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Abstract—Modern storage systems are employing data dedu-
plication with increasing frequency. Often the storage systems
on which these techniques are deployed contain important data,
and utilize fault-tolerant hardware and software to improve
the reliability of the system and reduce data loss. We suggest

that data deduplication introduces inter-file relationships that
may have a negative impact on the fault tolerance of such
systems by creating dependencies that can increase the severity
of data loss events. We present a framework composed of data
analysis methods and a model of data deduplication that is useful
in studying the reliability impact of data deduplication. The
framework is useful for determining a deduplication strategy that
is estimated to satisfy a set of reliability constraints supplied by
a user.

I. INTRODUCTION

Data deduplication is increasingly being adopted to reduce

the data footprint of backup and archival storage, and more

recently has become available for near-line primary storage

controllers. Scale-out file systems are increasingly diminishing

the silos between primary and archival storage by applying

deduplication to unified petabyte-scale data repositories span-

ning heterogeneous storage hardware. Cloud providers are

also actively evaluating deduplication for their heterogeneous

commodity storage infrastructures and ever-changing customer

workloads.

While the cost of data deduplication in terms of time

spent on deduplicating and reconstructing data is reasonably

well understood [1], [2], its impact on data reliability is not,

especially in large-scale storage systems with heterogeneous

hardware. Since traditional deduplication keeps only a single

instance of redundant data, it magnifies the negative impact

of data loss. Chunk-based deduplication [3], [4] divides a file

into multiple chunks, meaning the loss of one chunk will create

many lost chunks in the storage system. Delta encoding [5],

[6], [7], [8] deduplicates at the file level, storing the differences

among files, and creating the potential for losing multiple files

when ever a file is lost.

Administrators and system architects have found under-

standing the data reliability of their system under deduplication

to be important but extremely difficult [9]. Deduplication itself

poses two potential reliability problems. First as illustrated in

Figure 1a, the fact that chunks in several files depend on a
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Fig. 1: Deduplication example showing the dependence of

multiple references to the same chunk in multiple files to a

single stored reference and in a file to multiple disks in the

data store.

single instance means that loss of a instance causes secondary

losses across the data store. Inversely, as shown in Figure

1b, files with multiple references to different chunks may be

dependent on the reliability of multiple storage devices. If any

one of the devices upon which it depends fails, the file itself

is lost. This additional dependence may be counter-balanced,

however, depending on the degree of additional storage effi-

ciency. By decreasing the number of disks in the system with

deduplication, we decrease the number of expected disk faults

as well. Understanding these complex relationships requires

understanding the nature of deduplication itself, as well as the

complex interactions created by the underlying storage system.

The existing literature relies on heuristics to address the

issue of reliability in deduplication systems; the key recom-

mendation is to keep multiple copies of a data chunk instead of

storing only a single instance. The creators of Deep Store [4]

proposed to determine the level of redundancy for a chunk

based on a user-assigned value of importance. It has been

suggested by D. Bhagwat et al. [3] that the number of replicas

for a chunk should be proportional to its reference count, i.e.,

the number of files sharing the chunk. A gap exists in the

current literature on the topic of quantifying the data reliability

of a deduplication system or providing a means to estimate

whether a set of reliability requirements can be met in a

deduplication system.

A quantitative modeling of reliability in a deduplication

system is nontrivial, even without taking into account the

petabyte scale of storage systems. First, there are different

types of faults in a storage system, including whole disk

failures [10], latent sector errors (LSEs) [11], [12], and un-



detected disk errors [13], [14], [15]. To consider all these

faults together, it is necessary to have an understanding of

how these faults manifest, and have a representative model

that takes into account dependencies and correlations with

other, similar, faults as well as the interactions of independent

faults in the hardware environment. Second, these faults can

propagate due to the sharing of data chunks or chaining of files

in a deduplication system. In order to correctly understand the

impacts of these faults and their consequences on the reliability

of our storage system, we need to accurately model both the

storage system faults and faults due to data deduplication.

We call storage system faults and faults due to deduplication

primary and secondary faults respectively, and discuss them

in more detail in Section IV. Third, it is important to note

that many of the faults we wish to consider are rare compared

to other events in the system, such as disk scrubbing, disk

rebuilds, and I/O. Calculating the impact from rare events in

a system can be computationally expensive, motivating us to

find efficient ways of measuring their effect on the reliability

metrics of interest.

The complexity of this problem arises from two different

causes. The first is the state-space explosion problem which

can make numerical solution difficult. As our model grows

increasingly complex the state space grows rapidly. The sim-

plified deduplication system studied in [16] quickly grows to

unmanageable size, having 1023 states with only 10 storage

subsystems, and 10222 states with 100 storage subsystems,

exceeding the capabilities of numerical solvers. A second

issue comes from the stiffness that results from rare events.

For numerical solutions stiffness introduces numerical insta-

bility, making solution impractical. When simulating stiffness

increases the number of events we must process, causing a

resulting increase in simulation complexity. These factors, and

a desire to precisely understand the complex relationships

present a need to use more sophisticated methods of analysis

to fully understand the implications of deduplication.

A. Our Contributions

In this paper, we utilize a discrete event simulation approach

to quantitatively analyze the reliability of a modeled dedu-

plication system with heterogeneous data on heterogeneous

storage hardware, in the presence of primary faults and their

secondary effects due to deduplication. The analysis is based

on three key dimensions that our model takes into account:

• The fault tolerance characteristics of the underlying stor-

age hardware.

• The statistical deduplication characteristics (e.g, reference

count distribution) of a set of deduplicated data.

• The number of replicas of a given data chunk that are

stored.

To validate our modeling approach, we studied data from

an enterprise backup storage system containing 7 terabytes

of deduplicated data comprising over 2.7 million unique

file names and over 193 million references to 2.87 million

unique deduplicated data chunks. We analyzed the statistical

properties of this real data, including the deduplication rela-

tionship implied by references from each file to deduplicated

chunks. To a user, different data sets usually have different

importance and different reliability constraints. Treating all

files the same way is not the right strategy. Therefore, we

break our analysis out into twelve separate categories that are

based on the file types and applications, characterizing each

category separately.

We derived a model of the data that has the same statistical

characteristics as the original data set, and evaluated the

reliability impact of data deduplication on a variety of differ-

ent storage hardware with different reliability characteristics,

different data categories with different deduplication charac-

teristics, and different numbers of replicas for deduplicated

chunks.

The key contributions of this paper are:

• Design and implementation of a modeling framework

to evaluate the reliability of a deduplication sys-

tem with varying hardware reliability characteristics,

varying deduplication characteristics, and a varying

number of copies of data chunks. We built a complex

reliability model based on the studied enterprise system

and on models of faults in storage systems described

in the literature. We evaluated the data reliability of

our system under an ecosystem of faults composed of

whole disk failures [10], latent sector errors (LSEs) [11],

[12], and undetected disk errors [10], [13], [14], [15].

We explicitly modeled these faults as well as the faults

resulting from data deduplication to measure the impact

of all faults on the rate of both file loss and deduplicated

chunk loss. Due to the rarity of the faults we propose

to model (compared to other processes such as I/O and

disk scrubbing), we utilized a simulation algorithm that

exploits near-independent relationships [17] in the model

to make solution of our model for fault tolerance metrics

more efficient.

• Analysis of the effect of multi-copy deduplication. Our

framework can also be used to determine the number

of copies of various data chunks or files needed to

meet a specific reliability requirement while minimizing

storage utilization. For our system, we utilized category

information along with reference counts to determine the

importance of a deduplicated chunk. For our system we

believe that this is preferable to methods based only on

the reference count of the deduplicated chunk, as in [4],

[3].

Our model is currently based on offline storage-side dedu-

plication using variable chunk hashing. We believe it can

be easily extended to support other deduplication algorithms,

including fixed-size chunk hashing, whole file hashing, and

delta encoding, as well as other deduplication architectures,

including online storage-side, online storage-side, and online

client-side. This extension would involve computing new em-

pirical distributions for the underlying deduplication system,

with few, if any, changes to our model.



B. Related Work

While other studies have approached the question of reliabil-

ity in data deduplication, they tend to assess impact through an

assumption that the number of files referencing a deduplicated

chunk is directly proportional to the importance of a chunk

[4], [3]. While this may be an appropriate assumption when

studying data whose types are largely homogeneous [4], [3],

we believe this provides a limited picture of how deduplication

affects fault tolerance on real systems storing a large amount

of heterogeneous data. Moreover, these studies [4], [3] do not

provide a way to quantify the data reliability of a deduplication

system.

Our study differs in that it quantitatively analyzes the

reliability of a deduplication system with heterogeneous data

and heterogeneous storage hardware. We use our methodology

to provide insight to help meet design goals for reliability

while maintaining an improved storage efficiency over a non-

deduplicated system. Our quantitative analysis is performed

utilizing discrete event simulation and by exploiting identified

near-independent relationships in the underlying model to

more efficiently solve a complex model in the presence of

rare events as described in [16].

II. OVERVIEW OF OUR RELIABILITY ANALYSIS

FRAMEWORK

The modeling framework is composed of two main compo-

nents: a deduplicated file system model and a hardware system

reliability model. These models are solved using a discrete

event simulator described previously [16]. Given the data to be

stored in a deduplicated storage system and the deduplication

algorithm used on the system, including parameters such as

chunk size and similarity measures, we built a model of dedu-

plication in our storage system that represents the resulting

deduplication process. Data in our system are categorized

into different classes based on either known application file

extensions or user-specified criteria. Our deduplication model

summarizes the relationships implied by deduplication for

each of these classes. Section III describes the process by

which we characterize data, along with its application on a

real data set.

The reliability model of our hardware makes use of system

level configuration information to build an on-line mathemat-

ical representation of our hardware environment. Specifically,

parameters that have more impact on reliability are considered,

such as the type of disks used in our system (nearline or

enterprise), RAID type (1, 5, and 6) or erasure codes, the

size of a stripe on our arrays of disks, and the number

and configuration of disks in a reliability group. We model

three types of storage-level faults explicitly, including whole

disk failure, latent sector errors, and undetected disk errors.

Secondary faults due to deduplication are deduced via our

model of the deduplicated file system. An in-depth discussion

of these topics is provided in Section IV.

Given the model of deduplication, the hardware reliability

model, and the parameters of the target system (such as the

replication factor and data distribution), our discrete event
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Fig. 2: Summary of categories that contain files that share

deduplicated chunks with other categories.

simulator provides per-category estimates of expected reliabil-

ity for our hardware, deduplicated file system, and parameter

sets. Section V summarizes the results of one such estimation

on several hardware systems using a real-world data set and

various deduplication parameters.

III. DEDUPLICATED FILE SYSTEM MODEL

In order to evaluate the effects of data deduplication on

fault tolerance in a real system, we examined the deduplicated

data stored in an enterprise backup/archive storage system

that utilizes variable-chunk hashing [18], [19]. Our example

is a client/server system that provides backup and archive

solutions for a multi-vendor computer environment that can

consist of file servers, workstations, application servers, and

other similar systems. Server-side data deduplication is used

for space management in this system.

We present a general model of the relationships implied by

data deduplication, and their consequences for fault tolerance,

based on our analysis of the real system. We also present

refinements to the model necessary to model variable-chunk

hashing, as used by the system represented in our data. In order

to demonstrate the flexibility of our model of deduplication,

we will also show how to adapt it for delta encoding.

A. Data Analysis

The data stored in the system consist of backups from about

150 workstations (the most common operating system family

for workstations in the backup group was Windows, though

MacOS and Linux were also represented), as well as backups

of several IBM DB2, Oracle, and Microsoft SQL database

servers and several mail servers, including IBM Lotus Domino

and Microsoft Exchange. The data-set has approximately 7TB

of deduplicated data. Without deduplication, the system would

require over 16TB to store all the data. The deduplicated data

have a total of 193,205,876 separate references to 2,870,681

unique data chunks.

In order to better understand the deduplication relationships

implied by our data, we placed all files on the system into

eleven categories based on their file extensions. A total of

2,735,894 unique file names were processed, featuring 55,688

unique file extensions. Of these file extensions, only 14,910

appeared more than once, and only 1,520 appeared five times

or more. We identified four major categories and eleven

subcategories based on file extensions.

• Databases: We specified four categories for files associ-

ated with database applications db2, Oracle, SQL and

DBGeneric. We use DBGeneric for those files we know



References per Chunk
Unique Chunks 90th Quantile Maximum

Archive 50,240 24 174,720

Code 895,615 2 105,404

Document 574,222 2 16,128

Exchange 9,288 4 42,442

Lotus 9,790 14 60,216

Media 148,887 4 3,384

MSSQL 16,089 32 280,044

Oracle 30,460 4 21,476

db2 30,810 6 5,194

DBGeneric 20,456 6 77,120

VM 9,328 2 308,934

Unclassified 1,075,851 8 251,542

TABLE I: Summary of the data obtained from analysis of

deduplicated chunks.

to be used by a database, but for which the specific

database is unknown.

• Mail: We identified two categories of files associated with

mail applications: Lotus Domino and Exchange.

• User Data: We specified four categories for user data

files: Archives, Documents, Media and Code.

• VM: We grouped all virtual machine application data into

a single category, VM.

We call our twelfth category Unclassified and use it to hold

system files we assume to be re-creatable from installation

media or other sources that make recovery of the data possible,

files whose extensions do not match expected for our previous

eleven categories, and those files with no file extensions.

We do not suggest that these categories are the best or

only ways to partition a deduplicated file system. In fact,

we assert that the proper way to partition a file system into

categories is context-sensitive and user-specific, based on legal

and contractual obligations as well as administrator goals. Cat-

egories should reflect groups of important files or applications.

To understand the relationships that these categories of files

shared through deduplication, we constructed a graph with a

set of nodes NI with an element for every deduplicated chunk

in our deduplicated system, and a second set NC with a node

for each category of file defined. When we encountered a

reference in the data from a category to some deduplicated

chunk, we added the edge connecting the nodes, allowing

duplicate edges. The weight of an edge is equal to the number

of duplicate edges and defines the number of references to a

given deduplicated chunk.

Using this graph, we identified 351 chunks with references

from exactly two categories, and two with references from

exactly three categories. The remaining 2,870,328 chunks had

references from only one category. Figure 2 shows the paths

between nodes in NC that pass through exactly one node in

NI and no nodes in NC . It seems likely that the frequent

connections between the unclassified node and other nodes

in NC , represented in Figure 2, are indicative of a failure

to properly classify files by their extensions, or files with

misleading extensions. In such cases, it seems safest to treat

unclassified files that reference chunks that share an edge with

another category Ck as if they are from category Ck. For

those nodes shared between two categories Ci and Cj , where

neither is the unclassified category, we consider the node a

legitimate cross category deduplication. For our analysis we

treat a deduplicated chunk as categorized with the highest level

of importance of any referring file or category.

The distribution of references to chunks varied based on

which categories were connected in our graph. Table I sum-

marizes some of this information by showing the total number

of unique deduplicated chunks with at least one reference to

each of the categories, the 90th quantile for references per

chunk for those chunks with at least one reference to a given

category, and the maximum number of references per chunk

for those chunks with at least one reference to a given category.

B. Using Category Information to Define Importance

Determining the importance of a file on a deduplicated

storage system is a difficult proposition, and is likely to be

dependent on the needs and legal requirements of the organi-

zation operating the storage system. While one could take the

approach of keeping additional copies of all files that have a

certain reference count, we suggest that this is a poor measure

of importance, for two primary reasons. First, it assumes that

chunks with few references are less important. While it is

true that the loss of a chunk with fewer references will cause

fewer secondary failures due to deduplication, deduplicated

chunks fail at the same rate regardless of their reference count,

and those chunks with fewer references may be referenced by

critical data whose reliability is just as important as that of

files that share a chunk with many other files. Second, using

reference count as a measure of importance can result in a loss

of storage efficiency to increase the reliability of files that are

either easily re-creatable system files, or files unimportant to

the organization.

C. Model of Deduplicated File System

We view deduplication on this file system as a de-

pendence relationship and construct a graph, whose nodes

represent files and deduplicated chunks in our file sys-

tem, to model this dependence relationship. Each dedupli-

cated chunk in our file system is represented by a node

ni ∈ NI . Files themselves are represented by the set

NF = {NF,C1
, NF,C2

, NF,C3
, . . . , NF,C12

}, where each sub-

set NF,Ck
contains a node nj,Ck

for each file fj that is a

member of category Ck . Deduplication relationships are again

represented by the set of edges E such that if a chunk ni is

referenced by a file fj in category Ck, an edge nj,Ck
ni ∈ E.

We suggest using the data summarized in Table I as an

empirical estimate of the probability density function (pdf)

for a random variable representing the number of references

for a chunk in the given category c. Using this pdf, fc(x), we
define an inverse distribution function (idf) F ∗

c : (0, 1) → X ,

defined for all u ∈ (0, 1) as follows:

Fc(x) = Pr(X ≤ x) =
∑

t≤x

fc(t) (1)

F ∗
c (u) = min

x
{x : u < Fc(x)} (2)

Using F ∗
c (u) and a uniform random variate U , we can

generate realizations of the random variable described by



fc(x), allowing us to use our observations summarized in

Table I to synthetically create a deduplication system with

the same statistical properties as our example system. The

number of edges connecting to any node ni ∈ NI is defined

by first determining the primary category of files that refer to

the chunk, and by using Equation 2 to generate a realization

of the random variable described by fCk
(x).

While our study concerns only data deduplication that uses

variable-chunk hashing, it is a simple matter to adapt this

model for delta encoding or whole file hashing. In those

cases, we simply remove the set NI and define edges between

elements of NF directly. Then the edges in the E must be

represented as directed edges of the form
→

nfanfb , indicating

that the file nfa depends on nfb . Directed edges are not

required for our variable-chunk hashing representation, as it

is implied that the relationship is a dependence of nodes in

NF on nodes in NI .

IV. HARDWARE RELIABILITY MODELS

Traditional disk failure encompasses those faults accounted

for by the manufacturer when calculating Mean Time To

Failure (MTTF) [10]. We assume that these traditional disk

failures are detected by the disk immediately when they occur,

and require no special detection mechanisms. Traditional disk

failures are assumed to be non-transient and unrepairable

without drive replacement.

Another kind of primary fault that we model are latent sector

errors (LSEs). LSEs differ from traditional disk failure in that

they cannot be detected until the corresponding disk sectors

are accessed. LSEs can be either transient or permanent [11].

An LSE is typically understood to be a condition in which a

given disk sector cannot be read or written, or when there is

an uncorrectable ECC error. It is important to note that even

in the case of a transient LSE, previous study of LSEs has

indicated that data stored in the sector are irrevocably lost,

even when the sector can later be read or written to properly

[11]. Latent sector errors have been found to be correlated

in both space and time as described by Schroeder, Damouras

and Gill in [12], who demonstrate these correlated LSEs as

bursts best characterized by a Pareto distribution. These bursts

of correlated LSEs represent the fact that disks experiencing

a single LSE are likely to suffer from a series of LSEs in

the near future, and those LSEs are likely to be correlated

spatially on the disk with previous errors. In our system model,

we consider LSEs to be correctable either when the disk is

subsequently rebuilt due to a traditional disk failure, or upon

performance of a scrub of the appropriate disk.

Our third and final type of primary fault is that of undetected

disk errors. UDEs represent silent data corruption on the disk,

which is undetectable by normal means [20], [13], [14]. UDEs

are drawn from two distinct classes: undetected read errors

(UREs) and undetected write errors (UWEs).

UREs manifest as transient errors, and are unlikely to affect

system state after their occurrence. They represent cases in

which incorrect sectors are read and returned to the user

instead of the proper data, or those cases where the read head

passes too high over the platter to read the correct data. UWEs

are persistent errors that are only detectable during a read

operation subsequent to the faulty write.

UWEs can be further subdivided into three types: dropped

writes, near-off-track writes, and far-off-track writes. In the

case of dropped writes and near off-track writes, only the

data in the target sectors are corrupted. Far-off-track writes

corrupt local data as well as data on other parts of the disk.

UREs can be similarly subdivided into near-off-track reads

and far-off-track reads. Off-track writes (both near and far)

occur when the write head is not properly aligned with the

track. In the case of a near-off-track write, the data is written

in the gap between tracks, adjacent to the intended track. On

a read operation, the head may align itself to either the target

track or the off-track, potentially producing stale data. Far-

off-track writes occur when data are written even further off-

track, such that they corrupt data in another track entirely.

Subsequent reads to the track that was mistakenly written to

will produce corrupt data, while reads to the track that should

have been written to will produce stale data [14]. We consider

UDEs to be correctable when the disk is rebuilt because of

a traditional disk failure, upon performance of a scrub of the

appropriate disk, or when the error is overwritten before being

read, although this type of mitigation produces parity pollution

[14].

A. Disk Model

In order to understand the effect of faults in an example

system, we utilize a formal model of disks in our underlying

storage system. Each disk in our system is represented as a

5-tuple, Di = {Ξ,̥ℓ,̥υ,̥φ, f}. The elements of Di define

the current fault state of the disk Di. The variable Ξ defines

the set of all contiguous natural numbers between [0, nDi
−1],

where nDi
is the number of sectors on the disk. All faults on

a given disk are defined over this set, using it to represent

the physical subdivisions of the disk. Faults on the disk are

given by the sets ̥ℓ,̥υ,̥φ and the scalar f . We utilize

̥ℓ = {ℓ0, ℓ1, . . .} to represent the set of all latent sector errors

(LSEs) currently affecting the drive, ̥υ = {υ0, υ1, . . .} to

represent the set of all UWEs currently affecting the drive,

̥φ = {φ0, φ1, . . .} to represent the parity strips on the disk

that have been polluted due to a parity pollution event, and

the scalar f = {0, 1} to indicate whether the disk has suffered

an entire disk failure. Members of the sets ̥ℓ,̥υ,̥φ are

defined over Ξ to represent the portions of the disk that have

suffered LSEs, UDEs, or polluted parity.

Disks are gathered in the model into sets of m disks,

Gi = {Dj, Dj+1, . . . , Dj+m}, representing RAID groups. In

the case of RAID 5 groupings with three data disks and one

parity, each group Gi in the system would contain four disks.

B. Fault Interactions and Data Loss

It is important to note that the occurrence of a fault within

our system does not guarantee that data loss has occurred. In

many cases, the underlying storage system will utilize some

form of fault tolerance, such as RAID. For that reason it is
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Fig. 3: Example fault interactions.

important to separate the modeling of faults and errors in our

model. For the purposes of our model we consider faults to

include traditional disk failure, LSEs and UDEs, and errors

to include data loss which cannot be recovered, and serving

corrupted data silently to the user. In general, for a fault to

manifest as a data loss error, we must experience a series of

faults within a single RAID unit. How these faults manifest as

errors depends on the ordering of faults and repair actions in a

time line of system events, as shown in Figure 3. In the case of

RAID 5, a single failure can usually be tolerated before a data

loss event occurs. For RAID 6, two failures can be tolerated

before data loss. UDEs cause a different kind of error, which is

largely orthogonal to RAID, by silently corrupting data which

can then be served to the user.

In order to determine if a combination of primary faults

has led to data loss and potentially a number of secondary

faults, we examine the timing of events in a manner similar to

the window of vulnerability method described by [21]. Given

a storage system that can tolerate n faults before data loss

occurs, we will see faults manifest as data loss only when the

joint effect of n faults occurs on overlapping portions of disks

in the same reliability group before mitigation. To evaluate

that, we utilize the representations of the faults on the disk as

defined in Section IV-A.

Faults in the form of traditional disk failures can result in

data loss if their arrival times tf1, tf2 are such that for the time

at which the initial fault is mitigated (mf1 > tf2) ∧ (mf2 >

tf2). In such a case, the entire drive is lost to the failure.

Traditional disk failures can also result in data loss when

combined with a subsequent LSE on a read operation. Again,

given arrival times of the failure events tf1, tf2 and a mitiga-

tion time for the first fault mf1 (mf1 > tf2) ∧ (mf2 > tf2),
an LSE on another disk in the RAID group that corrupts data

on the disk before mitigation will result in the rebuilding of

an unrecoverable sector on the disk.

UDEs form a special case of fault. While they can be

detected by a scrub operation, repair is not possible. Scrubbing

a disk tells us that an error is present in the stripe, but not

q2
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q6 q3

q5

q1

q4

LSE|TF

Overwrite
TF|UDE

UDE|LSE

Repair

TF

TF

UDE

LSE

Read|TF|LSE
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Scrub

Fig. 4: DFA representing the combination of faults which lead

to data loss on a stripe from UDEs, LSEs, and traditional

failures under RAID1, or RAID5.

where the error is. An error in the parity or on any of the data

drives creates an identical situation for the scrub.

In order to characterize the interactions of faults in our

model, we maintain a state-based model of portions of the

physical disk, as represented by Ξ ∈ Di from Section IV-A.

Given a set of disks that are grouped into an interdependent

array (such as the set of disks in a RAID5 configuration,

or a pair of disks that are mirrored), each stripe in the

array maintains its state using a state machine appropriate to

the number of tolerated faults the configuration can sustain

without data loss, such as shown in the example in Figure 4.

Each stripe is represented by a tuple (Q,Σ, δ, q0, F ). The
set of states Q can be partitioned into three different subsets;

Qgood = {q0}, the fault-free non-degraded state and start state;
Qdegraded = {q1, q2, q3, q4}, states in which the stripe has

suffered a fault but no data loss; and Qfail = F = {q5, q6},
which represent the states that indicate that data have been

lost. When the simulator processes an event for a given

stripe, it forwards information on the processed event to

the state machine in the form of the DFAs input alphabet,

Σ = {TF,LSE,UDE,Write, Read, Scrub,Repair}. Each
of those symbols represents a fault, a mitigation, or an action

that causes a UDE to serve corrupt data undetectably. The DFA

transitions on these symbols based on the transition relation

defined by δ : Q× Σ → Q.

The DFAs maintained by stripes within our modeled system

are generated automatically using knowledge of potential fault

interactions and parameters that define the size of the disk

array sarray and the number of disk faults ntolerated faults that

the array can tolerate without data loss as defined by the array’s

RAID level [22].

The set of all DFAs, combined with our model of dedupli-

cation, the system clock, and models of fault correlation for

“active” LSE bursts, comprises the state of our model, which

we then proceed to solve via discrete-event simulation [23],

[24], [25]. Events are generated in a state dependent manner

for all potential fault and mitigation actions in the system.

After each event is processed, fault metrics are then cal-

culated through checking of the state of each stripe. For

computational efficiency, these states are stored in a sparse

array, where the default state of each DFA is assumed to be
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q0. Those DFAs found to be in an accepting state are faulty,

with state q5 indicating that one or more stripes have failed,

and q6 indicating that entire drives have been lost. A list of

all damaged stripes is calculated. Any files on those stripes

are categorized and reported lost. Any deduplicated chunks

ni on those stripes are categorized and reported as lost, and

secondary faults are generated, reporting lost all files share

references to the lost file.

C. Deduplication Model

When modeling the impact of errors in our system we

utilize a model of deduplication based on the empirical data

and analysis from Section III. If a primary fault causes a

deduplicated chunk ni ∈ I to be lost, ∀nj ∈ NF such that

∃ninj ∈ E the files represented by nodes meeting the criteria

for nj suffer a secondary fault due to the initial failure. These

secondary faults would not have occurred, were it not for the

deduplication strategy used by the storage system. In the case

of whole file hashing, delta encoding, or other deduplication

methods that allow for a chain of references, the loss of a file

ni ∈ NF implies not only the loss of all nj ∈ NF such that

∃
→

njni ∈ E, but also all nj+1 ∈ NF such that ∃
→

nj+1nj ∈ E

recursively for files for which a path exists to the original lost

file ni. In the case of the loss of a disk segment containing a

file, no secondary faults are triggered.

V. DISCRETE EVENT SIMULATION RESULTS

In order the understand the impact of data deduplication

on fault tolerance we simulated systems with data sets of

7TB (based on the system described in Section III) and 1PB

before deduplication. Both systems are assumed to have a

deduplication ratio of 0.5. We modeled the systems with

reliability provided by various RAID and erasure codes,

including RAID1 (mirroring), RAID5 in 7 + p and 8 + p

configurations, RAID6 in an 8+2p configuration, and erasure

codes in an 8+3p configuration. For each system we calculated

two reliability measures: the rate at which all copies of a

deduplicated chunk were lost, and the rate at which undetected

corrupt data was served to applications.

We make the assumption that our modeled system features

a workload of 100 io/s for each data disk in the system with

reads making up 95% of the workload. Disks themselves are

assumed to be 750GB with 128k strips, with read and write

requests simulated only for those portions of a disk containing

data. We assume data is distributed uniformly across all disks,

and that reads and writes are likewise uniformly distributed.

We derive the rate of traditional disk failures from [10], and

latent sector errors from [12] using the parameters given for

system A− 1 in the paper. We derive rates for UWEs are the

same as described in [15] for enterprise drives.

Reliability is effected by deduplication in two ways: the

incidence and impact of faults. We found in our simulations,

that the incidence of faults is reduced by a factor equal to the

deduplication ratio, due to the reduction in the number of disks

required to store the same data set. The impact, however, of

each fault was increased for all categories of data by a factor

larger than the reduction provided by deduplication, resulting

in a net decrease in fault tolerance for all categories of files.

The impact of a fault during simulation was calculated using

empirical cumulative probability distributions calculated from

the data set. First the file or files suffering an error were

assigned a category randomly, next based on the category,

we randomly determined whether the segment of the file

or files lost contained a deduplicated chunk based again on

empirical distributions from our data. Finally, if the file lost

was a deduplicated chunk we generated a random number

of references to the chunk, and assigned them randomly

generated locations in the storage system so that in the case

of errors spanning multiple files, a file and adjacent reference

were not double counted when both were lost to the initial

error. An example CDF for the number of references to a

deduplicated for files in the SQL category is shown in Figure

5.

The rate of permanent data loss due to unrecoverable faults

is shown in Tables II and III for RAID1 and RAID5. The

rate of loss increases for all categories when only a single

instance is kept per deduplicated chunk. For configurations

with higher fault tolerance (RAID6 and 8+3p erasure codes),

we saw no significant decrease in fault tolerance during the

expected lifespan of a typical storage system. Any increase in

the impact of data deduplication on the unrecoverable loss of

system data is masked by the low incidence of unrecoverable

data loss during the expected system lifespan in the systems

we studied.

The dramatic improvements witnessed when two copies are

kept of each deduplicated chunk are to do to the circumstances

which must occur in order to permanently lose the data stored

in the chunk. In addition to the requisite correlated faults

shown in Figure 3, the same situation must occur on the

independent storage unit which holds the other copy of the

instance before the first storage unit is restored. When the

correlated faults involve a LSE, the situation becomes even

more unlikely, requiring the other copy of the deduplicated

chunk to not only reside on the same disk as the error, but the

same stripe.



7 TB
RAID1 RAID5

1 copy 2 copy 1 copy 2 copy

Archive 1.2e+02 ± 6.2e+01 8.6e-10 ± 2.2e-10 1.7e+03 ± 7.1e+02 1.8e-07 ± 2.9e-0

Code 2.9e+03 ± 6.4e+02 2.8e-08 ± 1.3e-09 6.8e+04 ± 3.0e+04 1.5e-05 ± 2.9e-06

db2 3.3e+03 ± 1.6e+03 5.4e-08 ± 1.3e-08 4.1e+04 ± 2.2e+04 8.6e-06 ± 2.5e-06

DBGeneric 6.5e+01 ± 8.5e+01 1.3e-09 ± 2.3e-09 1.9e+02 ± 1.3e+02 1.2e-08 ± 5.5e-09

Document 6.6e+01 ± 1.1e+02 1.3e-09 ± 3.3e-09 2.2e+02 ± 1.1e+02 1.4e-08 ± 3.5e-09

Exchange 4.0e+02 ± 1.5e+02 3.2e-09 ± 4.1e-10 5.6e+03 ± 1.3e+03 6.1e-07 ± 3.3e-08

Lotus 2.4e+01 ± 2.1e+01 1.1e-10 ± 7.6e-11 4.0e+03 ± 5.2e+03 2.8e-06 ± 5.0e-06

Media 1.3e+03 ± 2.6e+03 1.7e-07 ± 6.4e-07 1.3e+03 ± 8.7e+02 1.7e-07 ± 7.2e-08

Oracle 7.2e+01 ± 4.1e+01 7.4e-10 ± 2.4e-10 4.8e+02 ± 2.8e+02 3.3e-08 ± 1.1e-08

SQL 7.2e+01 ± 4.1e+01 4.9e-10 ± 1.6e-10 1.2e+03 ± 6.8e+02 1.3e-07 ± 4.4e-08

Unclassified 4.9e+03 ± 1.5e+03 6.5e-08 ± 6.3e-09 1.6e+05 ± 1.8e+05 7.0e-05 ± 8.4e-05

VM 2.6e+01 ± 2.7e+01 2.1e-10 ± 2.3e-10 2.7e+02 ± 1.1e+02 2.3e-08 ± 4.0e-09

TABLE II: Estimated rate of file loss per year, for the 7TB system using RAID1 and RAID5, and a single copy of each

deduplicated chunk.
1 PB

RAID1 RAID5
1 copy 2 copy 1 copy 2 copy

Archive 8.2e+03 ± 4.1e+03 5.7e-08 ± 1.5e-08 1.2e+05 ± 4.7e+04 1.2e-05 ± 1.9e-06

Code 2.0e+05 ± 4.3e+04 1.9e-06 ± 8.8e-08 4.6e+06 ± 2.0e+06 1.0e-03 ± 1.9e-04

db2 2.2e+05 ± 1.1e+05 3.6e-06 ± 8.9e-07 2.8e+06 ± 1.5e+06 5.7e-04 ± 1.7e-04

DBGeneric 4.3e+03 ± 5.7e+03 8.7e-08 ± 1.5e-07 1.3e+04 ± 8.9e+03 7.9e-07 ± 3.7e-07

Document 4.4e+03 ± 7.0e+03 8.5e-08 ± 2.2e-07 1.4e+04 ± 7.3e+03 9.1e-07 ± 2.3e-07

Exchange 2.7e+04 ± 9.7e+03 2.1e-07 ± 2.8e-08 3.7e+05 ± 8.7e+04 4.1e-05 ± 2.2e-06

Lotus 1.6e+03 ± 1.4e+03 7.0e-09 ± 5.1e-09 2.6e+05 ± 3.5e+05 1.9e-04 ± 3.3e-04

Media 8.8e+04 ± 1.7e+05 1.1e-05 ± 4.2e-05 8.9e+04 ± 5.8e+04 1.1e-05 ± 4.8e-06

Oracle 4.8e+03 ± 2.7e+03 4.9e-08 ± 1.6e-08 3.2e+04 ± 1.9e+04 2.2e-06 ± 7.5e-07

SQL 4.8e+03 ± 2.7e+03 3.3e-08 ± 1.1e-08 8.0e+04 ± 4.6e+04 8.9e-06 ± 2.9e-06

Unclassified 3.3e+05 ± 1.0e+05 4.4e-06 ± 4.2e-07 1.1e+07 ± 1.2e+07 4.7e-03 ± 5.6e-03

VM 1.7e+03 ± 1.8e+03 1.4e-08 ± 1.5e-08 1.8e+04 ± 7.6e+03 1.5e-06 ± 2.7e-07

TABLE III: Estimated rate of file loss per year, for the 1PB system using RAID1 and RAID5, and a single copy of each

deduplicated chunk.

For those systems which did suffer unrecoverable data loss,

we kept a tally of the error scenarios leading to unrecoverable

loss. All witnessed data loss events involved at least one

disk failure. More than 50% also contained a LSE, while

less than 2% contained a UWE. The high proportion of

LSEs contributing to unrecoverable data loss stems from the

temporal locality described by [12]. Unrecoverable data loss

usually occurred during a campaign of LSEs coupled with a

drive failure in the effected RAID unit (66.9% of the time),

or an failure of two drives in a RAID unit before a rebuild

could be accomplished (31.8% of the time).

The decrease in fault tolerance due to data deduplication

is easily offset by maintaining multiple copies of each dedu-

plicated instance. Keeping as few as one additional copy

results in a system more fault tolerant than the original, while

still resulting in a mean increase in storage efficiency for

all categories. It is important, however, to ensure additional

copies are kept on separate RAID units to reduce the chance

of correlated losses.

Multi-instance data deduplication maintains more than one

copy for a distinct data chunk. It increases the resiliency

of the system by orders of magnitude at the cost of in-

creased space usage. The performance characteristics of such

a system, i.e. write characteristics (data injection) and read

characteristics (data reconstruction) are highly dependent on

the architecture of the system, specifically the architecture of

the meta-data manager. Unlike traditional single instance dedu-

plication systems where hash maps or indices maintain data-

signature to data-location mappings, in multi-instance dedu-

plication systems, these bookkeeping data structures now have

to accommodate more complex mappings. Further, managing

(create/use/delete) these complex mappings adds overhead to

both the CPU and IO.

While UWEs did not significantly contribute to unrecover-

able data loss, it is important to remember that they are fail

silent, and largely orthogonal to RAID [14], [15]. When a

UWE occurs on a system, it can cause corrupted data to be

silently served when requested, before a disk scrub corrects

the error. Figures 6a and 6d show the difference in the rate of

corrupt data served for three different storage configurations

for our 7TB and 1PB systems respectively for a sample data

category. The first bar for each RAID configuration shows the

rate of corrupt data being read for a non-deduplicated system.

The second bar, to illustrate the different effects of incidence

and impact, shows the different incidence only. The third bar

shows the full effect of both incidence and impact. While the

incidence of corrupt data is reduced, i.e. the smaller amount

of data stored results in a lower number of corrupted files, the
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Fig. 6: Rate of undetected corrupted reads for the SQL category, for systems with data sets of size 7TB and 1PB.

increased number of references results in a higher incidence

of corrupted data being served. Not only are reads to the

corrupted file effected, but any read to a referring file will

result in silently serving corrupt data to the user, increasing

the overall rate of corrupted reads to the system due to a UWE.

Again, we find a solution by keeping multiple copies of

each deduplicated instance. Figures 6b and 6d compare the

rate of corrupted data being read of deduplicated systems with

a single copy of each instance, to systems which keep two

copies for a fraction of all files in a category. The graph shows

the results for keeping two copies for the 1%, 10% and 50%
of files within a category containing the largest number of

references. In the case of the SQL category, this results in large

improvements for just the top 1% most referenced files. Figure

7 shows similar results for the VM category. While the general

trends are the same, it is useful to note that the results of

keeping additional copies is dependent on the category. Unlike

the SQL category, increasing the portion of the category which

maintains multiple copies from 1% to 10% and then again to

50% does not provide a significant reduction in the rate of

corrupt data served, due to a small number of deduplicated

instances accounting for a large number of the references

within the category. This highlights the importance of a

detailed analysis, using category information when making

assumptions about the underlying deduplicated system.

VI. CONCLUSIONS

Our evaluation of the effect of deduplication on our example

system leads us to conclude that deduplication has a net

negative impact on reliability, both due to its impact on unre-

coverable data loss, and the impact of silent data corruptions,

though the former is easily countered by using higher level

RAID configurations. In both cases, system reliability can be

increased by maintaining additional copies of deduplicated

instances, and for the categories identified in our example

system, typically by keeping multiple copies for a very small

percentage of the deduplicated instances in a given category.

Our results emphasize the importance of detailed analysis

of deduplicated systems to fully understand the impact of

deduplication on fault tolerance. Even within our example sys-

tem, individual categories features very different distributions,
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Fig. 7: Rate of undetected corrupted reads for the VM cate-

gory.

resulting in differing behaviors and trade-offs for multi-copy

deduplication. Reliability returns decrease sharply for the VM

category with increased proportions stored as multiple copies,

due to the high portion with only a few references. For the

VM category 90% had two or fewer references. Conversely,

only 38% of deduplicated instances in the MSSQL category

had two or fewer references.

While data deduplication helps to achieve goals of storage

efficiency, its increasing prevalence raises legitimate reliability

concerns. Given the increased regulatory pressure, and a desire

to meet customer requirements for long-term data integrity,

it is important to develop a further understanding of the

reliability consequences of these methods.

For our example system, we show that reliability goals can

still be met while maintaining some of the storage efficiency

provided by deduplication by storing multiple copies of a

portion of deduplicated instances. Our methodology could be

applied to other systems to generate similar evaluations, and to

evaluate configurations to meet design goals for both reliability

and storage efficiency.
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