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Abstract—Preserving the availability and integrity of the power
grid critical infrastructures in the face of fast-spreading intru-
sions requires advances in detection techniques specialized for
such large-scale cyber-physical systems. In this paper, we present
a security-oriented cyber-physical state estimation (SCPSE) sys-
tem, which, at each time instant, identifies the compromised set
of hosts in the cyber network and the maliciously modified set of
measurements obtained from power system sensors. SCPSE fuses
uncertain information from different types of distributed sensors,
such as power system meters and cyber-side intrusion detectors,
to detect the malicious activities within the cyber-physical system.
We implemented a working prototype of SCPSE and evaluated
it using the IEEE 24-bus benchmark system. The experimental
results show that SCPSE significantly improves on the scalability
of traditional intrusion detection techniques by using information
from both cyber and power sensors. Furthermore, SCPSE was
able to detect all the attacks against the control network in our
experiments.

Index Terms—Cyber-physical systems, maliciously corrupted
data detection, security-state estimation, intrusion detection.

I. INTRODUCTION

The power grid is a large interconnected system whose
reliable operation depends critically on its cyber infrastructure.
A taxonomy of major cyber-physical interdependencies in the
power grid is explored in [1]. For reliable operation of such
a cyber-physical system, it is necessary to be aware of the
state of both the physical and cyber infrastructures and their
interdependencies. Today, the reliability of the interdependent
power and cyber infrastructures making up the grid is largely
managed through employment of redundant components and
communication pathways that make it possible to operate
through failures and faults that occur naturally. However,
such an approach does not adequately protect against cyber
adversaries. Until recently, perimeter security controls and lack
of connectivity of power control networks to external networks
were considered sufficient barriers against cyber adversaries.
The increasing connectivity of power grid control networks
to and through corporate and enterprise networks, and the
advent of malware (e.g., Stuxnet) that can jump air gaps, call
for more holistic solutions. This paper presents a security-
oriented cyber-physical state estimation solution SCPSE that
uses information from both power and cyber sensors to identify
cyber attacks and potential compromises of power system
measurement data for improved situational awareness.

From a data perspective, power systems consist of data ac-
quisition, transmission, and processing. The information path
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from the field to end-point applications in the electric power
grid is enabled by measurement devices and communication
systems. The data integrity within the information path may
be low for many reasons, including misconfigurations, sensor
or communication failures, or coordinated false data injection
attacks. Indeed, noisy data are constantly present in the system
because of failures and misconfigurations, yet the system
maintains a high level of reliability due to mechanisms put
in place to detect and deal with such data. However, recent
research [2] has shown that maliciously coordinated false data
injection attacks may be able to bypass traditional mechanisms
put in place to detect noisy data, and that such attacks may
impact power system applications, such as optimal generation
dispatch and real-time prices, as operators and applications
respond to the manipulated system state estimate [3]–[5].
Arguably, false data injection attacks and their impacts need
to be studied further and validated in realistic environments.
However, it is important to design effective defenses against
this threat.

Further, anytime cyber intruders are in the system, even if
they are not altering values to cause malicious consequences,
the fact that they possess the access and the ability to make
such modifications is a threat. The presence of such adversaries
in the system needs to be resolved immediately. SCPSE has
been designed for that purpose.

Contribution: We propose SCPSE, a cyber-physical data-
fusion framework that uses stochastic information fusion al-
gorithms and merges sensor information from both the cyber
and electrical infrastructures that comprise the power grid
to detect intrusions and malicious data, and to assess the
cyber-physical system state. SCPSE exploits the interrelation
among the cyber and physical components of the power grid
by leveraging information about both the cyber and electrical
infrastructures, and offers more complete situational awareness
than is currently possible with existing solutions.

Specifically, SCPSE utilizes information provided by alerts
from intrusion detection systems (IDSes) that monitor the
cyber infrastructure for malicious or abnormal activity, in
conjunction with knowledge about the communication network
topology and the output of a traditional state estimator (which
leverages physical power system topology and power system
measurements). Thus, SCPSE is able to provide meaningful
feedback on the cyber-physical state of the system, leading
to improved situational awareness and the ability to respond.
While the focus of this work is on maliciously altered data,
SCPSE is agnostic to the specific form of the attack.

Section II describes SCPSE functionality and how it ad-
dresses the needs of the power industry. Details of the SCPSE
cyber and power state estimation are presented in Sections III
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Fig. 1. SCPSE’s high-level architecture

and IV. The computational efficiency of SCPSE is discussed
in Section V. A prototype implementation and its experimental
results are presented in Section VI. Sections VII and VIII
review past related work and conclude the paper.

II. SCPSE ARCHITECTURE

SCPSE data flow. Figure 1 presents a high-level overview
of SCPSE and how its components are interconnected. Before
SCPSE begins its online operation, it uses the power network’s
access control policies, e.g., firewall rules, and automatically
generates an attack graph, called an attack graph template
(AGT). The state transitions in an AGT encode all possible
attack paths that an attacker can traverse by sequences of
vulnerability exploitations. Furthermore, SCPSE takes an un-
derlying power system model and calculates a base-case power
flow solution (Figure 1), which reveals how power system
measurements should be correlated.

During the operational mode, SCPSE monitors the physical
power and communication networks, detects and analyzes
attacks based on the attack graph, and then probabilistically
determines the set of computer systems and power system
measurements that are likely to have been maliciously com-
promised. SCPSE then uses that probabilistic information to
flag and handle suspicious measurements in order to protect
the power system from the potentially malicious data.

In particular, SCPSE uses the past sequence of triggered
IDS alerts to estimate the attack path in the AGT that has been
traversed by the adversary. Because of inherent uncertainties
in the reported IDS alert notifications, it is not always feasible
to determine the exact attack path traversed. Instead, at each
time instant, a posterior probability distribution over the AGT’s
state space is calculated according to the false positive and
negative rates of the triggered and non-triggered IDS alerts,
respectively. That estimated probabilistic state knowledge re-
veals the set of privilege domains, i.e., host systems, believed
to be compromised in the control network.

Potentially modified power measurements are identified
based on the given topological information regarding which
power sensors are managed or processed by the estimated set
of compromised hosts. The IDS reports and the correspond-
ingly updated power system state estimator outputs enable
SCPSE to provide situational awareness by continuously pre-
senting operators with clear and complete information on the
cyber-physical state of the power grid.

The combined security state of the power grid is defined in
this work as a binary vector that consists of information related
to two types of malicious events. First, there are vulnerability
exploitations, in which the adversary works to obtain specific
privileges in the system. The first set of bits in a state indicates
whether a particular privilege domain, e.g., the root domain on
the historian server, has been compromised. Second, there are

malicious consequences of the attack after a privilege has been
obtained. Specifically, we define consequences as violations of
the CIA criteria (i.e., confidentiality, integrity, and availability)
applied to critical assets in the power grid. For example, the
integrity of a file relay.cfg, which is used to control a
power relay, is compromised if the file is maliciously modified,
leading to a status change of the underlying relay.

The cyber-physical security state encodes the compromised
host systems and the maliciously modified power measure-
ments. By estimating the cyber-physical state and relaying it
to operators, we are capable of responding to attacks. Network
administrators should develop response strategies for security
attacks that may occur. The strategies may include automated
intrusion response systems. SCPSE neither proposes a new
type of sensor nor presents an automated response mechanism.
The main objective of SCPSE is to provide situational aware-
ness of the power grid infrastructures to the operators and
the response systems in charge of taking care of the detected
problems.

III. CYBER SECURITY-STATE ESTIMATION

As outlined in Section II, from the power network’s access
control policies, SCPSE generates an AGT and uses it to
estimate the compromised set of hosts, given the IDS alerts.

The power network’s access control policies are composed
of rules about sources (IP/port addresses) that are either
allowed or not allowed to reach a destination. SCPSE parses
the rulesets and creates a binary network connectivity matrix
that is a Cartesian product of host systems. The [i, j] entry
of the matrix takes on a true value if the traffic from host hi
to host h j is allowed, and a false value if it is not allowed.
The connectivity matrix always includes an Internet node
representing a group of hosts outside of the network where
attackers are assumed to initially reside.

Attack graph template generation. Generally, every cyber
attack path consists of an escalating series of vulnerability
exploitations by the adversary, who initially has no access to
the system (privilege) but then achieves the privilege required
to reach his or her attack goals, e.g., modifying a power sensor
measurement. Regardless of the type of the vulnerability, every
vulnerability exploitation (e.g., a malicious buffer overflow
against the human-machine interface (HMI) server in the
power network) will provide the attacker with control on
the corresponding host computer (e.g., the HMI server in
the previous example). For instance, let us consider a host
system H (e.g., an RTU) that is in charge of sending the
sensor measurements on one of the power system buses to
the state estimation server. To modify the sensor measurement
data, the attacker needs to get control over H. For example,
if the attacker has gotten control over the HMI server (from
the above example), he or she further needs to exploit a
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vulnerability in the system H so that he or she can modify the
measurements. However, access from the HMI server to the
system H should be allowed by the network firewall rules (so-
called network global access control policies); otherwise, any
attempt by the attacker on the HMI server to access the system
H will be denied automatically by the firewalls. In particular,
SCPSE takes into account the global access control policies
that enumerate all possible attack paths that the attackers can
traverse through the power grid network.

We present the attack graph template (AGT), i.e., an
extended attack graph, which represents all possible attack
paths (unlike traditional attack graphs [6], which only address
previously known paths). To further clarify, an AGT, by
design, would address a zero-day (previously unknown) buffer
overflow exploitation of a historian server process, while a
traditional attack graph would be unaware of it. An AGT is a
state-based directed graph, in which a state is defined as the set
of compromised privilege domains. Therefore, the initial state
is (∅), in which the attacker does not yet have any privileges
over the power network. Each state transition represents a
privilege escalation that is achieved through a vulnerability
exploitation. Therefore, any path on the AGT graph represents
an attack path in the power network.

To generate an AGT, SCPSE pessimistically considers every
host within the power network to be a single potentially
vulnerable privilege domain. In particular, SCPSE automati-
cally generates an AGT by traversing the connectivity matrix
and concurrently updating the AGT. First, SCPSE creates the
AGT’s initial state (∅) and starts the AGT generation with the
network’s entry point (Internet) node in the connectivity ma-
trix. Considering the connectivity matrix as a directed graph,
SCPSE runs a depth-first search (DFS) on the graph. While
the DFS is recursively traversing the graph, it keeps track of
the current state in the AGT, i.e., the set of privileges already
gained through the path traversed so far by the DFS. When
the DFS meets a graph edge [i, j] that crosses over privilege
domains hi to h j, a state transition in the AGT is created if the
current state in the AGT does not include the privilege domain
of the host to which the edge leads, i.e., h j. The transition in
the AGT is between the current state and the state that includes
exactly the same privilege set as the current state plus the host
h j directed by the graph edge [i, j]. The AGT’s current state
in the algorithm is then updated to the latter state, and the
algorithm proceeds until no further updates to the AGT are
possible according to the connectivity matrix. At that point,
the offline AGT generation is complete, and by design, the
AGT includes all possible attack paths launching from remote
(Internet) host systems against the network. Figure 2 shows a
highly simplified power network and its corresponding AGT
model. Connectivity matrix elements are indicated with dashed
arrows among network component pairs.

AGT-to-HMM conversion. The AGT is converted to a
hidden Markov model (HMM) [7], which will be used later
to determine the attack path traversed by the attacker at each
time instant, given the past set of triggered IDS alerts.

To generate the HMM model, SCPSE enhances the AGT
using the cyber network’s topology to encapsulate knowledge
about deployed cyber-side IDSes. Specifically, each AGT edge
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Fig. 2. A highly simplified power network and the corresponding AGT

is tagged by a (possibly empty) set of IDSes that monitor the
edge’s corresponding network link within the power network.
SCPSE later uses these tags to map IDS alerts (observations)
to their corresponding state transitions to estimate the attack
path traversed by the attacker. In practice, IDSes tend to report
false positives and may also miss some incidents, i.e., false
negatives. To account for the inherent uncertainties in IDS alert
notifications, SCPSE labels the IDS tags on state transitions
with their false positive and negative rates.

Cyber security-state estimation. During its online opera-
tion, SCPSE makes use of the HMM model and online IDS
alerts to probabilistically deduce the attacker’s previous actions
(vulnerability exploitations), and hence the set of already
compromised host systems. Indeed, IDS alerts provide SCPSE
with the online information about the cyber-side security
incidents and compromises. There are two major types of
IDS solutions that can be used to pinpoint adversarial cyber
penetrations: 1) host-based techniques that run and monitor
for misbehaviors within host systems, such as file integrity
checkers and CPU/memory overconsumption monitors; and
2) network-based solutions that run on network devices and
hence are easier to deploy, and look for attack signatures
and anomalies based on limited available information obtained
from the packet headers and payloads, if the traffic is not
encrypted. For SCPSE, the specific type of the IDS system is
not relevant, and the only information needed is the intrusion
detection accuracy level; that can be assigned by security ad-
mins or historical data analysis techniques [8]. SCPSE makes
use of the HMM to track the attacker’s action sequence as the
IDS alerts are sequentially triggered. To do so, SCPSE uses
an HMM smoothing algorithm [7] to estimate the network’s
current security state given the past triggered IDS alerts. In an
HMM, unlike a regular Markov model, states are not directly
visible, but observations (IDS alerts) are visible. The goal is
to utilize the past observation sequence and probabilistically
estimate the traversed state sequence (attack path) considering
the false positive and negative rates of the monitoring IDS
probes.

Formally, SCPSE models each attack scenario as a discrete-
time hidden Markov process, i.e., event sequence Y =
(y0,y1, · · · ,yn−1) of arbitrary length. yi = (si,oi), where si is
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an HMM state at the ith step of the attack and is unobserved,
and the observation oi is the set of triggered IDS alerts at
that step. The initial state is defined as s0 = (∅), as discussed
above.

SCPSE’s main responsibility is to compute Pr(st | o0:t),
that is, the probability distribution over hidden states at each
time instant, given the HMM model and the past IDS alerts
o0:t = (o0, · · · ,ot). In particular, SCPSE makes use of the
forward-backward smoothing algorithm [7], which, in the first
pass, calculates the probability of ending up in any particular
HMM state given the first k IDS alerts in the sequence
Pr(sk | o0:k). In the second pass, the algorithm computes a
set of backward probabilities that provide the probability of
receiving the remaining observations given any starting point
k, i.e., Pr(ok+1:t | sk). The two probability distributions can
then be combined to obtain the distribution over states at any
specific point in time given the entire observation sequence,

Pr(st | o0:t) = Pr(sk | o1:k,ok+1:t) ∝ Pr(ok+1:t | sk) ·Pr(sk | o1:k)
(1)

where the last step follows from an application of Bayes’s
rule and the conditional independence of ok+1:t and o1:k given
sk. Having solved the HMM’s smoothing problem for Pr(st |
o0:t), SCPSE probabilistically knows about the current cyber
security state, i.e., the set of compromised host systems. Next,
our goal is to use the knowledge of current cyber security state
to accurately estimate the underlying power system state.

IV. POWER SYSTEM STATE ESTIMATION

As discussed before, the cyber-physical security state of the
power grid is defined for SCPSE as the set of compromised
host systems and maliciously modified power measurements.
In Section III, we introduced an algorithm to probabilistically
determine the set of compromised hosts at each time instant.
This section explains how SCPSE uses the knowledge about
compromised hosts to identify the set of maliciously modified
power measurements, the so-called bad data. The bad-data
detection enables SCPSE to estimate the underlying power
system state correctly.

Background. Before presenting the bad-data detection al-
gorithm, we provide a brief review on the power system flow
equations and state estimation. In a power grid infrastructure,
the underlying power system is represented as a set of nonlin-
ear AC equations that include active and reactive power flows,

Pi j = V2
i [−Gi j]+ViV j[Gi jcos(θi−θ j)+Bi jsin(θi−θ j)] (2)

Qi j =−V2
i [−Bi j]+ViV j[Gi jsin(θi−θ j)−Bi jcos(θi−θ j)]

(3)
where Pi j and Qi j are, respectively, active and reactive power
flows from bus i to bus j. Gi j and Bi j denote the elements in
the i, j position of the real and imaginary components of the
system admittance matrix Ybus = G+ jB, which contains the
network line parameters (I = YbusV) [9].

The power system state estimation problem involves estima-
tion of the present conditions in a power system based on snap-
shots of real-time measurements, i.e., real and reactive power.
The estimated quantities include bus voltage magnitudes and
angles that constitute the power system state variables. The

estimate is computed using known equations, which relate
the power system measurements to the unknown states that
are to be estimated. The estimates depend on the power flow
equations that are derived from the power system topology. For
example, in equations (2) and (3), the values of Pi j and Qi j are
measured by the power sensors, and the values of the power
system state vector (i.e., voltage magnitudes V and phase
angles θ), are estimated using the iterative Newton-Raphson
state estimation equations [9]. Once the state variables, i.e.,
bus voltage phasors, are known, all other quantities, such as
currents and nonmeasured real and reactive line flows, can be
computed [9].

In general, power system state estimation is typically an
overdetermined problem, since there are more measurements
available than are needed to solve for the unknown voltage
magnitudes and angles. In other words, the power system state
estimation server can still estimate the power state correctly if
redundant measurements are ignored. However, in a practical
attack-free situation, power measurements may include zero-
mean Gaussian noise due to natural and accidental faults.
Therefore, deployment of redundant power sensors improves
the accuracy of power system state estimation.

In certain cases, it is possible for modified measurements
to cause incorrect power system estimates without being
detected. These unobservable attacks must satisfy the power
balance equations.

Bad-Data Detection. Many proposed schemes exist for
bad-measurement identification [10]. In [2], [11], [12],
and [13], it is shown that traditional detection schemes are
ineffective against coordinated malicious false data injection.
Residual-based approaches [9] are the most widely used tech-
niques for handling nonmalicious accidental failures. In sum-
mary, those algorithms examine the L2-norm of the measure-
ment residual ||z−Hx̂||, i.e., the difference between the true
measurements z and the estimated values of the measurements
Hx̂, which are calculated using the power system state estimate
x̂ and the system matrix H. The measurements whose L2-norm
is greater than a certain threshold τ are marked as bad data.
However, unobservable false-data injection attacks [11] prove
the inability of residual-based techniques to handle interacting
or malicious bad-data modifications [14], as they can change
the estimates without impacting the residual. The failure of
such techniques results from their dependence on computation
of an initial estimate x̂ using all the measurements, which may
be affected by the bad data.

To identify malicious data modifications, we present a new
scalable and combinatorial-based bad-data detection (BDD)
algorithm. The algorithm makes use of the power measure-
ments as well as the cyber security state estimation result,
i.e., the posterior distribution over the HMM’s state space
Pr(st | o0:t) (Section III). The main idea is to circumvent
the problem of needing to compute the initial power system
estimate x̂ from the full data set by initially throwing out
the set of suspicious measurements. A trivial solution would
be to blindly consider each combination of the sensors to
be corrupted, then estimate the power system state for each
combination without using measurements from those sensors,
and finally calculate ||z−Hx̂|| to identify the true corrupted
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measurements. However, that approach is not generally scal-
able for use in large-scale power systems, as M sensors yield
2M possible combinations. As discussed below, SCPSE uses
the posterior distribution Pr(st | o0:t) to order and limit the
number of combinations to check.

Algorithm 1: Power system BDD algorithm
Input: P(st | o0:t), z, deadline
Output: [pwr state, bad data]

1 cybr state, pwr state, bad data;
2 εm ← 0;
3 List ← OrderP(st |o0:t )(S);
4 while get time() ≤ deadline do
5 s ← List.pop();
6 c ← measurement combination(s);
7 [zc,Hc] ← Updatec(z,H);
8 if Observable(zc,Hc) then
9 x̂ ← Newton Raphson(zc,Hc);

10 ε ← ||z−Hx̂||;
11 if εm < ε then
12 [pwr state, bad data] ← [x̂, c];
13 ε ← εm;
14 end
15 end
16 end

SCPSE implements Algorithm 1 to detect maliciously bad
power measurements. The main inputs (Line 1) are the cyber
security state estimation result Pr(st | o0:t), the power system
measurements, and a timeout threshold for the algorithm.
SCPSE initially orders the HMM states in descending order
according to the estimated posterior probability P(st | o0:t)
(Line 3). Then, SCPSE iteratively checks combinations of
measurements (Line 4). In particular, the most likely HMM
state s is first picked from the list (Line 5). Using the power
grid topology, SCPSE knows which measurements could or
might have been corrupted, given the set of compromised hosts
encoded by s. The set of potentially corrupted measurements
is stored in a binary vector c (Line 6). To clarify, assuming that
there are a total of m measurements, cm×1 is a binary vector
in which 1s and 0s represent bad and good measurements,
respectively. For instance, none of the measurements are
marked as potentially corrupted in the measurement combi-
nation c = (0,0, . . . ,0)T .

The idea is to throw away the measurements that correspond
to the 1 values in c, and proceed with the normal state esti-
mation routine using the remaining measurements. Given the
calculated c, rows of the z and H matrices that correspond to
the 1 values in c are deleted, and the results are saved in zc and
Hc (Line 7). Using the dimensionally reduced matrices zc and
Hc, the power system state is then estimated (Line 9). The state
estimate x̂ is used to reconstruct the estimated measurement
vector ẑ = Hx̂, which is compared to the actual measurements
z (Line 10). During each iteration of the algorithm, the most
deviating ẑ so far and the related values are stored (Line 12).
In essence, each iteration (Line 4) checks a specific set of
potentially bad measurements to determine whether or not they
differ significantly from the values they should have, which
are computed based on the remaining (good) measurements.
Finally, the procedure returns the best estimates for the power
system state, and the set of measurements that were identified
as corrupted (Line 1).

One main point in the algorithm is the observability condi-
tion (Line 8), which checks whether it is possible to estimate
the power system state while ignoring a particular subset
of measurements c. Otherwise, if too many measurements
are compromised and must be removed, the system will no
longer be observable, and the algorithm will not be able to
proceed with that particular iteration (Line 8). In general,
for a power system to be observable, it is necessary for the
number of available measurements to be equal to or larger
than the number of power system state variables. However,
it may be that only parts of the network are observable and
some other parts of the system are not observable, even if the
total number of good measurements is sufficient. Hence, it is
not only important that there be enough good measurements,
but also that they come from well-distributed parts of the
underlying power system. The entire power system is said to
be observable if all state variables can be estimated based on
the given measurements. Further discussion of observability
analysis is beyond the scope of this paper. The interested
reader is referred to the literature concerning measurement
placement for observability [10].

It is worth stressing that Algorithm 1 provides bad-data
detection mainly for malicious cases and is a supplement
to, rather than a replacement for, residual-based approaches,
which are suitable for detecting noninteracting and natural
errors. The proposed algorithm is, in essence, a combinatorial-
based solution that makes use of cyber-side IDS reports to
improve its scalability. In the case of natural errors, IDS
reports would not provide any useful information, and hence
the proposed algorithm could not always identify corrupted
measurements within a short amount of time. Consequently,
the proposed approach and traditional residual-based tech-
niques should be used together to achieve efficient detection
of measurement corruptions due to both security attacks and
accidental errors.

V. COMPUTATIONAL EFFICIENCY

Power systems are large, sparse systems in which each bus
is connected to at most a few other buses. Thus, power systems
analysis takes advantage of sparsity in its computations of
network solutions [15], [16]. Likewise, the same sparsity that
permits the efficient solution of large-scale power networks
also permits efficient solution of the possible communications
attack paths. SCPSE takes advantage of the network’s topolog-
ical sparsity and uses an approximation algorithm (discussed
below) to ensure feasibility of the proposed estimation algo-
rithms on large-scale power networks.

SCPSE employs a modified version of the envelope [17]
algorithm to concentrate computational resources on only
the most relevant states. In particular, at each time instant
t, given the HMM smoothing results Pr(st | o0:t), SCPSE
picks the state with the highest probability s∗ using the
Most Likely State (MLS) [18] approximation technique s∗ =
argmaxs Pr(st | o0:t). Then, SCPSE partially generates the
AGT, starting with the state s∗ and exploring all possible
state sequences shorter than a predefined threshold α that
are reachable from s∗. The generated partial AGT is used
by SCPSE to perform the next round of HMM smoothing
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to update the Pr(st+1 | o0:t+1) distribution. Once the power
system bad-data detection using Pr(st+1 | o0:t+1) has been
accomplished, SCPSE starts the next iteration by updating the
AGT using the updated distribution and waiting to receive the
next sequence of observables.

VI. EVALUATION

Evaluation methodology. We implemented and evaluated
a working prototype of SCPSE on the IEEE 24-bus power
system benchmark. Our experimental results show that the
generated attack graph and the underlying physical power
system allow SCPSE to efficiently fuse sensor information and
hence identify malicious activities accurately.

In this section, we discuss our implementations and present
the experimental results. All our experiments were on a 32-
bit system with an Intel Core 2 2.16 GHz CPU, 3.00 GB of
memory, and the Windows 7 Professional operating system.

Implementations. Figure 3 shows a high-level overview
of our implementation setup. A unified XML format was
used to describe the network topology and global access
control policies. During the offline phase, SCPSE leverages
the NetAPT tool [19] to connect to firewalls in the network
using a secure SSL channel and perform a comprehensive
security analysis of the access policy rules. It then produces the
network connectivity matrix according to the control network
topology input. The matrix is later translated into an HMM
model through an AGT generation step (Section III). As
illustrated in Figure 3, during the online phase, SCPSE feeds
the previously triggered IDS alerts to an HMM solver (the
UMDHMM tool [20]) to solve the HMM model for the
posterior distribution and estimate the cyber security state of
the system.

On the power side, we employed PowerWorld Simula-
tor [21] to simulate the underlying power system model, shown
as the power system topology input in Figure 3. PowerWorld
was used to produce online power measurements and to send
them in real-time to the power state estimation component
(the MATPOWER MATLAB toolbox [22]). To set up a real-
time connection to MATLAB, PowerWorld used its SimAuto
toolbox [23] via MATLAB. Finally, the power system state
estimate from MATPOWER and the cyber security state esti-
mate from UMDHMM were used by Algorithm 1 to determine
the cyber-physical security state of the power grid.

In our experiments, we evaluated SCPSE on a simulated
power grid infrastructure. The underlying power system was
the IEEE 24-bus reliability test system [24] (Figure 4(a)). The

power system consisted of 38 transmission lines, and each
line had two power sensors on each of its ends, measuring
real and reactive power. The power system was monitored
and controlled by two control center networks with identical
network topologies and access control policies. The simplified
control network models were built based on the topology of
a real power control network (which will remain anonymous
because of a nondisclosure agreement). Figure 4(b) shows the
topology of a single control center network that has 59 nodes,
e.g., host systems and firewalls. As shown in the figure, the
Internet connections come from the node marked as Internet
Host (28.1.1.1), which is assumed to be where the attacker re-
sides initially. The first control network monitors and controls
buses 1−12 in the power system (Figure 4(a)), and the second
network monitors and controls buses 13− 24. In particular,
each power bus is monitored and controlled by a single host
system in the corresponding control network. That mapping
is later used by the implementation of the proposed bad-
data algorithm to determine which measurements the attacker
could have modified, given that he or she has compromised a
particular host system.

Performance Analysis. We evaluated SCPSE’s scalability
for large-scale power grid networks with thousands of buses.
Although network topology analysis and AGT model gener-
ation in SCPSE are performed during an offline phase, in
practice, it is still important to complete those steps within
a reasonable time interval. To validate SCPSE’s efficiency on
various power grid networks with different sizes and topolo-
gies, we measured how long SCPSE takes to generate the AGT
model for randomly generated power grid networks. Figures
5(a) and 5(b) show the AGT generation time requirement
and the model’s size for power grid networks of various
sizes. In particular, the sizes, shown on the horizontal axes,
represent the number of power system buses and commu-
nication control network systems, as we used a one-to-one
mapping between the communication network nodes and the
power system buses. The threshold α (Section V) was set
to 8, i.e., the generated AGT model took into account all
possible adversarial future action sequences whose lengths
were shorter than 9. As shown in the figures, the AGT model
size and generation time grew as the network size reached
around 1000 nodes, and remained stationary (|S| ∼= 3500 and
Generation time∼= 1200 ms) afterwards. We also evaluated the
performance of the HMM solution component in SCPSE. As
shown in Figure 5(c), initially, before the α finite horizon
threshold was hit, the HMM solution time increased as the
network size grew; however, it reached its steady state of
about 2 seconds for larger networks. Figure 5(d) shows our
performance analysis results for Algorithm 1. In particular,
we measured how long it takes SCPSE to complete the bad-
data detection phase when different numbers of AGT states are
chosen to be investigated (Line 5 in the algorithm). It takes
about 8 seconds to initialize the algorithm, e.g., load the power
grid case, and approximately 0.08 seconds on average for each
state chosen from the list.

AGT generation. Given the power network topology and
the access policy rules, i.e., about 100 firewall rules, SCPSE
constructed the network connectivity matrix and generated



IEEE TRANSACTIONS ON SMART GRID 7����� � �� � 	 
�� ���� �� �����	�
�� �� � ���� �� ���� ���������
(a) IEEE 24-bus system

������������ 	
��	�	�	�	���������������������������	��	�	�	������	� 	
��	���	������������ ��!��	
��"���������#� 	
��	���	$	���������� ��!�����	
��"���������#�	
��	�		��	#	 	
��	�	�	�	�		�����	�$	�����	�� 	
��	�	�	�	�
#$�	���"	 	
��	���	�#� ����%����������	
��	������&�	
��	�		��	� 	
��"������			 	
��	����&	�����	�
� '���(��)�����*�����	
��	�	�	����#�	
��	���	�		
��	�	�	�	��+����������,�����-�����	
��	�		�����#� 	
��	���	�#& ����%�������	��	
��	�������#�	
��	���	�������������������.����� ��������/�����	��	�	�	����&� +�����������	 +���������)����')0��	���������	�+������������	
��	�		��			 	
��	����	#$�	����#$ 	
��"������	�	 ���������� ��!��	��	
��	���	����#���������������������	�	�		�����	� ���1��2����(������+�������3�����4��!��#$�	�#$������	
��	�		��			
��"�������	#$�	����#" 	
��	�����	
��	�����	
��	���	�## 	
��	����#	�����	� 	
��	���	
�	
��"��������	 ����������������$�	�	�	�	
��	�		��	&& 	
��	�	�#���#$�	���""	
��	�		��	�	���1��4�����)����	
��	�	�#����#�  ��������/��������	�	�		���&�
(b) Power network topology

Fig. 4. Experimental power grid testbed architecture
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Fig. 5. SCPSE’s performance analysis results

the corresponding AGT model. Figure 6 shows a simplified
version of the generated AGT. For presentation clarity, only a
single host in each network was considered during the AGT
generation, and host names in Figure 6 are represented by hx
encodings. Table I shows the mappings between the encodings
in Figure 6 and the host systems in Figure 4(b). As shown in
the generated AGT, the attacker initially resides remotely in
the Internet, with no privileges in the power network (AGT
state 0), and could traverse different attack paths to access
a particular host, e.g., h8, in the power network. Each AGT
edge represents an allowed access (i.e., possibly a vulnerability
exploitation) from a source to a destination host in the power
network.

Cyber security-state estimation. Our implementations then
converted the generated AGT to its corresponding hidden
Markov model (Section III) to allow probabilistic deduction
of the attack path that would reveal the set of compromised

hosts. The generated HMM maintained the same state space
and namings as the AGT illustrated in Figure 6. Then, we
launched an attack to compromise the host system 101.10.0.3
within the power network. The attack caused the IDS, which
was monitoring the host’s incoming traffic, to trigger an
alert. The UMDHMM tool used the generated HMM and
the triggered IDS alert to estimate the cyber security state.
Table II shows the probability distribution over the HMM’s
state space. The most likely current state in the HMM marks
the host systems 28.1.1.1 and 101.10.0.3 as compromised.
From the cyber-physical network’s topology input and given
the compromised hosts, SCPSE marks the real and reactive
power measurements on transmission lines 1−2 and 16−17
as potentially corrupted1.

Bad-data detection. We evaluated how efficiently the pro-
posed bad-data detection algorithm performs compared to the
traditional residual-based approaches.

The first attack modified the measurements from a single
real power sensor on the 1−2 line after compromising a crit-
ical power network host. Figure 7 shows different parameters
observed after we ran both of the bad-data detection algo-
rithms. The vertical axis shows the real power per-unit values
for 16 of the 38 total power system sensors (indicated on the
horizontal axis). For presentation clarity, not all 38 values are
shown. For each of the 16 sensors, four values are reported.
The first column shows the actual (correct) measurements
from PowerWorld Simulator; maliciously modified values are
shown in the second column. The third column shows the
measurements estimated using the proposed framework, which
used the cyber-side intrusion detection (ID) information. The
last column reports the measurements estimated using the
traditional residual-based approach. As shown in the figure,
during the first scenario, only the measurement from the first
sensor on the 1−2 line was corrupted 1 p.u. before being sent

1“1−2” denotes the power system line that connects bus 1 to bus 2.
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Fig. 6. Automatically generated AGT for the IEEE 24-bus power control networks

TABLE I
(IP, HOST) MAPPINGS FROM FIGURE 4(B) TO FIGURE 6

Host IP Address Host IP Address
h1 28.1.1.1 h2 101.10.0.3
h3 120.2.1.65 h4 172.16.101.122
h5 172.16.104.20 h6 172.16.201.45
h7 172.90.200.251 h8 101.11.0.3

TABLE II
CYBER SECURITY-STATE ESTIMATION RESULTS

Probability HMM’s State ID Compromised Hosts
0.032141 0 28.1.1.1
0.953099 1 28.1.1.1, 101.10.0.3
0.001001 15 28.1.1.1, 101.10.0.3, 101.11.0.3
0.016759 36 28.1.1.1, 101.11.0.3

to the estimation server. The proposed ID-based solution’s es-
timation of the first sensor’s measurement, 0.1224, was almost
equal to its correct value, 0.1247 (i.e., with only 0.002 p.u.
difference), and hence far from its modified value, resulting
in a large measurement residual. The residual-based algorithm
was also able to detect the data corruption, as its calculated
measurement residual value, 0.502, was above the predefined
threshold (τ = 0.1 p.u.). However, its estimated value was not
as accurate as that of the ID-based algorithm. The estimated
value was affected by the corrupted value that was wrongly
considered good and used by the state estimator during the
residual-based approach’s first power state estimation.

The second attack aimed to cause noninteracting mea-
surement modifications on two power sensors. In particular,
measurements from the bus 1 sensor on the 1− 2 line, and
from the bus 16 sensor on the 16− 17 line, were corrupted.
The corruptions were both 1 p.u., and were intentionally
designed not to match the underlying power system equa-
tions. In practice, such noninteracting bad data usually result
from non-malicious natural and accidental failures. Figure 8
shows the measurement estimations resulting from the two
algorithms. Much as in the case above, the proposed algorithm
and the residual-based approach were both able to detect the
data corruption. However, the residual-based approach did not
estimate the power system measurements of the compromised
sensors accurately.

During a more complicated attack scenario, the attacker
intentionally modified two measurements from sensors 1 (on
bus 1) and 14 (on bus 2), which were monitoring the two
ends of the 1− 2 power line. The data modifications were
intentionally designed in such a way that they still satisfied
the power flow equations (i.e., an unobservable attack). In
particular, the measurement corruptions on sensors 1 and
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Fig. 7. Single measurement (sensor 1) corruption

14 were +1 and −1 p.u., respectively. Figure 9 shows the
results for the interacting measurement corruption scenario.
The proposed ID-based algorithm was still able to detect the
measurement corruption and correctly estimate the state by
ignoring the set of bad measurements. In comparison, the
locally consistent bad measurements deceived the residual-
based approach into wrongly marking those measurements
as correct, since the measurement residual value was 0.002,
i.e., below the predefined threshold τ. That example shows
that SCPSE is effective at detecting interacting malicious
measurement corruption attacks and producing an accurate
estimate of the system state, while residual-based approaches
fail to detect such attacks and thereby can lead to a faulty
estimate.

We also evaluated SCPSE’s ability to detect maliciously
altered power system measurements in our case study power
grid in 30 different cyber-originated attack scenarios. SCPSE’s
HMM smoothing component took 914 milliseconds on average
to calculate the posterior distribution for each attack over the
state space. SCPSE’s detection component was able to identify
the exact subset of corrupted measurements in all the scenarios
within 11.7 seconds by going through no more than the first
14 states (across the attack scenarios) on the ordered state list
(Algorithm 1). That demonstrates that SCPSE has the potential
to assess the cyber-physical state of a system in real-time and
in the presence of adversaries.

VII. RELATED WORK

Recently, there has been increasing interest in security inci-
dent detection in power-critical infrastructures [25], including
work on false data injection attacks [2] and defenses against
them. However, most of the past work has focused on either
cyber or power side solutions [26]–[28]. In this section, we
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discuss some closely related work and contrast it with our
approach.

We first discuss related work whose focus is on the depend-
ability and security analysis of power systems. Volkanovski et
al. [29] introduce a power system reliability analysis algorithm
using fault trees generated for each load point of the system.
The proposed method focuses only on accidental failures due
to natural causes, and hence does not consider maliciously
failed power components. Zhou et al. [30] present a sequential
power system state estimation algorithm that uses reports from
synchronized phasor measurement units. Lo et al. [31] propose
a power system bad-data detection algorithm based on rotation
of measurement order for sequential state estimation. [32], [33]
focus on detecting corrupted measurements using only power
sensors. Such bad-data detection techniques have two major
limitations. Detection accuracy of some approaches, e.g., least-
square error-based algorithms [33], is usually low against
coordinated attacks, as they initially consider all the mea-
surements good. Furthermore, some other approaches, e.g.,
combinational techniques [32], do not scale well. Their search
space for detecting bad measurements grows exponentially
with the number of measurements.

Recent research has focused on false data injection attacks
[2], [28], [34] on state estimation, where an adversary modifies
multiple measurements in a coordinated fashion to influence
the estimate of the state without being detected by traditional
bad-data detection schemes, and on defenses against such
attacks (e.g., [28], [34], [35]). The impact of such false data
injections on power system operations, including power market
operations, has been considered in [3]–[5]. Specifically, [3], [4]
show that false data injection attacks can be used to manipulate
real-time prices in the electricity markets, while [5] shows that
they can cause operators to make suboptimal power dispatch
decisions.

Kosut et al. [28] introduce an algorithm to detect and

localize false data injection attacks using the generalized
likelihood ratio test. However, that work does not take into
account the cyber network topology or its current state, which
might be the root cause of the problem; hence, it does not
provide a complete cyber-physical picture.

Bobba et al. [34] and Dan et al. [35] demonstrate how
knowledge of power system topology and the correlation,
present in power system measurement data can be leveraged
to provide effective, cost-efficient solutions for detecting ma-
licious false data injection, and also to provide insight into
the nature of unobservable attacks. Giani et al. [36] provide
further characterization of unobservable attacks. However,
unlike SCPSE, those efforts only leverage power system
measurements except for [35] which leverages communication
infrastructure topology information as well.

We now discuss related work that is focused on the security
of cyber infrastructure. Cyber-based diagnostics mechanisms
try to estimate the security state of a computer network [37].
Bothunter [38] extends ideas from multi-sensor data fusion to
probabilistically correlate triggered alerts generated by intru-
sion detection systems (IDSes). The main goal is to identify
the set of compromised hosts [39]; however, in a power grid
context, the goal is the overall safety and reliability of the grid
and not security of individual hosts. Such solutions, as they
do not take the impact on the physical system into account,
are thus unable to provide a complete picture. Ten et al. [40]
propose a vulnerability assessment technique to evaluate the
vulnerabilities of SCADA systems at three levels: system,
scenarios, and access points. By calculating the risk of each
asset’s compromise, Mohajerani et al. [41] introduce a method
to detect and improve the vulnerability of power networks
against the intrusions and malicious acts of cyber hackers. [40]
and [41] both perform in an offline manner, and hence cannot
monitor the system for malicious activities while it is in its
operational mode. Wilken et al. [42] propose a software fault
diagnosis solution that uses data redundancy to detect faults
that have been caused by probabilistic system failures [43].
Therefore, software crashes that result from vulnerability ex-
ploitations cannot be completely detected using their proposed
approach. For cyber systems, there have been extensive inves-
tigations into intrusion detection techniques such as anomaly-
based [44], signature-based [45], and (recently) specification-
based solutions [46]. However, those traditional cyber diag-
nostics solutions ignore the topology and configuration of
the underlying physical power system [47]. In contrast, our
framework leverages the topology and configuration of the
underlying physical power system to validate the outcomes
of traditional IDSes.

For process control networks, Cardenas et al. [48] inves-
tigate an intrusion detection technique in which the attack’s
final target is assumed to be given. That assumption could be
exploited by attackers to further damage the process control
network by targeting other critical goals. SCPSE, while gener-
ating the attack graph, considers all possible attack paths, even
those that do not end up in critical assets, e.g., an internal Web
server.

In summary, unlike previous techniques, SCPSE leverages
information from the cyber network (control network topology,
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access policies, and sensory reports) along with information
from the power system (network model and measurements)
to detect false data and provide an improved estimate of the
cyber-physical state.

VIII. CONCLUSIONS

In this paper, we introduced SCPSE, a cyber-physical se-
curity state estimation framework that can identify malicious
activities and accurately estimate the cyber-physical security
state of a power grid. SCPSE exploits available offline in-
formation, like power network access policies, to create a
comprehensive model of the cyber-physical system. During
operational mode, SCPSE makes use of the available online
information from both the cyber security sensors and the
power measurements and efficiently fuses that information
using the generated system model. The experimental results
show that SCPSE can efficiently estimate the cyber security
state of a system, identify malicious measurement corruptions,
and, consequently, calculate a correct state estimate of the
underlying system.
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