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Abstract

This paper provides a technique, based on partially ob-
servable Markov decision processes (POMDPs), for build-
ing automatic recovery controllers to guide distributed sys-
tem recovery in a way that provides provable assurances on
the quality of the generated recovery actions even when the
diagnostic information may be imprecise. Lower bounds on
the cost of recovery are introduced and proved, and it is
shown how the characteristics of the recovery process can
be used to ensure that the lower bounds converge even on
undiscounted models. The bounds used in an appropriate
online controller provide it with provable termination prop-
erties. Simulation-based experimental results on a realistic
e-commerce system demonstrate that the proposed bounds
can be improved iteratively, and the resulting controller
convincingly outperforms a controller that uses heuristics
instead of bounds.

1 Introduction

Throughout the history of computing, system recovery
has always been one of the most important tools in the arse-
nal of the dependable system architect. Performed quickly
and automatically, recovery can provide systems with high
levels of availability, often without exorbitant increases in
cost. However, recovery actions can often temporarily de-
grade system performance and cannot be used indiscrimi-
nately. Therefore, it is important to perform accurate fail-
ure detection and good fault diagnosis before any recovery
can be performed. Unfortunately, failure detection and di-
agnosis are often difficult tasks because of the fundamental
trade-offs between detection coverage and accuracy that are
present in most monitoring techniques. For example, a low-
level heartbeat-based monitor might detect the location of
a fault accurately at the component level, but often suffers
from low coverage (only hardware and OS crash failures are

detected). On the other hand, end-to-end monitoring might
detect additional failures (e.g., value or timing failures), but
cannot precisely identify the faulty component. Combining
monitoring of different types may provide better diagnosis,
but the fact still remains that one may never know for certain
which faults have occurred in a system.

Despite these problems, detection and recovery are often
the only available techniques for many kinds of systems,
due to their low cost and wide applicability. Therefore, sys-
tem designers (especially in large distributed systems such
as e-commerce systems) often tackle the problems by writ-
ing adhoc “if-then” recovery rules that take as input the
outputs of system monitors, and generate a list of recov-
ery actions. These rules are often based on a mixture of
domain knowledge about the system architecture and prior
experience with the system. Unfortunately, writing such
rules requires a lot of expertise, and the rules often become
complex, because explicit decisions must be made regard-
ing every possible situation that may arise. Furthermore, it
is difficult to predict whether such rules will interact with
each other in unforeseen ways, and what the performance
of the resulting “recovery controller” might be. Thus, sound
techniques that can reduce human involvement by automat-
ing decision-making while also providing guarantees on the
quality of the decisions produced are sorely needed.

In [8], to tackle the problem, we proposed a model-based
recovery framework for distributed systems based on par-
tially observable Markov chains (POMDPs). When pro-
vided with models of the system monitoring and recov-
ery actions, the framework has the ability to direct system
recovery automatically, even when the information about
faults provided by the system’s monitors is imprecise and
when recovery actions have substantial runtime costs. How-
ever, solution of POMDPs is difficult, and in our previous
work, we used heuristics when solving a POMDP. Doing so
prevented the controller from guaranteeing any termination
and performance properties.

In this paper, we extend that work and make the follow-
ing new contributions. 1) We develop a new lower bound
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(the RA-Bound) for the value of a POMDP. This bound
is based on an exponentially smaller state-space than is
needed to solve the POMDP, and is thus very cheaply com-
puted. 2) We develop two sets of conditions on recovery
models based on the nature of the recovery process to ensure
that the RA-Bound converges even for undiscounted opti-
mization criteria. For one set of conditions, the RA-Bound
is the only lower bound we are aware of that converges to a
finite value. Most of the previous work on bounds has been
on discounted optimization problems. 3) Using the bounds,
we construct a controller that can ensure in an automatic
manner that the recovery process will always terminate and
can provide upper bounds on mean cost of recovery. 4) We
demonstrate the techniques by using them to choose which
components of an e-commerce system to restart, even when
the location of the fault is not precisely known. In doing
so, we show experimentally that a) the lower bounds can be
iteratively improved, b) the controller that uses the bounds
does not terminate until recovery has completed, and c) the
resulting controller performs recovery faster and takes less
time to decide than a controller that uses heuristics.

2 Overview and Related Work

The fundamental insight in our proposed approach to au-
tomatic recovery is that, at its core, automatic system recov-
ery is a performability optimization problem. The recovery
controller’s goal on the occurrence of a fault is to restore the
system to a good state by executing recovery actions such
that the costs accumulated along the way are minimized.
The goal of cost minimization automatically ensures cor-
rectness with respect to the model. Markov Decision Pro-
cesses have been used in the past to optimize performability
in other applications (e.g., [5, 1, 12, 3]), so we begin by con-
sidering their applicability to system recovery.

A Markov Decision Process is defined as a tuple
(S,A, p(·|s, a), r(s, a)), where S is a set of states, and A
is a finite set of actions. p is a collection of state-transition
probability functions, one per action, such that p(s′|s, a),
where s, s′ ∈ S, and a ∈ A denotes the probability that
the MDP will transition to state s′ when action a is chosen
in state s. Finally, r(s, a) is a reward (cost) function that
specifies the reward (cost) incurred when action a is cho-
sen in state s. Figure 1(a) shows a simple example of how
an MDP might be used to model the recovery process of
two redundant servers a and b. In the figure, the different
states represent the different faults that might exist in the
system (with a special “null fault” state for indicating the
absence of any fault). The actions represent the different
recovery choices available to the controller (including pas-
sive actions that may just observe the system) and are spec-
ified by the transition probability and cost. For example,
“Restart(a)(1,-0.5)” in state Fault(a) indicates that restart-
ing a when it is faulty will recover the system with proba-
bility 1 and incur an unavailability cost (negative reward) of
0.5. In the example, actions are assumed to take unit time,
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Figure 1. Recovery Model and Solution

but in general actions are also associated with an execution
time ta, allowing both rate (r̄(s, a)) and impulse (r̂(s, a))
rewards to be defined and converted into a single-step re-
ward as r(s, a) = r̄(s, a) · ta + r̂(s, a).

In this framework, a stationary deterministic, Markov
policy ρ(s) is a mapping from states to the actions that
should be chosen when the system is in those states. In
the case of system recovery, such a policy is exactly what
would be needed to construct a recovery controller. Given
a “good” policy, a controller could guide the system from
a faulty state to the null fault state via a series of recov-
ery actions. Furthermore, MDP solution techniques ex-
ist to construct optimal policies ρ∗ that are both station-
ary and Markov, and ensure that the reward (cost) accrued
by the system over its lifetime is optimized. Formally,
ρ∗ = argmaxρ

∑∞
t=0 βtr(St, ρ(St)), where St and ρ(St)

are random variables representing the system state and the
action chosen under policy ρ respectively, at decision point
t. Given a starting state s, the value of the MDP is defined
as the optimal mean accumulated reward obtainable when
starting from that state. It is known (from [11], for exam-
ple) that the value function Vm(s),∀s ∈ S is given by the
dynamic programming equation:

Vm(s) = max
a∈A

{
r(s, a) + β

∑
s′∈S

p(s′|s, a)Vm(s′)
}

(1)

The optimal (deterministic) policy is given by choosing for
each state s ∈ S the action a∗(s) that maximizes the right
side of Equation 1.

The constant β (0 ≤ β ≤ 1) in the equations above is the
“discounting factor.” If β < 1, the model is said to be a dis-
counted model, and reward accumulated t decision points
in the future is discounted by βt. Discounting ensures that
accumulated rewards are always finite, and makes solution
easier. However, although discounting has a natural basis in
applications such as financial modeling, discounting in re-
covery problems is artificial at best and potentially harmful
(an infinite trajectory of recovery actions may be associated
with a finite cost). Due to that artificiality, it is difficult to
choose a proper value of β. High values may slow down
solution algorithms, while low values may undervalue re-
covery actions done in the future. Therefore, we choose



the “undiscounted optimality criteria” for which β = 1 for
the recovery problem and will later propose more domain-
specific ways to deal with the problem of infinite accumu-
lated reward.

However, even with undiscounted models, the MDP
framework is not directly applicable to practical recovery
problems for one important reason: it assumes that the state
of the system is completely known at all times. How-
ever, as argued in Section 1, such precise knowledge is
usually impossible to obtain due to the many artifacts of
monitoring systems (e.g., false positives, imperfect cover-
age, and poor localization abilities), lack of transparency of
the monitored systems, and fundamental impossibility re-
sults related to fault detection (e.g., [4]). In such cases,
due to the possibility of making a mistake, even a simple
problem such as the one in Figure 1(a) becomes difficult
and may require a sequence of multiple observation and
recovery actions. We tackle the problem using an exten-
sion of MDPs called partially observable Markov decision
processes (POMDPs) that allow decision-making based on
probabilistic state estimates. POMDPs (and solution tech-
niques) were originally proposed in the operations research
community (e.g., [13, 10]) and were later adopted by ar-
tificial intelligence research in robotics and reinforcement
learning research (e.g., [2]).

A POMDP is defined as a tuple (S, A, O, p(·|s, a),
q(·|s, a), r(s, a)) where S, A, p, and r are the same as for
an MDP. However, the system can be observed only through
a finite set of observations O. An observation o ∈ O is
generated with probability q(o|s, a) whenever the system
transitions to state s as a result of action a having been cho-
sen. For system recovery, the outputs of system-monitoring
components can be viewed as these observations. In the ex-
ample of Figure 1(a), the Observe action might generate ob-
servations “a appears to have failed” or “b appears to have
failed,” indicating which server is observed to have failed
(although there might be false positives and false negatives
as well).

Although optimal POMDP policies are not Markovian
in terms of the observation sequence, they are Marko-
vian in terms of the “belief-state.” A belief-state π =
[π(1), . . . , π(|S|)] specifies the probability with which the
system is in each state s ∈ S. Given that the system is in a
belief-state π, that it chooses action a, and that it observes o,
then the next belief-state can be computed using the Bayes
rule. A “belief-state MDP” can then be defined over the set
of belief-states, where the possible observations that can be
generated on the choice of action a define probabilistic tran-
sitions between the belief-states. The value of the POMDP

is then the solution of the belief-state MDP. Formally:

Vp(π) = max
a∈A

{
πr(a) + β

∑
o∈O

γπ,a(o)Vp(ππ,a,o)
}

≡ LpVp(π) (2)

γπ,a(o) =
∑
s∈S

q(o|s, a)
∑
s′∈S

p(s|s′, a)π(s′) (3)

ππ,a,o(s) =
q(o|s, a)

∑
s′∈S p(s|s′, a)π(s′)∑

s′,s′′∈S q(o|s′, a)p(s′|s′′, a)π(s′′)
(4)

Here, Lp is a mapping operator from one real-valued value
function v defined on the belief-state-space to another. The
subscript p indicates that it is an operator on a POMDP
value function (an operator defined on an MDP value
function would have subscript m). Furthermore, r(a) =
[r(s, a),∀s ∈ S]T is the reward (column) vector of the
POMDP when action a is chosen, γπ,a(o) is the probability
with which observation o will be generated given the cur-
rent belief-state π and chosen action a, and ππ,a,o is the next
belief-state that would result if o were actually observed.

Even from the trivial example of Figure 1(a), it is easy to
see that the number of belief-states may be infinite. How-
ever, given an initial belief-state π, the set of reachable
belief-states is countable due to the finite action and ob-
servation sets. Nevertheless, the dynamic programming
recursions above are not easy to solve. Even determin-
ing whether a solution is the exact POMDP solution or
not is an undecidable question [9]. Therefore, POMDP
solution approaches are restricted to approximations and
bounds. However, even in the space of bounded solutions,
the POMDP research has focused mainly on problems with
discounted rewards, because even the question of existence
of ε-tight bounds (for an arbitrary ε > 0) is not decidable for
the undiscounted accumulated reward criterion [9]. An ap-
proach that is often used for discounted models is to choose
an action on-line by performing a finite-depth expansion of
the POMDP dynamic programming recursion starting at the
current belief-state. An example recursion tree with a depth
of one is shown in Figure 1(b). The tree is a Max-Avg tree
in which the values of future belief-states are averaged, and
maximization is performed over available recovery actions.
The action that maximizes the value of the root is chosen
to be executed. At the leaves of the tree, bounds or approx-
imations of the remaining rewards are used. We used this
approach with a heuristic approximation of the remaining
reward at the leaves to perform automatic recovery in [8].

However, use heuristics is undesirable, because they may
be system-specific and do not permit the controller to guar-
antee any performance properties. Alternatively, different
upper and lower bounds have been proposed (see [7] for
a review), but they are known to work only for discounted
models, not undiscounted ones such as those induced by the
system recovery problem.



3 POMDP Lower Bounds

In this section, we begin by proposing a new lower bound
for the value function of POMDPs called the random-action
bound (RA-Bound). We show that it converges for undis-
counted recovery models that satisfy certain conditions that
are very natural for recovery problems and that it is a lower
bound for the value function of the corresponding POMDP.
We compare this bound to other known bounds in the liter-
ature and show that they do not converge for even simple
recovery models. Then, by utilizing the specific charac-
teristics of system recovery, we show that the restrictions
imposed earlier can be relaxed while still ensuring bounds
convergence. Finally, we prove an important property of the
RA-Bound that is crucial for proving properties of recovery
controllers that use it.

3.1 The Random-Action Bound

The RA-Bound is defined as a linear combination of
value function bounds defined on the states of MDP model
m = (S,A, p, r) corresponding to a given POMDP
(S,A,O, p, q, r). Precisely, if the value function bound
on MDP m is V −

m (s), then the RA-Bound for belief-state
π is defined as V −

p (π) =
∑

s∈S π(s) · V −
m (s). Since

the original state-space of POMDP (S) is at least expo-
nentially smaller than the belief-state-space Π (which is a
|S|-dimensional probability simplex), the bounds can be
quickly computed for POMDPs,even ones with hundreds of
thousands of states. Geometrically, the RA-Bound is a sin-
gle hyperplane in the belief-space probability simplex, with
V −

m (s′) being the value of the hyperplane at the simplex
vertex π(s) = 1, if s = s′ and π(s) = 0 otherwise.

The MDP value function bound V −
m (s) is based on the

simple observation that barring any additional information
about a set of numbers, the set’s mean value is the tightest
lower bound for its maximum element. Intuitively, V −

m (s)
is computed by modifying the MDP dynamic programming
recursion (Equation 1) so that instead of picking the best
action, it uniformly randomly chooses an action (thus com-
puting an average) irrespective of what state the system is
in. The following set of linear equations define V −

m (s):

V −
m (s) =

1
|A|

∑
a∈A

{
r(s, a) + β

∑
s′∈S

p(s′|s, a)V −
m (s′)

}

≡ L−
mV −

m (s) (5)

This modification effectively constructs a Markov chain
from the MDP by replacing the non-deterministic actions
with probabilistic transitions with a transition probability
of 1

|A| and solving for the mean accumulated infinite hori-
zon reward. If a finite solution exists, it can be cheaply
computed off-line by using any linear system solver (or
by successive iterations of L−

m). For our implementation
(Section 5), we use Gauss-Seidel iterations with successive
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over-relaxation. However, for general undiscounted mod-
els, a finite V −

m may not exist. Since Equation 5 computes
the expected accumulated reward in a Markov chain, to en-
sure a finite solution, it is necessary and sufficient to ensure
that the rewards of all actions that originate in the recurrent
states of this Markov chain are zero. To achieve this ulti-
mate goal, first we impose the following natural condition
on recovery models.

Condition 1: Recovery models include a non-empty set
of “null fault” states Sφ that correspond to the system being
free of activated faults. Furthermore, starting in any state
s /∈ Sφ, there is at least one way to recover the system (i.e.,
reach some state in Sφ). Therefore, for a given initial state
s, there exists at least one s′ ∈ Sφ that is recurrent.

Next, we classify the system being recovered as being
one of two types, and demonstrate how to ensure a finite
V −

m in either type.

Systems with Recovery Notification In many systems,
even though system monitoring may not be able to precisely
diagnose which fault has occurred, it may be able to deter-
mine when the system has recovered, i.e., when the system
has reached a null fault state in Sφ. An example is recov-
ery from permanent faults such that when monitors indicate
there are no failures, the system is certain to have recov-
ered. We believe that it is possible to automatically deter-
mine whether a system has recovery notification by examin-
ing the observation function q, but we leave details to future
work. In any case, with recovery notification, the controller
knows when the system enters some state s′ ∈ Sφ and can
stop recovery. Therefore, to compute the RA-Bound, we
can modify the recovery model to replace all outgoing ac-
tions originating from any state s′ in Sφ to loop back to
state s′ with probability 1, and with 0 reward. Figure 2(a)
shows the RA-Bounds Markov chain corresponding to the
example in Figure 1(a). With this modification, all null fault
states s′ ∈ Sφ become absorbing states with 0 reward, and
due to Condition 1, all other states s /∈ Sφ become tran-
sient states. This is sufficient to ensure the convergence of
Equation 5 and the existence and finiteness of V −

m .



Systems without Recovery Notification Although ex-
plicit recovery notification is appropriate for many systems,
there are also many systems in which it is not available.
Examples include systems with transient faults, in which
symptoms may disappear only to reappear some time later,
or systems in which monitors have false positives. In such
cases, it is usually not possible to know for certain when
the system has recovered. Nevertheless, executing recov-
ery actions in a recovered state might still incur cost (e.g.,
executing a “Restart” action in the “Null” state in Fig-
ure 1(a)). Therefore, the recovery should only be a finite
process, and the controller should terminate at some point.
We solve this problem by explicitly making the decision on
whether to terminate recovery or not a part of the recovery
model. Precisely, we refine the recovery model POMDP
P by adding an absorbing state sT and a “terminate” ac-
tion aT to it. State sT corresponds to the controller hav-
ing terminated the recovery process and is defined such that
∀a ∈ A, r(sT , a) = 0 and ∀a ∈ A, s ∈ S, p(s|sT , a) = 1
if s = sT and 0 otherwise. Action aT corresponds to the
controller choosing to terminate the recovery and is defined
such that ∀s ∈ S, p(s′|s, aT ) = 1 if s′ = sT and 0 oth-
erwise. Figure 2(b) shows the RA-Bounds Markov chain
corresponding to the example of Figure 1(a), assuming no
recovery notification. Since sT is an absorbing zero-reward
state and aT transforms all the other states into transient
states, the convergence of Equation 5 and the existence and
finiteness of V −

m are ensured.
The choice of action aT is under the control of the re-

covery controller itself and is selected using the normal
decision-making process. In order for the controller to make
the decision to terminate, it must know the risk of terminat-
ing too soon (i.e., before the recovery is complete). This is
done via an appropriate choice of rewards r(s, aT ) (called
termination rewards). Clearly, r(s, aT ) = 0 if s ∈ Sφ,
because Sφ are the desired states. To compute the termi-
nation rewards for other states, the system designer pro-
vides a parameter top called operator response time, which
indicates the time required for a human operator to re-
spond to the fault. Then the termination reward is given
as r(s, aT ) = r̄(s) · top, where r̄(s) is the rate reward (cost)
incurred by the system in state s. The operator response
time is a very designer-friendly metric (as opposed to a dis-
count factor) and is usually known for most systems. If it
is high, the recovery controller will be more aggressive in
ensuring that the system has recovered before it terminates,
but it might incur a higher recovery cost. By varying this
parameter, it is possible to configure the controller for sys-
tems with differing degrees of human oversight.

Two other lower bounds for discounted POMDP value
functions have previously been proposed in the literature.
The BI-POMDP bound proposed in [14] is also a linear
combination of an MDP bound V BI

m (s). V BI
m (s) is ob-

tained by solving Equation 1, but with the max replaced
with a min. The bound computes the value obtained by
choosing the worst possible action from a state. Clearly,

even for simple undiscounted recovery models (e.g., Fig-
ure 1(a)), this approach fails for systems either with or with-
out recovery notification, because the worst recovery action
(e.g., action “Restart(b)” in state “Fault(a)”) will often make
no progress but accrue cost, thus leading to an infinite value.

The second bound in the literature is the “blind pol-
icy method” of [6]. It is a set of bounds V ba

m (s, a), one
per (state,action) pair obtained by starting in state s and
then blindly following action a thenceforth (i.e., Equation 1
without the max). The POMDP bound for belief-state π
is given by maxa∈A

∑
s∈S π(s) · V ba

m (s, a). For systems
with recovery notification, this bound will be infinite for
most recovery models. The reason is that usually, no single
recovery action will usually progress in all states (e.g., in
Figure 1(a), always choosing action “Restart(a)” will lead
to an infinite value in state “Fault(b)”). In systems without
recovery notification, however, our proposed modifications
trivially ensure a finite blind policy bound (since the “termi-
nate” action aT always ensures a finite termination reward
of r(s, aT )).

3.2 RA-Bound is a POMDP Lower Bound

Given that operator L−
m defined in Equation 5 converges

and the RA-Bound V −
p (π) =

∑
s∈S π(s) · V −

m (s) exists
and is finite for a POMDP P , we prove in two steps that
the RA-Bound is a lower bound for the value function of
P . First, we show that the RA-Bound is a lower bound for
all iterates of Lp (Equation 2). Then, we show that the it-
erates of Lp converge to a finite value that, in the limit, is
the value function of the POMDP P . In the proofs, P (a)
denotes the probability transition function p(s′|s, a) in ma-
trix form, r(a) denotes the reward vector for action a, and
vector comparisons are assumed to be element-wise (i.e.,
v > v′ =⇒ v(i) > v′(i),∀i ).

Lemma 3.1 Let P = (S,A,O, P, q, r) be some POMDP
(with β = 1) that satisfies Condition 1 and has been
modified such that Equation 5 converges to a finite solu-
tion V −

m = limk→∞ L−
m

k0. Also, let vk
p = Lk

p0 be the
kth iterate of Equation 2 starting from 0 (vk+1

p = Lpv
k
p ).

Then, the RA-Bound V −
p (π) =

∑
s∈S π(s) · V −

m (s) ≤
limk→∞ vk

p(π).
Proof: The proof is by induction. Let v−,k

m be the kth iterate
of Equation 5 (v−,k+1

m = L−
mv−,k

m ). Also, for any belief-
state π, let v−,k

p (π) = π · v−,k
m . As the basis of induction,

choose v0
p(π) = 0,∀π and v−,0

m (s) = 0,∀s ∈ S so that
v−,0

p (π) ≤ v0
p(π). For the induction step, assume v−,k

p ≤
vk

p . Then, as seen in Figure 3, v−,k+1
p (π) ≤ vk+1

p (π).
Therefore, V −

p (π) =
∑

s∈S π(s)V −
m (s) =

∑
s∈S π(s) ·

limk→∞ v−,k
m (s) = limk→∞ v−,k

p (π) ≤ limk→∞ vk
p(π).

�

Using Lemma 3.1, we see that in the limit, the RA-
Bound is a lower bound for iterates of Lp. Now all that



vk+1
p (π) = max

a∈A

{
πr(a) +

∑
o∈O

γπ,a(o)vk
p(ππ,a,o)

}
≥ max

a∈A

{
πr(a) +

∑
o∈O

γπ,a(o)v−,k
p (ππ,a,o)

}
(γπ,a(o) ≥ 0)

= max
a∈A

{
πr(a) +

∑
o∈O

γπ,a(o)
∑
s∈S

πo,a,πv−,k
m (s)

}
(by defn. of v−,k

p )

= max
a∈A

{
πr(a) +

∑
o∈O

∑
s∈S

v−,k
m (s)q(o|s, a)

∑
s′∈S

p(s|s′, a)π(s′)
}

(substituting eqns. 4 and 3)

= max
a∈A

∑
s′∈S

π(s′)
{

r(s′, a) +
∑
s∈S

p(s|s′, a)v−,k
m (s)

∑
o∈O

q(o|s, a)
}

(rearranging summations)

= max
a∈A

∑
s′∈S

π(s′)
{

r(s′, a) +
∑
s∈S

p(s|s′, a)v−,k
m (s)

}
(
∑
o∈O

q(o|s, a) = 1)

≥ 1

|A|
∑
a∈A

∑
s∈S

π(s)
{

r(s, a) +
∑
s′∈S

p(s′|s, a)v−,k
m (s)

}
=

∑
s∈S

π(s)v−,k+1
m (s) = v−,k+1

p (π)

Figure 3. Induction Step for Proof of Lemma 3.1

remains is to show that these iterates are finite, and them-
selves converge to the POMDP value function. To do so, we
impose the following additional condition on the recovery
models.

Condition 2: In a recovery model POMDP, all single-step
rewards are non-positive. i.e., r(s, a) ≤ 0. This condition
ensures that the accumulated reward is upper-bounded by
0, and is a very natural condition for recovery models, since
they involve minimization of recovery costs (negative re-
wards).

Theorem 3.1 Let P be a POMDP satisfying the same con-
ditions as in Lemma 3.1 in addition to Condition 2 and let
V ∗

p be the value function of P . Then, the RA-Bound is a
lower bound for V ∗

p or V −
p (π) ≤ V ∗

p (π),∀π.
Proof: Let MP (π) be the countable state MDP induced by
the transition functions specified by Equations 3 and 4 on
the belief-state-space of POMDP P with an initial belief-
state π. First, we show that MP (π) is a negative MDP
(see [11], Section 7.3). For negative MDPs, the total ex-
pected reward starting from any state and under any pol-
icy must be non-positive. This is ensured by Condition
2. Second, there must exist at least one (possibly history-
dependent and/or randomized) policy for which the mean
accumulated reward is finite. To see that this holds for
MP (π), note that any belief-state π′ for which π(s′) = 0 if
s′ /∈ Sφ (for models with recovery notification), or s′ �= sT

(for models without recovery notification), is an absorb-
ing state in MP . Moreover, such belief-states are zero-
reward states, and Condition 1 ensures that it is always pos-
sible to reach at least one such belief-state from any other
belief-state. Therefore, it is easy to see that a random-
action policy (i.e., choosing actions randomly without re-
gard to belief-state) would ultimately lead the system to
one of the absorbing belief-states and ensure a finite mean
accumulated reward. It is known that for negative MDPs
with countable state-spaces, if v0

m = 0, then Equation 1

converges to Vm ([11], Theorem 7.3.10). Applying that
result to Equation 2 and using Lemma 3.1, we have ∀π,
V −

p (π) ≤ (limk→∞ Lk
p0)(π) = V ∗

p (π). �

4 Improving and Using Bounds for Recovery

Having introduced and proved POMDP lower bounds in
the previous section, we begin this section by briefly de-
scribing how they are used in a recovery controller. When a
POMDP-based recovery controller first starts, it computes
the RA-Bound. It then remains passive until the system
monitors detect a failure. Then, starting from a belief-state
in which all faults are equally likely, the controller uses
Equation 4 and the monitor outputs to construct an initial
belief-state π. Subsequently, it unrolls the POMDP recur-
sion of Equation 2 to a small finite depth, and uses bounds
for the belief-states at the leaves of the recursion tree. It
then executes the recovery action that maximizes the value
of the tree, invokes the monitors again, and repeats the pro-
cess until the terminate action (aT ) is chosen (for systems
without recovery notification) or until it reaches a state in
Sφ (for systems with recovery notification).

Using a lower bound at the leaves of the recursion tree
provides the recovery controller with some important prop-
erties that we summarize later in this section. However, the
quality of the decisions that the controller generates (and
thus the cost of recovery) when using the bound is deter-
mined by how tight the bound is (i.e., how closely it ap-
proximates the optimal solution of the POMDP). Since the
RA-Bound is based on an MDP representation that does not
use the definitions of the observation functions, it may not
be tight for many models. Fortunately, it is possible to im-
prove the bound iteratively using refinement schemes previ-
ously developed for discounted models. The particular re-
finement scheme we use is the incremental linear-function
method from [7].



4.1 Iterative Bounds Improvement

Recall from Section 3.1 that the RA-Bound is linear in
that it defines a hyperplane on the belief-state simplex. This
hyperplane can be compactly represented as a bound vector
b with an entry V −

m (s) corresponding to each state of the
POMDP. If there were additional hyperplanes that were also
known to bound the value function, then a possibly better
lower bound at belief-state π could be computed as

V −
B (π) = max

b∈B
b(s)π(s) (6)

where B represents the set of all bounding hyperplanes. The
incremental update procedure of [7] works by creating a
new bounding hyperplane b′ from an existing set of bound
hyperplanes B that improves the bound at a fixed belief-
state π. Specifically ∀s ∈ S,

b′ = arg maxb′a,a∈A
∑
s∈S

b′a(s)π(s) (7)

b′a(s) = r(s, a) + β
∑
o∈O

∑
s′∈S

p(s′, o|s, a)bπ,a,o(s′)

bπ,a,o = arg maxb∈B
∑
s′∈S

{ ∑
s∈S

p(s′, o|s, a)π(s)
}

b(s′)

where p(s′, o|s, a) = q(o|s′, a)p(s′|s, a). In order to use
this procedure for bounds improvement, the controller must
exercise it at various belief-states π in the belief-state-space.
In addition to those belief-states that are naturally gener-
ated during the course of system recovery, our recovery con-
troller also performs bounds improvement upon startup in a
“bootstrapping phase.” In this phase, belief-states are gen-
erated by random simulation of the outputs of system mon-
itors using the observation function q(o|s, a). The actions
chosen by the controller are used to generate further simu-
lated observations and belief states to sample. The purpose
of the bootstrapping phase is to ensure that the recovery ac-
tions chosen by the controller when a real fault occurs are
of high quality.

However, the incremental update process is known to
converge only for discounted models (β < 1). The reason is
that the discounting factor allows the bounds to eventually
“forget” the initial values and make the bounds tighter; this
does not happen for undiscounted models in general. We
believe that with the conditions and model modifications
proposed in Section 3.1, it may be possible use the iterative
bounds procedure in such a way that bounds improvement is
ensured even for undiscounted recovery models. Although
a proof is left for future work, in Section 5 we demonstrate
experimentally that the bounds do improve. Furthermore,
using incremental update doesn’t hurt, because any addi-
tional bound hyperplanes that are not better in at least some
regions of the probability simplex can be discarded.

4.2 Termination Properties

When automatic controllers such as the one proposed in
this paper are used, questions usually arise regarding their
safety and stability. Since the proposed controller is based
on a finite-state model, stability in the traditional sense is
not a concern. Similarly, one way to guarantee safety is to
disable unsafe actions in the recovery model. However, it
is certainly possible, especially if actions with probabilistic
effects are present in the model, that the controller may get
stuck and go into an infinite loop executing some set of ac-
tions over and over again. Fortunately, using lower bounds
at tree leaves during decision-making allows the controller
to ensure that such a situation will not occur. We believe the
following termination property, whose detailed proof is left
to future work, is true.

Property 1 The recovery controller always terminates af-
ter executing a finite number of actions if the following two
properties hold: (a) |r(s, a)| > 0 for all actions and states
except those in Sφ for systems with recovery notification
or those in sT for systems without (i.e., there are no “free”
actions in the model), and (b) the lower bound hyperplanes
B are such that ∀π, V −

B (π) ≤ LpV
−
B (π), where V −

B is as
defined in Equation 6. Condition (b) can be shown to hold
if the RA-Bound is the only bound vector present in B.

Together, conditions (a) and (b) guarantee that in every
belief-state π, there is at least one action a such that execut-
ing a will ensure that the expected value of the bound of the
next (random) belief-state is strictly greater than the bound
on the current state. Applying this argument inductively
and noting that the recovery model value function is upper-
bounded by 0 (a reward achievable only through Sφ in sys-
tems with recovery notification and sT in systems without),
it can be seen that the controller terminates with probabil-
ity 1. Using a similar approach, it can also been seen that
if conditions (a) and (b) are true, the controller can always
choose actions that ensure that the average reward obtained
by the system is greater than the lower bound.

4.3 Computational Issues

Finally, we briefly discuss some computational issues re-
garding the bounds computation and their use in an online
recovery controller. The primary computation required for
calculating the RA-Bound presented in Section 3.1 is given
by the linear system of Equation 5. This linear system is
defined on the original state-space of the POMDP (S) and,
with the appropriate sparse structure, can be solved using
standard, numerically stable linear system solvers for mod-
els with up to hundreds of thousands of states. This solution
can be performed off-line (i.e., outside the main decision-
making loop).

Given the RA-Bound hyperplane vector as a starting
point, the Equations 7 for bounds update can be itera-
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tively applied to improve the bound. Each update in-
creases the number of bound vectors by at most 1. If there
are |B| existing bounds vectors, then each update takes
O(|S|2|A||O||B|), with the computation of bπ,a,o for ev-
ery a ∈ A and o ∈ O dominating the costs. However,
in most models, transition (p) and observation (o) matri-
ces are sparse, and one can reach only a small number of
next states and generate a small number of observations
when an action is executed in some state. If one assumes
that p(s′, o|s, a) is non-zero only for a constant number of
next states and observation combinations for any s and a,
the time complexity for the update reduces to a manageable
O(|S|A||O||B|). Nevertheless, updates can become expen-
sive because in general, the number of bounds vectors are
not bounded. Although our current implementation does
not do so, one solution expensive bound updates would be
to limit the number of bounds vectors that can be gener-
ated and throw away the least-used ones when the limit is
exceeded.

5 Experimental Results

Finally, in this section, we present experimental
simulation-based results for automatic recovery perfor-
mance in order to validate our unproven claims of bounds
improvement, to evaluate whether the recovery controller
does better than it promises, and to demonstrate the superi-
ority of using bounds over the heuristics. The target system
for our experiments is shown in Figure 4 and is described in
detail in [8]. Briefly, the system is a simple deployment of
AT&T’s enterprise messaging network platform. It is a clas-
sic 3-tier system that is representative of many e-commerce
platforms with a layer of front-end servers (serving differ-
ent protocols), a middle layer of application servers (called
EMN servers), and a back-end database, all hosted on three
hosts as shown in the figure. The system is monitored by
component monitors that monitor individual components
via pings and path monitors that monitor the functional-
ity of the entire system by simulating typical user requests
and verifying that correct responses are received. In addi-
tion to a null fault state, the model contains 13 fault states
- five corresponding to a crash of each of the components,
three corresponding to a crash of each of the three hosts, and

five corresponding to “zombie” faults in each of the compo-
nents. A component that becomes a “zombie” responds to
pings sent by component monitors, but does not correctly
perform its functions. The path monitors detect such faults,
but are unable to precisely pinpoint the component that has
failed. However, due to the path diversity in the paths taken
by the two monitors, their outputs can still help in the prob-
abilistic determination of which component might be faulty.

The recovery actions available to the recovery controller
are to restart a component, reboot a host, or just passively
observe the system (through the monitors). Recovery ac-
tions are assumed to be deterministic in that the correct re-
covery action for a fault always fixes it. Each recovery and
monitoring action has a duration; we chose 5 minutes for a
host reboot, 4 minutes for a database restart, 2 minutes for a
voice gateway restart, 1 minute each for an HTTP or EMN
server restart, and 5 seconds for an execution of the mon-
itors. During recovery, costs accrue at a rate equal to the
fraction of requests being dropped by the system either due
to a failure, or because a recovery action (e.g., rebooting)
has made a component unavailable. 80% of the requests are
assumed to be HTTP requests, while 20% are assumed to be
voice requests. Finally, the system lacks recovery notifica-
tion since an “all clear” by the monitors might just mean that
an EMN server has become a ‘zombie, but the path moni-
tor requests were routed around it. Termination costs are
specified using the technique described in Section 3 with a
mean human response time of 6 hours. Overall, the model
is small, but is enough to model a realistic system.

All experiments were conducted on 2GHz Athlon ma-
chines with 512MB of memory. Because they are difficult
to diagnose, only zombie faults were injected in the simu-
lations. The first set of results shows the convergence be-
havior of the lower bound during the bootstrapping phase.
Two variants of the bootstrapping procedure were run. The
“Random” variant corresponds to the case where faults were
randomly selected with a uniform distribution, observations
corresponding to the faults were randomly chosen (accord-
ing to the monitor coverage probabilities), and the controller
was invoked with a belief-state corresponding to the gener-
ated observations. On the other hand, the “Average” results
correspond to the situation in which the controller was in-
voked using a belief-state in which all faults were equally
likely.

Figure 5(a) shows the improvement of the lower bounds
as a function of the number of iterations of the bootstrap
procedure with tree depth set to one. The values on the
y-axis are the negative values of the POMDP lower-bound
function (or upper bounds of the cost function) evaluated
at the belief-state {1/|S|}. This belief-state corresponds to
the case where all faults are equally likely. The graph con-
firms our argument that the lower bounds do improve due to
iterative updates. Moreover, it shows that the tightening is
rapid in the first few iterations and then slows down. Note
that for a general POMDP, it is not possible to determine
whether the lower bound is within a certain distance ε from
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the optimal for any ε (due to the undecidability of the ques-
tion of the existence of approximate bounds). Nevertheless,
one can use upper bounds (if they are available) to bound
the distance of the bound from the optimal solution (with-
out any guarantee of reducing that distance). In the graph,
the x-axis is a trivial upper bound for the reward.

Graph 5(b) shows how the number of bounds vectors
(hyperplanes) in the lower bound increases with the number
of iterative update steps. During any update, since we add
at most one new bounds vector, the growth is guaranteed to
be linear at worst. For the example model, bounds refine-
ment took only a few milliseconds, and limiting the number
of bounds was not needed. But, there are no guarantees
on whether the number of bound vectors will stabilize at
some point or increase without bound. Therefore, in prac-
tice, one would provide finite storage for the lower bound.
That, plus the fact (illustrated in Figure 5(a)) that the bounds
improve rapidly at first and then become relatively stable,
implies that such a finite storage approach should work well
in practice. For the presented system, the average bootstrap-
ping procedure not only achieves faster improvement and a
tighter bound, but also increases the number of bound vec-
tors more slowly than the random bound does. However,
there is no guarantee that this same method will work best
for all models.

The second set of experiments evaluates the quality of
decisions made by the controller by injecting 10000 faults
into the system and measuring per-fault metrics. The per-
fault recovery metrics obtained for a bounded controller
with a recursion depth of 1, and bootstrapped with 10 runs
of depth 2, are compared to metrics for three other types
of controllers. The “most likely” controller is a controller
that performs probabilistic diagnosis on the system using
the Bayes rule, and chooses the cheapest recovery action
that recovers from the most likely fault. The “heuristic”
controllers are POMDP controllers with varying tree depth,
but they use a heuristic approximation of the value func-
tion at the leaves of the finite-depth expansion. According

to the heuristic, the value of a belief-state is approximated
as (1 − P [sφ])maxa∈A,s∈S r(s, a) (i.e., the product of the
probability that the system hasn’t recovered with the cost of
the most expensive recovery action available to the system).
In [8], this heuristic was experimentally chosen as the best
performing heuristic amongst a few that were tried for the
EMN system configuration. Finally, the Oracle controller
is a hypothetical controller that knows the fault in the sys-
tem, and can always recover from it via a single action. It
represents the unattainable ideal.

Table 1 shows the per-fault metrics obtained as a result of
the fault injections. In the table, cost is the reward metric de-
fined on the recovery model, and is a measure of the number
of requests dropped by the system. The residual time indi-
cates the amount of wall-clock time that a fault was present
in the system. Recovery time is the time taken to terminate
recovery, while algorithm time is the time spent by the con-
troller deciding what action to choose. Finally, the actions
and monitor calls columns represent the number of recov-
ery actions invoked and number of monitor calls made by
the controller per fault.

As the table shows, the bounded controller outperforms
both the “most likely” and heuristic depth one controllers
by fairly significant cost margins. Even though the heuristic
controllers with depths two and three manage to do quite
well in this example, and even though the bounded con-
troller’s own depth is only one, it manages to outperform
those other two controllers as well. Moreover, because of
its low depth, it is able generate its decisions in less time
than the nearest comparable heuristic controller (which re-
quires a lookahead of 2 to achieve its performance).

Another aspect where the bounded controller shines is
regarding termination of recovery. The termination condi-
tion for both the “most likely” and heuristic controllers is set
by specifying the probability with which the system must
be in the recovered state before the controller can termi-
nate recovery. Determining what value such a termination
probability should take is difficult. Since we ran 10,000



Algorithm Depth Cost Recovery
Time (sec)

Residual
Time (sec)

Algorithm
Time (msec)

Actions Monitor
Calls

Most Likely - 244.40 394.73 212.98 0.09 3.00 3.00
Heuristic 1 151.04 299.72 193.24 6.71 1.71 17.42
Heuristic 2 118.481 269.96 169.34 123.59 1.216 22.51
Heuristic 3 118.846 271.32 169.86 1485 1.216 22.50
Bounded 1 114.16 192.30 165.24 92 1.20 7.69
Oracle - 84.4 132.00 132.00 - 1.00 0.00

Table 1. Fault Injection Results (Values are Per-fault Averages)

experiments, we set the value to 0.9999. The bounded con-
troller does not require such a termination probability since
its termination conditions are set using notions of operator
response time. The consequences can be seen in Table 1.
The recovery time of all the controllers that require a ter-
mination probability are disproportionately higher than the
corresponding residual times. Even after recovery is com-
plete, they spend a large amount of time just monitoring the
system (evidenced by the number of monitoring calls they
make) in an attempt to raise the probability of successful
recovery. On the other hand, the bounded controller can de-
termine when recovery is complete much sooner. It is worth
noting that in the 10,000 fault injections, none of the con-
trollers ever quit without recovering the system.

6 Conclusion

In this paper, we examined the problem of performing
system recovery even when system monitoring informa-
tion is imperfect or imprecise by casting the problem as an
undiscounted mean accumulated reward optimization prob-
lem in the POMDP framework. Although solving undis-
counted POMDPs is difficult, we showed how to utilize
specific properties of system recovery to formulate lower
bounds on the solution of recovery POMDPs. Recovery
controllers built using these bounds were shown to possess
properties including finite termination time and to guaran-
tee a certain level of performance. Finally, experimental
results on a sample e-commerce system showed that the
bounds can be improved iteratively, and the resulting con-
troller provides performance superior to that of a controller
based on heuristics. Several ways to extend the approach in
the paper are possible, and include providing of guarantees
against early termination of the recovery process, formally
investigating iterative improvement in recovery models, and
generation of upper bounds in addition to the lower bounds
to facilitate branch and bound techniques.
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