM architectures. We observe that



0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
ra

ct
io

n 
of

 C
or

ru
pt

 S
er

ve
rs

Rate of Single-Phase Attacks

CRCM
MRCM
MRDM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
tr

on
g 

U
na

va
ila

bi
lit

y

Rate of Single-Phase Attacks

CRCM
MRCM
MRDM

(a) Fraction of Corrupt Servers (b) Strong Unavailability

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

0 0.02 0.04 0.06 0.08 0.1

P
ro

du
ct

iv
e 

T
hr

ou
gh

pu
t

Rate of Single-Phase Attacks

SMR

85

90

95

100

105

110

115

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
ro

du
ct

iv
e 

T
hr

ou
gh

pu
t

Rate of Single-Phase Attacks

CRCM
MRCM
MRDM

(c) Productive Throughput (d) Productive Throughput
for SMR for CRCM, MRCM, and MRDM

Fig. 6. Variation in Measures with Varying Single-phase Attack Probability

CRCM performs better than the other two architectures. That can be attributed
to CRCM’s stronger centralized firewall as compared to the weaker local firewalls
in MRCM and MRDM. Since dispersion of multi-phase attacks is not a factor
in this study, MRCM performs comparably. The linear increase for CRCM and
MRCM is as expected, but there is a rapid deterioration for MRDM. The reason
is that in MRDM, for higher attack rates, there is a significant probability that
more than a third of the servers will become corrupt before any detection, thus
violating the Byzantine agreement requirement, and hence making it impossible
for any corrupt server to be removed from the set of active servers.

Figure 6(b) shows the variation in strong unavailability for the CRCM,
MRCM, and MRDM architectures. All the architectures perform similarly and
are strongly affected by the rate of attacks. CRCM is slightly better due to its
strong centralized firewall, and MRDM is slightly worse due to the failure of the
Byzantine agreement algorithm for higher attack rates.

Figure 6(c) depicts the variation in productive throughput for the SMR ar-
chitecture. The performance overhead due to the Byzantine agreement protocol
increases with the number of servers in the system. However, instead of in-
creasing linearly, it increases as a step function, with almost fixed-size jumps
whenever the number of servers is of the form 3f +1 (i.e., jumps at 4, 7, 10, and
so on). This has been shown experimentally in [10]. Since the throughput varies



0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
tr

on
g 

U
na

va
ila

bi
lit

y

Rate of Multi-Phase Attacks

CRCM
MRCM
MRDM

95

100

105

110

115

120

125

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
ro

du
ct

iv
e 

T
hr

ou
gh

pu
t

Rate of Multi-Phase Attacks

CRCM
MRCM
MRDM

(a) Strong Unavailability (b) Productive Throughput

Fig. 7. Variation in Measures with Varying Multi-phase Attack Probability

inversely with the delay, the gain in throughput with decrease in the number of
servers is more substantial when the number of servers is smaller. Increasing the
attack rate decreases the number of servers; this decreases the Byzantine agree-
ment overhead, and hence tends to increase the throughput. On the other hand,
the probability of enough servers becoming corrupted to violate the Byzantine
agreement requirement increases with increasing attack rates, hence decreasing
productive throughput. The nature of this graph can be attributed to the com-
petition between these two opposing forces. The former dominates the initial
portion of the graph, while the latter dominates when the attack rate is higher.
As explained above, the gain in throughput is not much when the expected num-
ber of servers online is high, and that leads to the domination of the latter force
for very low attack rates, resulting in the initial dip in the graph.

Figure 6(d) shows that productive throughput decreases with increasing at-
tack rates, as fewer correct servers are online. The relative performance of the
architectures can be explained by the facts that CRCM has a performance bot-
tleneck of centralized request routing, and that MRDM, MRCM, and CRCM
have 12, 11, and 10 servers working in parallel, respectively.

4.4 Comparison under Varying Multi-phase Attack Rates

In this study, we vary the probability that a particular request is part of a
multi-phase attack from 0 to 0.009, while keeping the number of single-phase
attacks at 0. Figure 7(a) shows that CRCM and MRDM (coinciding lines) per-
form better than MRCM with respect to strong unavailability. The reason is
that multi-phase attacks in CRCM and MRDM are largely unsuccessful due to
dispersion, and have a negligible effect on strong unavailability. The effect on
MRCM becomes more evident when we look at the productive throughput for
the three architectures in Figure 7(b). Though MRCM starts out better than
CRCM because of one additional server, its performance degrades rapidly as we
increase the probability of multi-phase attacks.



0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

W
ea

k 
U

na
va

ila
bi

lit
y

Repair Rate

 CRCM
 MRCM
 MRDM

14

16

18

20

22

24

26

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
ro

du
ct

iv
e 

T
hr

ou
gh

pu
t

Repair Rate

 CRCM
 MRCM
 MRDM

(a) Weak Unavailability (b) Throughput up to t = 120 min

Fig. 8. Variation in Measures with Varying Repair Rates

4.5 Comparison under Varying Repair Rates

When a corrupted server is detected, it is removed from the set of active
servers, taken offline, and put into repair. After repair, the server is put back
into the pool of active servers. The system would eventually fail if there was
no repair or the repair was not “fast enough,” i.e., if the mean time between
successful attacks is shorter than the average time taken to repair a server and
put it back into service. Thus, we can intuitively predict that a faster repair rate
is crucial for ensuring that the system provides continuous service.

Figure 8 confirms this intuition. In obtaining the data for these graphs, we
considered, for all architectures, a set of 4 hosts running the service component.
Additional hosts were used for the trusted management components (Gateway,
Configuration Manager, and Firewall) if those components are required in the
architecture. We varied the repair rate from 0 (no repair) to 0.5 (very fast repair
rate: one repair every 2 minutes), while the other parameters were kept con-
stant. The attack rate was kept constant at 0.08 per time unit. As the repair
rate varies from 0 upwards, we can see that productive throughput increases
until a saturation point. The saturation point is reached when the repair rate
is faster than the attack rate. Increasing the repair rate beyond that point has
some beneficial effects, but not substantial improvements. A similar trend can
be observed from the graphs depicting weak unavailability. The saturation point
(for a given estimate of the attack rate) represents the optimal repair rate; it is
“optimal” in the sense of getting maximum benefit from minimal cost for repair.

From Figure 8(a), we can see that with no repair, CRCM performs the best,
because of its strong firewall and its use of a dispersion mechanism. MRDM
and MRCM do not have a strong firewall, but MRDM outperforms MRCM due
to dispersion in the former. Since CRCM starts out with low unavailability, it
is not affected substantially by an increase in repair rate. MRCM matches the
low unavailability of the CRCM architecture after the optimal repair rate has
been reached. The MRDM architecture, on the other hand, is not able to attain
such low unavailability, even after the saturation point. The reason is that our
experiments were conducted with 4 servers, and when the number of correct



servers drops to 3, it is not possible to reach Byzantine agreement to remove the
next corrupted server from the set of active servers.

Though the CRCM and MRCM architectures outperform the MRDM archi-
tecture in availability, with respect to correctness of replies (productive through-
put), MRDM is clearly superior (as seen from Figure 8(b)). The duration be-
tween detection of an intrusion and removal of the corrupted server from the
active set is shorter for MRDM than for the CRCM and MRCM architectures,
due to the fact that it does not have the bottleneck of a centralized manager.
Therefore, the number of potentially erroneous replies that a corrupted server
could send before being removed would be less for the MRDM architecture than
for other architectures. However, we expect that for a greater number of servers,
this advantage may become less important for MRDM, because the overhead
due to the Byzantine agreement protocol increases significantly as the number
of servers increases, as shown experimentally in [10].

5 Conclusion

This work is the first attempt to evaluate intrusion-tolerant server architec-
tures. We define a series of relevant metrics and present a probabilistic evalu-
ation and comparison of four representative intrusion-tolerant server architec-
tures. The results present useful information about the intrusion tolerance and
performance characteristics of the architectures, by means of varying system pa-
rameters such as the quality of intrusion detection, rate of attacks on the system,
amount of resources, and time to repair an intruded server.

The results show that architectures that use a small number of trusted com-
ponents to secure a large set of servers have better availability than architectures
with no trusted components when the level of redundancy in the system is not
very large. However, [9] shows that it is difficult, if not impossible, to implement
truly trustworthy components. Such architectures also usually employ central-
ized decision-making, which is a potential performance bottleneck.

State-machine-replication-based architectures that employ Byzantine fault-
tolerant protocols for agreement on the request processing have the best intrusion
tolerance characteristics, but they have comparatively lower performance. Hence,
such architectures are a good choice for implementing mission-critical systems for
which the ability to withstand intrusions is more important than performance.

Architectures that employ decentralized decision-making and serve multiple
requests in parallel have the best performance for a given amount of resources,
since all the resources can be used for request processing. They are superior to
centralized architectures, for which a portion of resources need to be set aside for
hosting trusted components. However, from an intrusion tolerance perspective,
the effectiveness of such decentralized architectures is realized only when there
is a sufficient degree of redundancy. We also observe that introducing unpre-
dictability in request routing (dispersion) is highly effective in defense against
multi-phase attacks, and that it is critical that the mean time to repair be much
less than the mean time between attacks.



We believe that our choice of values for model parameters is reasonable,
but more importantly, our models allow system designers to evaluate alternative
architectures by assigning different values for those parameters as they deem ap-
propriate. This certainly enhances their ability to make more informed choices
between various intrusion-tolerant architectures easily and quickly, before un-
dergoing the expensive process of building and evaluating multiple prototypes.
Acknowledgments: We thank Dr. Marinho Barcellos for his help in improving
the manuscript, and Jenny Applequist for her editorial assistance.

References

1. V. Cardellini, M. Colajanni, and P. S. Yu, “Dynamic Load Balancing on Web-server
Systems,” IEEE Internet Computing, Vol. 3, No. 3, pp. 28–39, 1999

2. M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” Proc. Third Symp.
on Operating Sys. Design and Implementation (OSDI ’99), pp. 173–186, 1999

3. M. Cukier, J. Lyons, P. Pandey, H. V. Ramasamy, W. H. Sanders, P. Pal, F. Web-
ber, R. Schantz, J. Loyall, R. Watro, M. Atighetchi, and J. Gossett, “Intrusion
Tolerance Approaches in ITUA,” FastAbstract in Supplement of the 2001 Interna-
tional Conference on Dependable Systems and Networks, pp. B64–B65, 2001

4. D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M. Doyle, W. H.
Sanders, and P. G. Webster, “The Möbius Framework and Its Implementation,”
IEEE Trans. on Software Engineering, Vol. 28, No. 10, pp. 956–969, October 2002

5. A. Delis and N. Roussopoulos, “Performance and Scalability of Client-Server
Database Architectures,” Proc. Intl Conf. in Very Large Data Bases (VLDB), pp.
610–623, 1992

6. Y. Deswarte, L. Blain, J. C. Fabre, “Intrusion Tolerance in Distributed Computing
Systems,” Proc. IEEE Symposium on Security and Privacy, pp. 110–121, 1991

7. Draper Laboratories, Inc., “Kinetic Application of Redundancy to Mitigate At-
tacks,” DARPA OASIS Program, http://www.tolerantsystems.org/
ProjectSummaries/IT Using Masking Redundancy and Dispersion.html

8. V. Gupta, V. Lam, H. V. Ramasamy, W. H. Sanders, and S. Singh, “Dependability
and Performance Evaluation of Intrusion-Tolerant Server Architectures,” CRHC
Technical Report, 2003, to appear

9. U. Lindqvist, T. Olovsson, and E. Jonsson, “An Analysis of a Secure System Based
on Trusted Components,” Proc. Eleventh Annual Conf. on Computer Assurance
(COMPASS ’96), pp. 213–223, Gaithersburg, Maryland, 1996

10. H. V. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W. H. Sanders, “Quantifying
the Cost of Providing Intrusion Tolerance in Group Communication Systems,”
Proc. Intl Conf. on Dependable Sys. and Networks (DSN-2002), pp. 229–238, 2002

11. W. H. Sanders, M. Cukier, F. Webber, P. Pal, and R. Watro, “Probabilistic Vali-
dation of Intrusion Tolerance,” FastAbstract in Supplemental Volume of the 2002
International Conference on Dependable Systems and Networks, pp. B78–B79, 2002

12. W. H. Sanders, and J. F. Meyer, “Stochastic Activity Networks: Formal Definitions
and Concepts,” In Lectures on Formal Methods and Performance Analysis, LNCS
2090, Springer-Verlag (E. Brinksma, H. Hermanns, J.P. Katoen, Ed.), Berlin, pp.
315–343, 2001

13. F. Schneider, “Implementing Fault-Tolerant Services Using the State Machine Ap-
proach: A Tutorial,” ACM Computing Surveys, Vol. 22, No. 4, pp. 299–319, 1990

14. Secure Computing Corporation, “Intrusion Tolerant Server Infrastructure,”
DARPA OASIS Program, http://www.tolerantsystems.org/ProjectSummaries/
Intrusion Tolerant Server Infrastructure.html

15. S. Singh, M. Cukier, and W. H. Sanders, “Probabilistic Validation of an Intrusion-
Tolerant Replication System,” Proc. Intl Conf. on Dependable Sys. and Networking
(DSN-2003), pp. 615–624, 2003


