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ABSTRACT

Software-defined networking (SDN) is an emerging paradigm that differs from traditional ap-
proaches to computer networking by decoupling how traffic forwarding should be performed from
the traffic itself, logically centralizing the related decisions through one or more controllers, and
providing a standardized control protocol among network forwarding devices (e.g., switches) and
controller(s). Much of the recent research in the networking community has focused on what is
now possible because of the flexibility of SDN architectures, but what is less understood is 1) the
resilience of SDN to intentional, malicious attacks against system components and 2) how the con-
trol protocol affects and is affected by these attacks. Significant challenges include systematically
establishing what attacks are possible in the control protocol and understanding the ramifications
of attacks on controllers, switches, network applications, and overall network behavior.

This thesis introduces a model, a language, and an injector for describing and injecting attacks
into the control plane of the OpenFlow-based SDN architecture. First, we define an attack model
that models the components in the SDN network and the assumptions about an attacker’s capabil-
ities against control plane messages. Second, we define an attack language that allows for attacks
to be described based on the semantics of the OpenFlow protocol. Third, we describe an attack
injection architecture that uses the aforementioned attack model and language to actuate attacks
that demonstrate vulnerabilities in the design, implementation, and configuration of an SDN-based
architecture. Finally, we motivate our design with an enterprise network use case and demonstrate
the efficacy of our injector by injecting attacks and understanding the attacks’ results.
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CHAPTER 1

INTRODUCTION

Over the last several years, the nascent software-defined networking (SDN) architecture and the re-
lated OpenFlow protocol have changed the field of computer networking for researchers and practi-
tioners alike. Initially developed as a mechanism for researchers to program research networks [1],
OpenFlow and the broader SDN architecture have grown to find many use cases in varied set-
tings, such as corporate enterprises [2], cloud computing [3], and cyber-physical infrastructures [4],
among others.

The architecture is different from traditional computer networking architectures in the following
ways [5]:

1. It decouples from traffic control protocol messages that represent how traffic should be for-
warded. SDN splits the two functions into a data plane and control plane, respectively, that
operate as separate logical networks over either shared or separate physical infrastructure.

2. It centralizes the decision-making policies on how data plane traffic should be forwarded.
SDN offloads the decision-making from the network forwarding devices (e.g., switches and
routers) and places the control plane logic in a logically centralized (but perhaps physically
distributed) controller. The controller communicates with the network forwarding devices
through a common, standardized control protocol (e.g., OpenFlow [1]). As a result of this
centralized paradigm, the SDN controller has a consistent (or nearly consistent) global view
of the network; the controller’s logic can decide on forwarding behavior at this global level
rather than relying on traditional distributed protocols, such as STP for forwarding or OSPF
for routing.

3. It programmatically controls network behavior. Rather than rely upon numerous proprietary
protocols that may or may not be interoperable (depending on the vendor), controllers expose
an API to one or more network applications in the application plane that either set network
behavior policy or query the controller for information about what the network is doing.
Management applications that formerly operated as separate middleboxes (e.g., firewalls or
network IDP systems) can now be integrated to control the network’s behavior in a more
straightforward and consistent way.
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SDN, as its name implies, incorporates both software engineering and computer networking con-
cepts. Rather than constrain networking devices and their logic in terms of one function (e.g., the
OSI model Layer 2 Ethernet forwarding implemented in switches, or the OSI model Layer 3 IP
routing implemented in routers), a software engineer or network programmer can programmati-
cally define the logic of the network’s behavior. While this flexibility opens up many opportunities
to define the intended behavior of a network, the emphasized role of software creates new challenges
that extend beyond traditional networking problems. Complex software programs may present risks
for design flaws if the software becomes intractable to verify; thus, a need exists for evaluation and
validation tools to check that the system is performing correctly against a user-defined specification.

Considering the SDN architecture—in particular, one that uses the OpenFlow control protocol—
from a dependable and secure systems perspective, we note several relevant observations about the
architecture, the control protocol, and the current state of the practice:

• By design, our ability to change the “state”1 of the network and querying for information about
the network’s “state” overwhelmingly depend on the control protocol and the separated planes
(data, control, and application). For instance, a network application that wishes to request in-
formation about the network would first need to query the controller; the controller would
then need to query the network forwarding devices using the OpenFlow control protocol. Be-
cause these actions are centralized and handled in the control plane and because the approach
relies on a single protocol for message passing among network devices, a high dependency is
placed on the control protocol.

• The dependence on the control protocol for changing and querying the network’s “state”
makes it a likely target for malicious attacks. For that reason, understanding the potential
attacks against the control protocol messages is crucial to enable understanding of how the
protocol itself affects the network’s behavior, and how attacks propagate and manifest them-
selves in network forwarding devices, the controller, and network applications.

• Previous efforts at surveying the security landscape of the SDN architecture did not satis-
factorily model the possible attacks in the control plane when considering the capabilities of
attackers.

Against that background, this thesis extends preliminary work toward development of a system-
atic and methodical understanding of how an SDN architecture could behave, given an appropriate
model that incorporates assumptions on an attacker’s capability and the presence of malicious be-
havior within the control plane. We have chosen OpenFlow-based [6] SDN architectures as the
control protocol under study because of OpenFlow’s real-world SDN architectures [5].

1State is broadly defined to include the forwarding behavior, topological connectivity, and configuration of the net-
work.
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First, we define an attack model that describes the relationships among the system’s components
in the data and control planes and captures the assumptions on the attacker’s capabilities to disrupt
control protocol messages in the control plane. As noted earlier, such messages help determine
the forwarding behavior, topological connectivity, and configuration for the network and are likely
targets for attackers wishing to disrupt the network’s operation.

Second, we define an attack language that models an attack itself, subject to the system constraints
given in the attack model. We assume that an attack occurs in stages (or states) and model it through
an attack state machine. Each state consists of a set of rules that govern the conditions for taking
actions, and such actions implement the attack through an attack injection. Because of the stan-
dardized nature of the OpenFlow protocol, any combination of controllers or network forwarding
devices could be used to gather information on the effects of injecting attacks on specific implemen-
tations.

Third, we implement the attack model and attacks written in the attack language in an attack
injector architecture. The attack injector takes a user-specified attack model and attack description
and generates executable code. We use this executable code to inject attacks into the control plane
of a network to understand the attack’s effects on the behavior of the network’s devices and end
hosts. We incorporate a set of monitors into the architecture to record relevant information about
the events in the control and data planes.

Finally, we consider the use case of a small-scale enterprise network to evaluate our attack injector
and empirically demonstrate the effects of attacks to the control plane. We present two attacks, flow
modification suppression and connection interruption, as practical examples of what attacks can
be described in the attack language and implemented by the attack injector. Both attacks leverage
control plane message interposition to effect attacks in the control and data planes. We consider the
performance metrics of latency and throughput and the security metric of availability in our use
case study.

The remainder of the thesis is as follows:

• Chapter 2 provides related work and background about the SDN architecture, the OpenFlow
protocol, architecture vulnerabilities, verification and security efforts in SDN, and fault and
attack injection architectures.

• Chapter 3 describes and defines the attack model, including the system model, threat model,
and attacker capabilities.

• Chapter 4 describes and defines the attack language, including the attack state machine as well
as the rules governing conditions and actions to take within each state.
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• Chapter 5 describes the related architecture and implementation necessary to implement the
attack model and language in practice in an SDN network in the form of an attack injector.

• Chapter 6 presents a model use case of an enterprise network, a prototypical implementation
of the attack language in the form of an attack injector, several experiments involving attacks
on control plane messages, and results from the experiments.

• Chapter 7 concludes the thesis and proposes future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we provide an overview of the background context and related work for the attack
model, language, and injector. We present the overall SDN architecture; the OpenFlow protocol; the
key vulnerabilities in the SDN architecture design that lead to augmented threats and vulnerabilities,
relative to traditional networking architectures; previous attempts at classifying threats, vulnerabil-
ities, and attacks in SDN; the use of SDN debugging and software testing for designing injection
tools; the concept of network correctness in a security context; and fault and attack injectors.

2.1 Software-Defined Networking

In this section, we describe the components of the SDN architecture, the OpenFlow control proto-
col in use in many SDN implementations, key vulnerabilities inherent in the architecture’s design,
previous work on classification of vulnerabilities and attacks, and the roles in SDN security of the
related fields of debugging, testing, and network verification.

2.1.1 Architecture

Figure 2.1 shows the essential components of a software-defined networking architecture.
From the top-down perspective, network applications set the desired behavior of the network

and communicate their requests through the northbound API interface to the controller(s). The
controller(s) translate policy and behavior to low-level commands via the southbound API where
the network forwarding devices implement the commands that drive the forwarding behavior among
the network’s set of end hosts.

From the bottom-up perspective, end hosts communicate via network forwarding devices. One or
more controller(s) may query about the current state of the network through the southbound API
to understand information about the end hosts on the network, the network’s topology, and traffic
statistics about particular forwarding behavior rules, among other properties. To drive their own
activity, interested network applications may proactively query the controller(s) for such network
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Figure 2.1: Logical diagram of SDN architecture.

information via the northbound API.
In practice, the overall system behavior may be a combination of the top-down and bottom-up

perspectives, depending on the reactive nature of the SDN controller(s) and network applications.
Networks may be proactive in setting up forwarding behavior in the network or reactive in adjusting
the network behavior [1].

Next, we will outline in more detail the components and purposes of the SDN architecture men-
tioned above and shown in Figure 2.1.

2.1.1.1 Application Plane

The application plane consists of software applications whose behavior depends on gathering infor-
mation about the current state of the network (as a functional input) or whose purpose is to decide
policy for how the network ought to operate (as a functional output). Traditional networking ar-
chitectures use middleboxes or vendor-specific and proprietary interfaces to perform these actions,
but the SDN architecture argues for an open (and standardized) interface to let applications interact
with the underlying network. Because of scalability and abstraction considerations, the application
plane does not directly interface with the network forwarding devices; rather, network applications
use centralized information about the state of the network gathered from the control plane.
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A variety of network applications have been proposed for SDN architectures. In the security
context alone, for instance, network applications include firewalls, ACLs, and IDPs [7, 8]. Other
classes of network applications include traffic engineering (e.g., VPNs, QoS, traffic shaping, load
balancing), mobility and wireless (e.g., WLANs, LTE networks), measurement and monitoring (e.g.,
link utilization), and data center networking (e.g., application workloads) [5].

2.1.1.2 Control Plane

The control plane centralizes the logic of the behavior of the network in one or more software-based
controller(s) and acts as a liaison in coordinating actions among the network applications that declare
intended behavior and policies in the application plane and the network forwarding devices that
forward traffic in the data plane. Rather than rely upon distributed and numerous protocols whose
information is carried in-line with other traffic, the control plane logically divides this information
to decouple adjustment of network behavior from the network’s traffic.

Controllers in the control plane extend basic networking functionality and vary widely depend-
ing on the implementation. For example, the Floodlight controller [9] supports an end host tracker,
a DHCP server, a firewall service, a load balancer, and a topology manager as basic and core net-
working functions. From these core networking functions, network applications can query (e.g., for
a graphical representation of the current network’s topology) or influence (e.g., proactively changing
forwarding paths) the network behavior rather than having to worry about vendor-specific inter-
faces that would be required to communicate directly with the network forwarding devices.

Popular controllers in practice include Beacon, Floodlight, HP VAN SDN, Onix, NOX, Open-
Daylight, ONOS, POX, and Ryu [5]. Controllers can be centralized (e.g., Floodlight, NOX) or dis-
tributed (e.g., HP VAN SDN, Onix, ONOS) while remaining logically centralized from the perspec-
tives of network applications and network forwarding devices. The underlying protocol connecting
the controller(s) and network forwarding devices may support communication of an individual net-
work forwarding device with more than one controller, as is the case in the OpenFlow version 1.3
specification [10].

2.1.1.3 Data Plane

The data plane moves traffic among end hosts and other network forwarding devices within the
network according to the forwarding rules set by the control protocol in the control plane. These
rules may be represented in hardware through fast-lookup TCAM or in software through database
entries (e.g., Open vSwitch’s OVSDB protocol).

Data plane and control plane traffic may be carried across the same physical substrate (e.g., wired
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or wireless) while being logically separated through the use of VLANs or similar techniques for
isolating logical or virtual networks. One study [11] found that data plane traffic accounted for
approximately 99% of the total traffic carried on a network, with the remainder belonging to control
plane messages.

SDN controllers may use certain data plane traffic to influence control plane decisions. For in-
stance, Floodlight [9] uses received ARP messages to learn about new end hosts, received LLDP
messages to learn about link-layer network topology and connectivity among network forwarding
devices, and received DHCP messages to assign IP address leases with its built-in DHCP server.
Protocols such as OpenFlow do not specify what or how controllers should interpret the informa-
tion that they receive via the data plane, so the use of relevant data plane messages is left up to the
context of the situation and what the developer chooses to implement in the controller software.

2.1.1.4 APIs

To connect the various planes previously mentioned, the SDN architecture includes three sets of
API interfaces among components:

Northbound API The northbound API interfaces between the network applications in the appli-
cation plane and the controller(s) in the control plane. In practice, many controllers use a
RESTful API that depends upon the controller’s implementation and its capabilities of core
network functions [5]. For instance, the Floodlight controller has REST API calls for clients
(i.e., network applications) that return JSON-encoded data structures representing network
topology, traffic statistics, and current forwarding behavior. The same interface in Floodlight
can be used to statically modify the behavior of the network, if a network application requests
it.

As each controller implementation uses its own northbound API, future efforts include stan-
dardizing the northbound API through the Open Networking Foundation’s North Bound
Interface Working Group [12].

Southbound API The southbound API interfaces between the controller(s) in the control plane and
network forwarding device(s) in the data plane. Many SDN architectures use OpenFlow [1]
as the open and standardized southbound API control protocol because of its widespread
support by hardware vendors [5]. The current state of the practice points to the use of the
OpenFlow version 1.0 specification [6] and the newer OpenFlow version 1.3 specification [10];
some of the differences discussed in more detail in Section 2.1.2.

Other southbound API protocols include Forwarding and Control Element Separation
(ForCES) and Protocol-oblivious Forwarding (POF) [5].
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Table 2.1: OpenFlow Version 1.0/1.3 Protocol Messages

Controller→ Switch Switch→ Controller Symmetric

PACKET_OUT PACKET_IN HELLO
FLOW_MOD FLOW_REMOVED ERROR
PORT_MOD PORT_STATUS ECHO_REQUEST
STATS_REQUEST STATS_REPLY ECHO_REPLY
BARRIER_REQUEST BARRIER_REPLY VENDOR
QUEUE_GET_CONFIG_REQUEST QUEUE_GET_CONFIG_REPLY EXPERIMENTOR*
FEATURES_REQUEST FEATURES_REPLY
GET_CONFIG_REQUEST GET_CONFIG_REPLY
SET_CONFIG ROLE_REPLY*
GROUP_MOD* GET_ASYNC_REPLY*
TABLE_MOD*
ROLE_REQUEST*
GET_ASYNC_REQUEST*
SET_ASYNC*
METER_MOD*

* Protocol messages not available in OpenFlow v1.0.

Eastbound/westbound API The eastbound/westbound API interfaces between controllers within
the control plane. For distributed controllers, achievement of a shared global state requires
communication among the controllers for decision-making and consistency.

Eastbound/westbound API interfaces need not be strictly SDN-specific. HP’s VAN SDN Con-
troller, for instance, uses distributed databases such as Cassandra for eventual consistency
and Hazelcast for strong consistency, with the controller instances serving as clients to the
distributed database [13].

2.1.2 OpenFlow Protocol

As a southbound API protocol, the OpenFlow protocol [6, 10] acts as a standardized control in-
terface among participating controller(s) and network forwarding device(s). Because the protocol’s
functionality is often expressed in terms of low-level specification of how the control plane protocol
sets the behavior of the data plane, it has been likened to the “assembly” level of abstraction for pro-
gramming devices [5]. The protocol specification notes the behaviors that switches should perform
in response to sending and receiving of protocol messages, but it leaves much of the implementa-
tion of the controller (with the exception of the protocol handshaking that describes initial setup,
configuration, and liveness) up to the network programmer or software engineer.
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Table 2.1 outlines the messages available in the specifications of OpenFlow versions 1.0 [6] and
1.3 [10]. The first column lists messages that are sent by controller(s) to switches1; the second column
lists messages that are sent by switches to controller(s); and the third column lists messages that are
sent in either direction between controller(s) and switches.

We categorize and describe the essential messages common to both versions of the protocol in
Table 2.1 according to their function, as follows.

Flow management A flow is a series of similar packets that traverse a controlled and defined path
in a network topology based on the decisions made by the controller.2 A flow has related flow
entries3 on each switch that govern what should be done to packets that match the flow4, and
each switch maintains a list of these flow entries in one or more flow tables.

Each flow entry consists of a matching set of attributes on which to match incoming packets,
along with an instruction set of the action(s) that should be taken with the packet (e.g., drop,
forward, duplicate, modify headers, or send to controller). Modifications to flow entries in
flow tables (additions, modifications, and deletions) are made by the controller(s) through the
FLOW_MOD message. Flow entries may optionally time out depending on an idle or hard time-
out preference, and switches notify the controller(s) through the FLOW_REMOVED message.

Topology management A network’s topology is its graphical representation as a series of vertices
(e.g., end hosts, switches, controllers) and edges (e.g., physical wired or wireless links, or log-
ical virtual network links). OpenFlow-enabled switches can have their ports administratively
turned on or off through the PORT_MOD message. A switch can tell controller(s) about a status
change to its ports through the PORT_STATUS message.

Data plane Packets received in the switch’s data plane may be forwarded to the controller for further
inspection or to determine how the packet should be forwarded in the data plane (usually
achieved through a subsequent flow modification request).

Switches that request controller assistance, typically as a result of an incoming data plane
message not matching any existing flow entries in the flow table, encapsulate the data plane
packet through a PACKET_IN message. Controllers can send or inject packets destined for
the switch’s data plane through a PACKET_OUT message, particularly if the switch does not
adequately buffer data plane messages that are waiting for a decision from the controller.

1In the OpenFlow specification, network forwarding devices are referred to as switches. The term switch traditionally
refers to a Layer 2 forwarding device, even though OpenFlow-enabled devices can function in arbitrary ways based on
how they are programmed (e.g., as Layer 3 routers, as firewalls, or combination of any mixture of devices). We use switch
and network forwarding device synonymously hereafter.

2Other terms used for this end-to-end connection include paths and circuits.
3The terms flow entry and flow rule are used interchangeably in the literature.
4Flow and forwarding behavior are used interchangeably in the literature for the forwarding of traffic. Sometimes

traffic should not be forwarded, and a flow thus functions like a firewall or ACL rule that prohibits the forwarding.
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Liveness Switches and controller(s) may periodically check each other to confirm that they are alive
through synchronous ECHO_REQUEST and ECHO_REPLY messages. Failure to receive a reply
from the intended receiving device may indicate that the receiving device has failed or is not
responding to requests.

Synchronization The order in which OpenFlow messages are processed by the switch is not guar-
anteed to be FIFO order in which they were received [14]. A primitive mechanism in the
OpenFlow protocol, the barrier, exists to notify the controller when a set of messages’ in-
structions has been completed. A controller may issue a BARRIER_REQUEST message to the
switch, and the switch will reply with a BARRIER_REPLY message when the processing of
previous messages received prior to the barrier message has been completed. That sets a syn-
chronization point from which future messages sent after the barrier reply will be assumed to
have been processed.

Understanding the true ordering of control messages as they are processed by the switch, and
whether certain control messages do not necessarily require a strict ordering in order to be
processed correctly, is a subject of ongoing research [14].

Error reporting Both switches and controller(s) can communicate errors through the ERROR mes-
sage. The types of errors included in the OpenFlow v1.0 specification [6] include initial setup
errors, bad requests (e.g., bad version), bad actions, flow modification failures, port modifi-
cation failures, and queue modification failures.

Setup and configuration The remainder of the messages in Table 2.1 refer to the setup of the hand-
shaking between controller(s) and switches, the configuration of switch management, and
experimental and vendor-specific extension protocols.

Subsequent versions of the OpenFlow specification, such as version 1.3 [10], extend the capabilities
of version 1.0 in the following notable ways:

• Explicit assumptions about message delivery, message processing (e.g., switches send asyn-
chronous events to controllers by default, even though controllers may choose to ignore such
messages), and message ordering (e.g., the use of synchronization mechanisms such as barrier
messages).

• Support for matching sets as part of flow entries, such as IPv6 support.

• Support for multiple flow tables, group tables, and additional QoS services (e.g., meters).

• New protocol messages to account for new features, such as TABLE_MOD for modifying flow
tables and METER_MOD for modifying flow meters.
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2.1.3 Architecture Vulnerabilities

To build an understanding of possible attacks, it is necessary first to understand the vulnerabilities
related to the architecture. Kreutz et al. [15] note seven attack vectors affecting the dependability
and security of SDN architectures, three of which are systemic and unique to SDNs (i.e., they are
not found in traditional networks). The seven attack vectors are as follows.

Forged or faked traffic flows Compromised end hosts or switches could be used to instigate DDoS
attacks against other elements within or outside of the network, quickly overwhelming the
networking components (controller(s) and switches). In practice, that may overwhelm the
limited amount of TCAM entries that represent the flow table in hardware on switches, caus-
ing issues with availability for benign services and issues with communications on end hosts
if new flow rules cannot be instantiated.

Switches Compromised switches could redirect, drop, or duplicate traffic; colluding switches could
equivocate about their status when queried by the controller. Furthermore, in scenarios in
which the switches use an encrypted control plane channel for messaging, a compromised
switch could use the same credentials without the controller’s knowing that the switch has
been compromised.

Chi et al. [16] note that an attacker may make a compromised switch do one or more of the
following: incorrect forwarding, packet manipulation, and malicious weight adjustments of
group tables (as found in OpenFlow v1.3).

Control plane communications (unique to SDNs) Weaknesses in implementation of end-to-end
encryption among devices with a PKI, as well as weaknesses inherent in the cryptographic
protocol (e.g., TLS/SSL), may mean that the control plane is not secure from MitM-style at-
tacks. Simply isolating unencrypted control traffic through the use of a separate control plane
VLAN, as is done in practice [17], may not be sufficient if an attacker is able to access and
manipulate traffic within the VLAN.

The OpenFlow v1.3 specification, for instance, notes that network components “may com-
municate through a TLS connection”, but does not explicitly require that any component use
encryption [10].

Controllers (unique to SDNs) Noted as one of the most severe threats to SDNs, faulty or malicious
controllers could compromise the integrity of the entire network. In the SDN architecture
model in which the decision-making is centralized in the controller and the switches act as
“dumb” forwarding devices, one or more compromised controllers may provide an attacker
with the ability to set the behavior of the network.
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Trust among network applications and controllers (unique to SDNs) Faulty or malicious net-
work applications could cause misconfiguration in network policy and intended behavior.
This issue is especially complex when conflicting policies or malicious administrators [18] are
considered in the threat model.

Machines that run or access controller software Weakly secured machines could provide a path-
way for attackers to take control of the network. The same class of vulnerabilities that exist
for servers, for instance, applies to the machine(s) running the controller(s).

Lack of understanding of events for diagnostics and forensics No clear, adequate mechanism
exists for analyzing the root cause of a detected problem and restoring the network back to
a previously known good state. Furthermore, there is no agreement on what it means to roll
back to a previously known good state in a network [19].

When categorizing and analyzing the potential vulnerabilities, actions, targets, and consequences
of attacks [20] in the context of comparing traditional network architectures with SDN architectures,
it is important to understand the differences among components, components’ communications,
and security assumptions. For instance, classes of attacks that may influence network behavior in
a particular way on a traditional network, such as ARP spoofing instigated by malicious end hosts,
may manifest themselves differently depending on whether (and how) network components imple-
ment responses to such attacks. For instance, Hong et al. [21] cite the use of injected LLDP messages
in fabricating fake links to manipulate the controller into believing that a link between switches
exists when no such link actually exists.

2.1.4 Classifying Vulnerabilities and Attacks

Previous research has started to explore the security realm of SDN in order to classify and categorize
vulnerabilities and attacks. Howard and Longstaff [20] classify vulnerabilities for general computer
systems into design vulnerabilities, implementation vulnerabilities, and configuration vulnerabili-
ties. We use this classification implicitly throughout the attack model and language discussion in
later chapters.

Scott-Hayward et al. [22] classify security issues and attacks in SDN by the layers they affect (e.g.,
application plane, control plane, data plane, API interfaces) and the attacks’ effects (e.g., unautho-
rized access, data leakage, data modification, malicious applications, denial of service, and config-
uration issues). The authors map earlier papers on specific attacks into their classification scheme.

Akhunzada et al. [23] propose a thematic taxonomy of security issues related to the SDN architec-
ture. As one theme, the authors classify existing security solution implementations (e.g., [8, 24, 25])
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into the categories of secure design, security audit, security enforcement policy, security enhance-
ment, and security analysis. Other themes include SDN layers/interfaces, security measures (e.g.,
access control, availability, integrity, confidentiality, IDP, forensics, and non-repudiation), simula-
tion environments, and security objectives. The taxonomy classifies security solutions, but it does
not classify security attacks or models for security attacks.

Schehlmann et al. [26] evaluate the SDN architecture with respect to a traditional networking
architecture based on criteria evaluating 1) the security of the architectures themselves and 2) the
security services provided by the architectures. To quantitatively define whether SDN architectures
provide greater benefit than traditional architectures, the authors assign a points system (uncritical,
neutral, or critical) per criterion and evaluate the sum of the criteria points. In the evaluation involv-
ing the security of the architectures themselves, the authors evaluate key security properties (confi-
dentiality, authenticity, integrity, availability, and consistency), noting that traditional networks are
clearly superior. In the evaluation involving the security services provided by the architectures, the
authors evaluate the security service properties (network management, cost, and attack detection
and mitigation), noting that SDN networks are clearly superior. However, it is unclear whether all
criteria should be given equal weight in the evaluation and whether the point values can be objec-
tively defined.

Klöti et al. [27] analyze the security of the OpenFlow protocol using the STRIDE methodology
for proposing vulnerabilities and using attack trees for data modeling. Importantly, as mentioned
earlier, they note that the data plane has a key effect on the operation and behavior of the control
plane. Using a data flow diagram, the authors show the communication relationships among the
system’s components and processes. From the diagram, the data flow is analyzed for the potential
vulnerabilities listed in the STRIDE mnemonic: spoofing, tampering, repudiation, information dis-
closure, denial of service, and elevation privilege. While the analysis is a useful preliminary step in
understanding system component and process dependencies, the authors admit that the approach
is non-exhaustive. Furthermore, the authors assume that the controller and the communication
channel between the controller and switch(es) are adequately secured, which may not be the case
in practice if one or more of these components or the channel itself has been compromised.

2.1.5 Debugging and Testing

We note that the related field of software testing, which includes the process of debugging and trou-
bleshooting to find and correct software errors, can be useful in guiding the development of an
attack model and language for eventual use in an attack injector. Such an injector could be used in
the testing and validation stages of controller or switch implementation development to verify that
the component performs according to a specified behavior. Such behaviors may be specifications
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as to what the implementation should accomplish or whether the implementation implements the
control plane protocol correctly.

As noted in a paper [15] outlining the SDN architecture’s vulnerabilities, understanding relevant
events and the sequence of such events within the control and data planes of a network is important
for later investigation and analysis. Debugging is typically used in the development, unit testing, and
maintenance phases of the software life cycle [28] to detect and correct for errors in the software’s
implementation; the process often requires instrumentation of the software code so as to establish
breakpoints, stepping, and variable watches [29]. Similar concepts are useful for designing an attack
model, language, and injection architecture to understand the effects of attacks for later analysis,
particularly with regard to event ordering and the influence of one or more control or data plane
messages on later control or data plane messages in the system. However, we find that the current
debugging and testing solutions for SDN architectures do not (on their own) adequately capture the
requirements for an attack model, language, or injection tool.

OFRewind [11] selectively records user-specified events in the control and data planes of an SDN
architecture for later replay in troubleshooting errors. To regenerate control plane events, network
administrators can replay a subset (or all) of the captured control plane and data plane events to the
controller or the switches. One of the architecture’s goals is to have a temporally consistent view of
captured events, although the authors assume the case of a single physical controller that enables
the determination of total ordering among events.

OFf [29] provides a layer for interfacing between one of several open-source controllers and the
fs-sdn simulator [30]. The fs-sdn simulator [30] creates a prototype environment consisting of virtual
switches for simulating network conditions through flow generation. OFf allows for packet tracing,
packet replay, and detection of configuration changes. However, the system requires inclusion of
a library in the source code of the controller, which limits its use to open-soure controllers or to
proprietary controllers whose developers include the OFf library in their code.

STS [31] attempts to identify the minimal set of causally related input events required to trigger
a bug for troubleshooting purposes. Using captured logs, STS replays the network behavior in a
simulated environment in which the system can interpose on all communication channels to delay
or reorder control messages. The benefit of the simulation approach is that a total ordering of events
can be established, as it is possible to determine when control messages can arrive to the intended
components via the interposing component. STS uses fuzzing to inject random inputs into the net-
work to reproduce bugs, much like a fault injector. However, a security setting with an attack model
and well-defined attacks would likely see coordinated, intentional, and malicious inputs injected
into the control plane to influence network behavior.

OFTest [32] validates switches for compliance against the OpenFlow specification by simulating
control and data plane elements for a switch under study. The framework provides a test suite upon
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which tests can be built for validating certain properties of an OpenFlow-enabled switch. Although
the intended use does not consider validation of implementations or network architectures for is-
sues related to security, the nature of its validation serves as a useful guide for developing an attack
injector framework.

2.1.6 Network Correctness

Network correctness refers to user-defined specifications about what desired properties a network
must exhibit.5 These specifications (e.g., “no forwarding loops”) are often defined in terms of a set
of invariants that apply over the global system state, and systems that do not violate these invariants
are considered to be “correct” [33]. Formal specification of the invariants makes it possible to verify
that the correctness properties hold during run-time execution [24] or to understand what scenarios
would lead to undesired behavior prior to deployment [33].

The study of network correctness has become more widespread with SDN because the network’s
behavior and logic can now be analyzed and verified from a global perspective. However, the com-
plex logic of network applications and controllers may create more opportunities for incorrect or
undesired behavior that deviates from the network programmer’s intentions. From a security per-
spective, such vulnerabilities may lead to opportunities to disrupt network operations. Therefore,
the necessity for verification of flow entries that affect forwarding behavior is an important compo-
nent of considering network state change through the security perspective.

A system designer or network programmer ultimately decides what defines correctness in the
context of the system’s intended behavior or in the context of what is considered proper service.
Table 2.2 lists example properties and descriptions of notions of correctness as found in the network
verification literature. Not all properties of network correctness may be applicable, depending on the
network’s desired behavior. For instance, the property of allowing two hosts to communicate with
each other (end-to-end reachability) may be desirable in most settings, but equally important may
be the property of not allowing two hosts to reach each other (isolation) in the case of stateless ACLs
or stateful firewalls. If these properties of network correctness are violated, whether unintentionally
or maliciously, it will make it more challenging to secure the SDN architecture.

Several mechanisms, outlined below, have been proposed to verify network correctness proper-
ties, either statically or during runtime.

Header space analysis [25] considers the bits making up a protocol’s header fields as a point in
geometric space; each network forwarding device performs a mathematical transformation on a set
of points, and composing the transformations allows for static analysis and verification on end-to-
end forwarding behavior. NetPlumber [34] has been used to extend the concepts in header space

5Or, alternatively, what properties it must not exhibit.
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Table 2.2: Examples of Network Correctness Properties

Property Description Sources

No forwarding loops Packets should not encounter forwarding loops that cause
traffic to be sent in such a way that they never leave the
network.

[25, 33]

No black holes Packets should not be dropped while they are in the net-
work.

[33]

Controller path minimization Only the first packet of a flow should be sent to the con-
troller for processing.

[33]

Bidirectional flows A flow created between a source and destination host
should have a corresponding flow created between the des-
tination and source.

[33]

No forgotten packets Packets that are held in the switch buffer waiting for a de-
cision from the controller should eventually be handled.

[33]

End-to-end reachability A set of hosts should be able to communicate with each
other.

[25]

Isolation A set of hosts should be logically isolated from another set
of hosts.

[25]

analysis to runtime incremental verification.
VeriFlow [24] performs runtime verification and analysis with minimal latency by intercepting

control protocol messages. The potential changes to the network’s forwarding behavior are checked
against a trie structure that partitions packets into equivalence classes whose forwarding behaviors
are the same; changes that would violate user-defined correctness properties can either be discarded
or cause alerts. However, incorrect specification of the invariants of network correctness properties
may lead to correct (in terms of how the invariant was defined) but unintended (in terms of what the
user expects) behavior, requiring the use of a validation component to understand network behavior
in practice.

NICE [33] combines symbolic execution with model checking to perform verification prior to
runtime. NICE makes simplifying assumptions about the operation of components in the network
and uses OpenFlow-specific semantics to understand equivalent states to reduce the state space
required for verification against a set of correctness invariants. While the state space is smaller
than that of a naive approach to modeling the network components, the number of states grows
exponentially, and for nontrivial systems, verification becomes intractable in terms of the number
of states.

In designing an attack model and language, we consider ways an attacker might try to violate
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those correctness properties. For example, an invariant specifying that two hosts should be able
to communicate with each other (the end-to-end reachability property in Table 2.2) could be vio-
lated by an attacker who uses a DDoS-style attack to disrupt instantiation of the flow modification
message(s) that establish this end-to-end connectivity. An attack model, attacks written in an at-
tack language, and an attack injection could be used to verify that the verification tools (e.g., [24])
meant to protect a network against classes of attacks are performing in practice according to the
programmer’s specification.

2.2 Fault and Attack Injection

In this section, we describe the related software testing mechanism of fault and attack injection, how
fault injection applies to security attacks, and how the design choices of fault injection architectures
can be helpful in designing an attack model, language, and injector.

2.2.1 Definition

In dependability studies, an error is a deviation from a system’s correct state, a fault is the hypoth-
esized cause of an error, and a failure is the result of errors that cause the system to operate incor-
rectly [35]. Faults, errors, and failures are considered threats to the dependability of a system, with
fault prevention, fault tolerance, fault removal, and fault forecasting serving as means of ensuring
dependability [35].

Avižienis et al. [35] classify faults by intent: accidental non-malicious faults, and deliberately
caused malicious faults that we refer to as attacks. We note several key assumptions regarding the
similarities and differences between unintentional faults and attacks:

• Faults are generally benign and accidental in nature, while attacks are generally malicious and
intentional. Both may cause the system to perform anomalously or cause the same end results.

• Faults may be caused randomly by hardware or software [28], while attacks (particularly when
several are considered collectively as a security incident [20]) are generally coordinated.

• Fault models and attack models often require different sets of assumptions about the nature
of the vulnerabilities and the intent and scope of the result [36].
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2.2.2 Fault Injectors

Fault injectors are tools for intentionally introducing faults into systems for testing and validation.
Software-based fault injection is a common mechanism for implementing the kinds of faults that
would be difficult to implement via hardware-based approaches [28].

Fault injection cannot determine a system’s correctness. What fault injection is capable of deter-
mining is the set of outputs produced when the software is functioning under unique or unusual
conditions [28]. Thus, one goal of attack injection for SDN is to uncover the set of outputs (in this
case, the observable behavior of the network or its state at a given time) that manifest themselves as
a result of injected attacks when the system is behaving in an undesired way. Similarly, fault injec-
tors often require monitoring mechanisms to observe the effect of a fault in a real environment [28].
We apply the principles of fault injection to our attack injection architecture for consideration of
security attacks.

The ORCHESTRA framework [37] for fault injection tests implementations of distributed pro-
tocols in the context of real-time distributed systems. The authors propose insertion of a protocol
fault injection layer into the protocol stack; the protocol fault injection layer allows for messages to
be dropped, delayed, retransmitted, or modified, or for new messages to be introduced.

The Loki framework [38] uses a partial view of the global system state to make fault injections.
However, the state machine-based approach requires application-specific knowledge about the be-
havior of the software as well as modifications to the software itself to allow probing. In instances
where the controller’s algorithms are proprietary or closed-source, the state machine description
may be unknown and must be inferred through reverse engineering.

2.2.3 Attack Injectors

The prior work most closely related to the SDN attack model and language is the attack injection
tool called AJECT, proposed by Neves et al. [39] and used for vulnerability detection by Antunes et
al. [40]. AJECT generates numerous test cases against a user-specified protocol specification in order
to simulate attacks on an application protocol. The AJECT architecture includes a target system, tar-
get protocol specification, attack injector, and monitor. The authors propose a hierarchical approach
for understanding an attack at multiple layers: general test cases, specific attacks, and packet-level
messages that implement the injected attack. Their use case is the Internet Message Access Protocol
(IMAP) for e-mail services. Unlike the OpenFlow protocol, the IMAP protocol has a well-defined
state machine in which transitions among states are identified by the sending or receiving of par-
ticular types of protocol messages [40]. Since the states of a controller are not typically known, and
are prohibitively expensive to compute for nontrivial controller implementations [33], we rely upon
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a user-defined attack with attack states. Our model extends the work proposed in [39, 40] by incor-
porating a mechanism though which a user can declare assumptions about an attacker’s capabilities
with respect to the control plane protocol messages and by considering the network itself as one of
potentially many targets of attack.

Fonseca et al. [41] consider vulnerability and attack injection for Web applications, specifically
those related to cross-site (XSS) scripting and SQL injections.
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CHAPTER 3

ATTACK MODEL

Understanding what an attacker could do to a software-defined network is a necessary prerequi-
site for defining attacks. Assumptions about the conditions of the network may preclude certain
classes of attacks or enable other classes of attacks. In this chapter, we define the system model
for understanding the interrelated components of an SDN system, a threat model that considers
which components are assumed to be vulnerable as defined by the user, and an attacker capabilities
model that constrains the attacker’s potential capabilities depending on user-specified assumptions
about the network. These models collectively constitute the attack model for the SDN system and
undergird the attack language specified in Chapter 4.

3.1 System Model

The system model considers the assumptions about and components of the network under study.
The network under study is an SDN-enabled local area network (LAN) utilizing the OpenFlow
protocol. Each switch is controllable via the OpenFlow protocol from one or more1 OpenFlow-
based controllers. Legacy switches that do not use OpenFlow are not considered in the attack model
other than to perform Layer 2 forwarding between OpenFlow-enabled switches.2

Data plane traffic generated by end hosts may indirectly influence control plane operations. For
instance, an incoming ARP message from the data plane may be used by the controller to track end
hosts, or an outgoing LLDP message to the data plane may be used by the controller to determine
network topology. Therefore, we include elements related to the data plane—end hosts and the
network links and ports that carry data plane traffic—in our model.

We do not consider northbound or eastbound/westbound API messages in the model, primarily
because of the lack of standardization and implementation-dependent details about what purposes
these protocols serve. As a consequence, events actuated in the northbound API by network ap-

1The OpenFlow version 1.3 specification [10] allows for multiple controllers in either master/slave roles or equal
roles. The OpenFlow version 1.0 specification [6] leaves the issue of multiple controllers unresolved.

2As an example in the SDN literature, the Floodlight controller documentation describes a disjoint OpenFlow net-
work topology as a non-OpenFlow switch connecting two OpenFlow-enabled “islands” [9].
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plications (e.g., a firewall network application that is requesting permission to instantiate a firewall
rule) can be viewed as those events’ low-level equivalents in the southbound API (e.g., a controller
that is creating a new flow entry via a flow modification request), as if the controller actuated the
event.

3.1.1 Components

In the network under study, the primary components under consideration include controllers,
switches, and end hosts.

Controllers set the forwarding behavior of the network or query for information about the net-
work’s current forwarding, topological, or configuration state. Depending on the configuration of
the network, one or more controllers may exist and share state information (via the eastbound-
westbound API). We assume in the model that a functional SDN network has at least one controller
for operation. We formally define controllers in Definition 1.

Definition 1. A controller is a software process responsible for setting the policy of and querying for
information about the forwarding, topology, and configuration of an SDN-enabled network. The set of
controllers C within the system is denoted by

C = {c1, c2, . . . cm}, ∣C∣ = m, ∣C∣ ≥ 1. (3.1)

Switches forward data plane traffic. In the case of SDN networks, the switches do not au-
tonomously configure their forwarding behavior; rather, the rules that specify the forwarding be-
havior are determined by the network’s controllers. We assume in the model that a functional SDN
network has at least one switch. Each switch maintains a set of ports. Incoming and outgoing data
plane traffic arrives on and departs from these ports, and the switch’s internal switching fabric for-
wards traffic to other ports. We formally define switches in Definition 2.

Definition 2. A switch is a software-based or hardware-based SDN component that forwards data
plane traffic based on commands received from an SDN controller in the control plane. The set of
switches S within the system is denoted by

S = {s1, s2, . . . sk}, ∣S∣ = k, ∣S∣ ≥ 1. (3.2)

Each switch si (i ∈ {1, . . . , k}) contains a set of ports, which are interfaces used to send or receive
traffic. The set of ports pi in switch si is denoted by

pi = {pi1 , pi2 , . . . pi j}, ∣pi ∣ = j. (3.3)
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The set of all ports P within the set of switches in the system is denoted by

P =
k
⋃
i=1

pi . (3.4)

End hosts are devices that connect to the network’s edge. We broadly define end host in this context
to include not only workstations and servers but also gateway interface(s) to routers that route traffic
from the LAN to other networks. From the point of view of the LAN, the router is another end host,
since it lies at the edge of the network. We assume in the model that a functional SDN network has
at least two end hosts. We formally define end hosts in Definition 3.

Definition 3. An end host is a component that sends or receives data plane traffic as a final destination
within the network. The set of end hosts H within the system is denoted by

H = {h1, h2, . . . hn}, ∣H∣ = n, ∣H∣ ≥ 2. (3.5)

In practice, a controller can be identified by a combination of its host’s IP address and TCP port;
a switch can be identified either by a combination of its management interface’s IP address and TCP
port or by its DPID; and an end host in a LAN can be identified by its unique IP address or MAC
address.

3.1.2 Data Plane

We use the definitions from Section 3.1.1 to define a graphical representation of the data plane that
describes the relationship among the various data plane components. The data plane network’s
graph encapsulates the relevant network nodes in the data plane network (switches and end hosts)
and their topological connectivity among themselves (network links). In the subsequent description
of the attack language (in Chapter 4), it will be seen that this modeling of the data plane elements
and their relationships will be useful in creating and defining attacks.

At a high level, network links connect switches and end hosts to other switches and end hosts,
but further information is required to specify on which interface (port) on a switch the forwarding
actually occurs. As a result, each link can be thought of as connecting two ports, with each port
having a corresponding switch associated with it. We include the port information as additional
attributes associated with each edge (network link) in the data plane network graph.

We formally define the graphical representation of the data plane in Definition 4.

Definition 4. The data plane graph describes the topological connectivity of the data plane of the SDN
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network. The directed, edge-labeled graph, ND, is defined as follows:

ND = (VND , END , AND), (3.6)

where VND represents the graph’s vertices containing all of the network’s switches and end hosts

VND = S ∪ H (3.7)

= {vND1
, vND2

, . . . , vNDk+n
}, ∣VND ∣ = k + n, (3.8)

where END represents the graph’s edges representing network links

END ⊆ (S ∪ H) × (S ∪ H) (3.9)

= {(x , y) ∣ x ∈ (S ∪ H), y ∈ (S ∪ H)} (3.10)

= {eND1
, eND2

, . . . , eNDr
}, ∣END ∣ = r, (3.11)

and where AND represents a set of ordered tuples defining the graph’s edge-labeled attributes

AND = {aND1
, aND2

, . . . , aNDr
}, ∣AND ∣ = r. (3.12)

Each edge-labeled attribute tuple, aNDi
(i ∈ {1, . . . , r}), contains the following attributes:

aNDi
= (egress port, ingress port), (3.13)

egress port ∈ P ∨ egress port = null, (3.14)

ingress port ∈ P ∨ ingress port = null. (3.15)

An egress port is located on the switch that sends the traffic, and an ingress port is located on the
switch that receives the traffic. Network links that contain an end host mark that egress or ingress
port of the end host as null. We do not model end hosts as having ports because the SDN network
does not have the administrative capabilities to control end hosts.

Figure 3.1 shows a representative example of a data plane graph ND with three hosts and two
switches. The egress ports of hosts h1, h2, and h3 are not defined, so are labeled null. Hosts h1 and
h2 connect to switch s1 on switch s1’s ports p11 and p12 , respectively. Switch s1 connects to switch s2

on switch s1’s port p13 ; conversely, switch s2 connects to switch s1 on switch s2’s port p21 . Host h3

connects to switch s2 on switch s2’s port p22 .
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h1

s1

h2

s2

h3

(null, p11)

(p11 , null)

(p12 , null)

(p13 , p21)

(null, p12)

(p21 , p13)

(p22 , null)

(null, p22)

Figure 3.1: Example of a data plane graph ND with three hosts and two switches.

3.1.3 Control Plane

We use the definitions from Section 3.1.1 to define the relation among controllers and switches in
the control plane.

To communicate policy and to query for information about the network, the system’s controllers
and switches must be able to communicate among themselves. A many-to-many relationship ex-
ists: a switch can communicate with multiple controllers for redundancy or fault tolerance, and a
controller can communicate with multiple switches under its administrative domain.

In essence, the relation consists of TCP connections between controllers (acting as TCP servers
accepting incoming connections) and switches (acting as TCP clients initiating the connections to
controllers); the payload of the TCP packets contains OpenFlow control protocol messages. The
use of TCP/IP allows controllers to reside in different networks from the switches they are control-
ling; for instance, a controller could conceivably communicate with a switch over the Internet if the
network operator chose to implement such a configuration.

We note that the topological information about how the connections are routed locally or across
the Internet is less relevant than what the connections contain in their message payloads (i.e., Open-
Flow control protocol messages). Thus, it suffices to model and define the control plane relation
without the kind of topological information that was required for the data plane (see Section 3.1.2).
It may be that the control plane connections are routed across the same physical network as the data
plane, with some logical isolation mechanism (e.g., VLANs) between the two networks.

The control plane can be modeled as a series of TCP connections, as defined in Definition 5.

Definition 5. A control plane connection is a TCP connection between a controller (TCP server) and
switch (TCP client). Each connection is considered bidirectionally. The set of control plane connections
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s1 s2 s3 s4

c1 c2

(c1 , s1) (c1 , s2) (c1 , s3)
(c1 , s4)

(c2 , s3) (c2 , s4)

Figure 3.2: Example of a set of control plane connections NC with two controllers and four
switches.

NC within the system is expressed as a symmetric, irreflexive relation:

NC ⊆ C × S = {(x , y) ∣ x ∈ C , y ∈ S} (3.16)

= {nC1, nC2, . . . , nCb}, ∣NC ∣ = b. (3.17)

Definition 5 models connections bidirectionally. That is, the relation (c1, s1)describing the control
plane connection between c1 and s1 is symmetric and functionally equivalent to the relation (s1, c1).
Furthermore, because it is assumed that switches do not communicate with each other over the con-
trol plane and that controllers may use the separate eastbound-westbound API for communication
among themselves, the relation is irreflexive.

Figure 3.2 shows a representative example of a set of control plane connections NC , represented as
dashed lines, with a network topology consisting of two controllers and four hosts. In this example,
C = {c1, c2} and S = {s1, s2, s3, s4}. Controller c1 maintains a control plane connection to each of the
four switches, and controller c2 maintains control plane connections to switches s3 and s4. Thus,

NC = {(c1, s1), (c1, s2), (c1, s3), (c1, s4), (c2, s3), (c2, s4)}.

The threats associated with each of these control plane connections and the attacker’s capabilities to
influence behavior through them may vary, as discussed further in Sections 3.2 and 3.3.

3.2 Threat Model

A threat model considers the types of threats and the locations within a system where an attacker
could potentially exploit a vulnerability.

At a high level, our threat model assumes that an attacker exploits a vulnerability in a system
with the intent of changing the behavior of the network (forwarding, topology, or configuration) in
some way to cause effects that are undesirable from the point of view of the network administrator
or users of end hosts on the network.
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As the OpenFlow protocol provides a standardized interface for changing the behavior of the
network, we assume that the control plane connections as defined in Section 3.1.3 are likely targets
(if not the most likely targets) to be used to actuate attacks against the network. Thus, the overall
attack model and attack language (described later in Chapter 4) focus on threats to the messages in
the control plane connections.

The three locations where an attacker could target OpenFlow messages in the control plane con-
nections are

1. within one or more switch(es),

2. within one or more controller(s), or

3. within the control plane connections’ paths between switch(es) and controller(s).

It is important to note (for scoping reasons) that the threat model does not capture the universe
of how the components have come to be compromised. For instance, remote code execution on a
compromised controller may induce sending of OpenFlow messages that can effect the same attack
(e.g., to alter data plane forwarding behavior) that a TCP MitM proxy, intercepting and modify-
ing messages across the wire, would be able to carry out. Furthermore, attacks may come either
externally, from outside attackers, or internally, from malicious trusted users.

Rather than describe how components have been compromised, we wish to capture in the overall
attack model what an attacker is capable of doing in the context of user-defined assumptions about
the system. In other words, if we assume that some component has been compromised and the
attacker has some capabilities for manipulating the network’s behavior, what is now possible? In
Section 3.3, we formally define a method for modeling the attacker’s capabilities.

3.3 Attacker Capabilities

To relate the threat model to the system model, we consider attacker capabilities. The capabilities de-
scribe the extent to which an attacker can take certain actions toward understanding or modifying
messages within control plane connections. The capabilities are defined based on user-defined con-
straints and assumptions about the network’s vulnerabilities and information security protections
(e.g., encryption).

3.3.1 Modeling Attacker Capabilities

At the lowest level, we assume that an attacker has some ability to take some set of actions against
OpenFlow messages in control plane connections. (What these message payloads actually contain
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as they relate to the semantics of forwarding, topological, or configuration information is irrelevant
at this level of modeling, but is discussed further in the attack language description in Chapter 4.)

In Definition 6, we define a set of attacker capabilities (shown in Table 3.1) that an attacker could
potentially actuate against messages in one of the control plane connections. These actions are not
specific to the OpenFlow protocol, but they incorporate into the model what is occurring at a fun-
damental level to the messages in the control plane connections.

Definition 6. The attacker capabilities are the set of possible low-level actions in Table 3.1 that can
be used by the attacker against messages in a control plane connection. The set of all possible attacker
capabilities, Γ, is defined as follows:

Γ = {DropMessage, . . . , InjectNewMessage}. (3.18)

An important distinction to be made is that the attacker capabilities listed in Table 3.1 apply to the
messages being sent within the control plane, not the messages being sent within the data plane. We
do not model what an attacker is capable of doing directly to the data plane messages, such as mas-
querading as another end host within the data plane network through means such as ARP spoofing.
Rather, we model only what an attacker could do directly to the control plane messages, which may
influence data plane operations. For instance, rather than perform ARP spoofing directly in the data
plane to intercept another end host’s messages, an attacker could attack a control plane connection
and inject a flow modification request into it that asks the switch to send the data plane traffic (or a
copy of the data plane traffic) to the attacker’s end host. This subtle yet important distinction is one
of the motivations for studying attacks on the control plane and data plane rather than just the data
plane.

3.3.2 Modeling Encryption

In practice, some or all of the control plane connections may be encrypted. The OpenFlow spec-
ifications allow for optional use of TLS in forming a “secure channel” between controllers and
switches [6, 10], and that feature is available in several controller implementations [9, 13].

In the case of an encrypted control plane connection, we assume that the attacker has not com-
promised the system’s PKI (e.g., certificates, CAs). That is to say, we assume that the attacker—acting
as a MitM proxy located on a switch, controller, or other host—cannot masquerade as another de-
vice within the system without being detected by at least one of the control plane components (i.e.,
controllers and switches). In effect, this limits the extent to which the attacker can understand the
semantic meaning of the messages in the control plane connection by direct3 means, because the

3Side channel attacks that take advantage of other information, such as attacks that infer message types by frequency
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Table 3.1: Attacker Capabilities Γ against Control Plane Connection Messages

Capability Definition

DropMessage Drop the control plane connection message to prevent it from being
sent by the source or received by the destination.

PassMessage Pass the control plane connection message by allowing it to be sent
by the source or received by the destination.

DelayMessage Delay sending or receiving of the control plane connection message
by a certain amount of time to affect time-dependent functionality
(e.g., TCP timeouts).

DuplicateMessage Duplicate the control plane connection message by sending a
replica.

ReadMessageMetadata Read information from and/or record information about the con-
trol plane connection message, such as Layers 2, 3, and 4 header
information (e.g., source and destination addresses or ports, mes-
sage length) and physical timestamp. Message metadata reading
excludes reading or recording of the message’s payload.

ModifyMessageMetadata Modify the control plane connection message’s metadata, exclud-
ing the message’s payload. Metadata modification includes adding
metadata, modifying existing metadata, or deleting metadata from
the message.

FuzzMessage Modify the control plane connection message header or payload
bits in a random, possibly semantically invalid way. Fuzzing in-
cludes taking action against the message’s metadata and payload
data.

ReadMessage Read information from and/or record information about the con-
trol plane connection message payload data for later retrieval
and analysis in a semantically meaningful way that conforms to
the southbound API (OpenFlow) protocol specification. Message
reading excludes messages whose payloads cannot be decrypted.

ModifyMessage Modify the control plane connection message in a semantically
valid way that conforms to the southbound API (OpenFlow) pro-
tocol specification. Modification includes adding data, modifying
existing data, or deleting data from the message.

InjectNewMessage Inject a new, semantically valid control plane connection message
into the control plane connection.
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message payloads remain encrypted.

However, we assume that the attacker can still take actions against messages that it intercepts as a
MitM device or on the control plane components themselves. The message contents are encrypted
and unknown to the attacker, but a constrained set of attacker capabilities are still assumed to be
available to the attacker. We formally define the set of constrained actions in Definition 7.

Definition 7. The set of attacker capabilities for an encrypted control plane connection is constrained
by the following actions:

Γencr ypted = Γ ∖ {ReadMessage, ModifyMessage, InjectNewMessage}. (3.19)

The three actions subtracted from the set Γ in Definition 7 are ones that require either under-
standing the underlying data in the message’s payload or the ability to actively inject messages into
the connection. Successful message injection in the encrypted case would require that the attacker
successfully violate the integrity of the message’s source.

In the case of unencrypted control plane connections, we assume that the attacker has the full
set of attacker capabilities available for use. We formally define this set of unconstrained actions in
Definition 8.

Definition 8. The set of attacker capabilities for an unencrypted control plane connection is uncon-
strained:

Γunencr ypted = Γ. (3.20)

3.3.3 Modeling of No Capabilities

Finally, we model the trivial case in which we assume that a potential attacker has no capabilities
to influence a part of or the whole system. In other words, we assume in this case that an attacker
cannot perform any actions against control plane messages. We formally define the set of no attacker
capabilities in Definition 9.

Definition 9. The set of no attacker capabilities is defined as a null set:

Γnone = ∅. (3.21)

and packet length, could still occur.
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3.3.4 Mapping Attacker Capabilities to System Model

There are two ways to map the attacker’s capabilities (as described in Section 3.3.1) with respect to
the control plane (as described in Section 3.1.3).

1. Attacker capabilities could be mapped to control plane connections.

2. Attacker capabilities could be mapped to controllers and switches, and those attacker capa-
bilities could be converted to attacker capabilities of control plane connections.

In the first method, as defined in Definition 10, different control plane connections may have
different assumptions about which attacker capabilities are possible. For instance, an attacker may
be able to perform a MitM-style attack against only one of the control plane connections without
attacking the controller or switch directly (and hence it may not be able to attack the other control
plane connections related to the controller or switch).

Definition 10. The attacker capabilities with respect to control plane connections model the extent
to which an attacker is assumed to be capable of interposing messages in control plane connections. The
set of attacker capabilities for the system’s control plane, ΓNC , corresponding to the set of control plane
connections, NC , is defined as follows:

ΓNC = {γNC1
, γNC2

, . . . , γNCb
}, ∣ΓNC ∣ = ∣NC ∣ = b. (3.22)

Each attacker capability that corresponds to a control plane connection, γNCi
(i ∈ {1, . . . , b}), con-

tains one or more attacker capabilities that represent the attacker’s assumed ability to take actions
against messages in that control plane connection:

γNCi
∈ P(Γ), (3.23)

where P(Γ) is the power set of Γ.

Alternatively, it may be easier or more intuitive to model and define the attacker’s capabilities in
terms of the system’s controllers and switches. For instance, one could say that a particular controller
has a certain set of attacker capabilities; as a consequence, all related control plane connections
involving the controller are affected. In this second approach, as defined in Definition 11, the attacker
is assumed to have certain capabilities with respect to individual controllers and switches.

Definition 11. The attacker capabilities with respect to controllers are defined as

ΓC = {γC1 , γC2 , . . . , γCm}, ∣ΓC ∣ = ∣C∣ = m, (3.24)

31



1: function ConvertAttackerCapabilities(C , S , NC , ΓC , ΓS)
2: ΓNC ← ∅

3: for each nC i in NC do
4: (control l er, switch)← nC i ▷ control l er ∈ C , switch ∈ S
5: γNCi

← γcontrol l er ∪ γswitch ▷ γcontrol l er ∈ ΓC , γswitch ∈ ΓS
6: ΓNC ← ΓNC ∪ γNCi
7: end for

return ΓNC

8: end function

Figure 3.3: Algorithm for converting controller and switch attacker capabilities ΓC and ΓS to
control connection attacker capabilities ΓNC .

and the attacker capabilities with respect to switches are defined as

ΓS = {γS1 , γS2 , . . . , γSk}, ∣ΓS ∣ = ∣S∣ = k. (3.25)

Each controller’s and switch’s attacker capabilities consist of a subset of possible attacker capabilities:
γC i ∈ P(Γ) (i ∈ {1, . . . , m}), and γS i ∈ P(Γ) (i ∈ {1, . . . , k}), respectively.

The algorithm in Figure 3.3 converts the assumptions about the attacker capabilities with respect
to controllers and switches (ΓC and ΓS) to attacker capabilities with respect to the control plane
connections (ΓNC ). For each controller–switch connection (line 3), the attacker capabilities with
respect to that connection are a union of the attacker capabilities with respect to the controller and
to the switch (line 5).

The attacker capabilities described in this section form an important constraint in the attack lan-
guage discussed in Chapter 4. As the attacker capabilities model what can and cannot be performed
against control plane connection messages, the language of the possible attacks is constrained by
the underlying assumptions.
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CHAPTER 4

ATTACK LANGUAGE

In this chapter, we specify the attack language with which one can define attacks against control
plane connection messages.

In defining and describing the attack language, we assume that a runtime attack injector (specified
in detail in Chapter 5) can interpose on incoming messages within control plane connections, much
as an attacker could interpose on the same messages as specified in the threat model. Thus, the
specification of the attack that will be implemented through the attack injector must include both a
mechanism for specifying messages of interest to the attacker (conditionals) as well as a mechanism
for specifying the actions to take against such messages (actions)—collectively, a set of conditionals
and actions (rules) that define the behavior of the attack, subject to the constraints imposed by the
attacker capabilities. We further assume that most attacks occur in stages (attack states), and as such
can be modeled graphically as state machines (attack state graphs).

4.1 Message Properties

Every control plane connection message contains a set of properties as defined in Table 4.1. These
properties include metadata about the message, such as its source and destination addresses (rep-
resented as a controller c ∈ C and a switch s ∈ S). We assume that reading and understanding of the
metadata can occur regardless of whether the message’s payload (i.e., the OpenFlow message) is en-
crypted, so the reading of metadata information requires the ReadMessageMetadata capability.
Likewise, modification of the metadata requires the ModifyMessageMetadata capability.

Reading and understanding of the message payload require that the attacker be able to interpret
an unencrypted version of the message.1 Thus, reading of message properties contained within
the payload requires the ReadMessage capability, and modification of the properties requires the
ModifyMessage capability.

The MessageTypeOptions property depends upon the MessageType property. For instance, if
the MessageType were FLOW_MOD, then the additional properties available would include proper-

1Or, equivalently, have the means to decrypt an encrypted message for interpretation.
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Table 4.1: Message Properties

Property Definition Requires capabilities

MessageSource Source address (∈ C ∪ S) of the control plane
connection message.

ReadMessageMetadata,
ModifyMessageMetadata

MessageDestination Destination address (∈ C ∪ S) of the control
plane connection message.

ReadMessageMetadata,
ModifyMessageMetadata

MessageTimestamp System clock timestamp of message arrival. ReadMessageMetadata,
ModifyMessageMetadata

MessageLength Length of the payload of the message. ReadMessageMetadata,
ModifyMessageMetadata

MessageType One of the OpenFlow protocol message types,
as found in Table 2.1.

ReadMessage,
ModifyMessage

MessageID Unique message identifier. ReadMessage,
ModifyMessage

MessageTypeOptions Additional properties dependent upon the
message’s type.

ReadMessage,
ModifyMessage

ties for hard and idle timeouts, match attributes (i.e., which packet header attributes of data plane
traffic to match flows on), and instruction sets or actions (i.e., what to do with matching data plane
traffic). Alternatively, if the MessageType were ECHO_REQUEST or ECHO_REPLY, then the addi-
tional properties available would include the echo message’s payload. For brevity, we omit the full
list of all possible MessageTypeOptions and refer the reader to the OpenFlow protocol specifica-
tions [6, 10].

4.2 Conditionals

Using the message properties described in Section 4.1 along with logical connectives, we can use
propositional logic to form conditional logical expressions that specify whether particular proper-
ties about a message evaluate to true or false based on the expression. The logical expressions
form the basis for making decisions on which actions to take against messages, as described later in
Sections 4.3 and 4.4.

We use the logical connectives and (∧), or (∨), and not (¬) along with parentheses to conjoin
expressions and to evaluate order of precedence. For single-valued elements, we use the equality (=)
operator to test for logical equality. For multivalued elements, we use the membership (in) operator
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MessageSource = s1 ∧MessageDestination = c1
Evaluates to true for all control plane connection messages sent from switch s1 and destined for
controller c1.

MessageType = FLOW_MOD
Evaluates to true for all control plane connection messages that are flow modification requests.

MessageType = FLOW_MOD ∧MessageTypeOptions.hard_timeout = 0
Evaluates to true for all control plane connection flow modification requests with hard timeouts
of 0 seconds (i.e., flows that never expire).

¬(MessageType = PACKET_IN ∨MessageType = PACKET_OUT)
Evaluates to true for all control plane connection messages that are not related to incoming or
outgoing data plane traffic.

MessageType = ECHO_REQUEST ∧MessageTypeOptions.payload = ”
Evaluates to true for all control plane connection echo request messages with empty payloads.

Figure 4.1: Examples of conditional logical expressions.

to test for a single-valued element’s membership in the multivalued element.2 Figure 4.1 illustrates
several examples of our conditional logical expressions.

Formation of logical expressions necessarily requires at least one of the attacker capabilities
ReadMessageMetadata and ReadMessage from Γ. It is not possible to form conditionals with-
out at least one of them. Intuitively, one cannot say whether a message or its metadata evaluate to
the specified conditional if one assumes (via the attack model) that one cannot read the message or
its metadata, respectively.

For the sake of completeness, one could expand the logical expressions to include the related
attacker capabilities, as shown in the third column of Table 4.1. For instance, the first entry in Fig-
ure 4.1 is equivalent to ReadMessageMetadata(MessageSource = s1) ∧

ReadMessageMetadata(MessageDestination = c1).

4.3 Actions

The remainder of the attacker capabilities specified in Table 3.1 that are not used in conditionals
can be applied to actuate one or more actions against control plane connection messages. Just as
conditionals require at least one attacker capability for reading messages and messages’ metadata,
an action requires at least one attacker capability to modify messages or messages’ metadata. Defi-
nition 12 defines the actions in those terms, and Figure 4.2 gives several examples of actions.

2The operator is analogous to the in membership test operator in the Python programming language.
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Definition 12. A set of actions is an ordered set of actions that are taken against a control plane
connection message. The ordered set α is defined as:

α = {α1, α2, . . . , αa}, ∣α∣ = a. (4.1)

Each action αi (i ∈ {1, . . . , a}) within the set of actions α either is derived from one of the attacker
capabilities γi ∈ Γ or is a transition action, GoToState, that transitions from one attack state to
another.

As the attack will eventually be defined in terms of a state machine, the transition action moves
between states within the state machine. It does not have any effect on the message itself, but it tran-
sitions the attack injector to potentially behave differently according to different sets of conditionals
and actions. Attack states and the utility of the transition action are described and defined later in
Section 4.5.

Since the set of actions is an ordered set, the last action will take precedence if two or more actions
conflict. All messages must be either passed or dropped, so a conflict arises if both passing and
dropping are actions in the set of actions; a message cannot be simultaneously allowed to pass and
also dropped. Thus, if α = {PassMessage, DropMessage}, then the message will be dropped. If
not specified, the default action against a message is PassMessage, as we assume that messages
should be allowed to pass if they are not obstructed in any other way by actions that an attack
specifies.

4.4 Rules

The use of individual conditionals or actions in isolation is of little value. When they are put together
and considered against the constraints assumed by the attacker capabilities, they form the triggers
by which events against messages are actuated in the attack. Definition 13 formally defines a rule
as a tuple of a conditional logical expression on which to match messages, a set of actions that can
be taken against the message (if it matches), the control plane connection to which the rule applies,
and which attacker capabilities are allowed.

Definition 13. A rule specifies the combination of a conditional logical expression that triggers an
action, the set of actions that can be triggered, and the attacker capabilities that constrain the available
expression and actions. The system-wide set of rules Φ is defined as:

Φ = {ϕ1, ϕ2, . . . , ϕp}, ∣Φ∣ = p. (4.2)

36



α1 = {α11 , α12 , α13}

α11 ∶ ModifyMessage(msg , MessageTypeOptions.idle_timeout← 10)
α12 ∶ ModifyMessage(msg , MessageTypeOptions.hard_timeout← 10)
α13 ∶ PassMessage(msg)

Modify the control plane connection message’s idle and hard timeout values (e.g., of a flow mod-
ification message) to 10 seconds, and allow the message to pass.

α2 = {α21 , α22}

α21 ∶ PassMessage(msg)
α22 ∶ GoToState(σ2)

Allow the control plane connection message to pass (i.e., do not modify it), and transition to
attack state σ2.

α3 = {α31 , α32}

α31 ∶ ModifyMessage(msg , MessageTypeOptions.action.output← p110)

α32 ∶ PassMessage(msg)
Modify the control plane connection message to set the flow modification to direct data plane
traffic out to port p110 .

α4 = {α41 , α42}

α41 ∶ DelayMessage(msg , 5)
α41 ∶ PassMessage(msg)

Delay sending of the control plane connection message for 5 seconds, and then allow the message
to pass.

α5 = {α51}

α51 ∶ DropMessage(msg)
Drop the control plane connection message.

Figure 4.2: Examples of actions αi j and sets of actions αi .

Each rule ϕi (i ∈ {1, . . . , p}) is an ordered tuple:

ϕi = (ni , γi , λi , αi), (4.3)

where ni ∈ NC , γi ∈ ΓNC , λi represents the rule’s conditional logical expression, and αi represents the
rule’s set of actions.

A rule is executed according to the algorithm in Figure 4.3 when an incoming control plane con-
nection message msg is received. Line 4 checks whether the attacker is assumed to be capable of
reading the message’s metadata, and, if it is, then checks to see whether the given message’s source
and destination are the rule’s control plane connection n; that implicitly requires the ability to read
the message’s metadata. Line 5 checks to see if the conditional logical expression λ given in the rule
evaluates to true. If it does, then the sets of actions α (lines 6–8) are executed against the message.

Most actions require the incoming message msg as a functional input to the action being per-
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1: procedure ExecuteRule(ϕ, msg)
2: (n, γ, λ, α)← ϕ
3: (c, s)← n ▷ c ∈ C , s ∈ S
4: if ReadMessageMetadata ∈ γ

∧ MessageSource(msg) ∈ {c, s} ∧MessageDestination(msg) ∈ {c, s} then
5: if λ(msg) = true then
6: for each αi in α do
7: DoAction(αi , msg)
8: end for
9: end if

10: end if
11: end procedure

Figure 4.3: Algorithm for executing a rule ϕ.

1: procedure VerifyRule(ϕ)
2: (n, γ, λ, α)← ϕ
3: assert λ ∈ P(γ)
4: for each αi in α do
5: assert αi ∈ P(γ)
6: end for
7: end procedure

Figure 4.4: Algorithm for verifying a rule ϕ against a set of attacker capabilities γ.

formed, with the functional output of the action being a message that may have been modified
and is destined to be either sent to the destination (via PassMessage) or dropped (via DropMes-
sage). However, two actions—DuplicateMessage and InjectNewMessage—create additional
messages as functional outputs.

One may also wish to verify that a rule can be executed according to the constraints imposed by
the attacker capabilities. The algorithm in Figure 4.4 verifies a rule’s conditional λ and set of actions
α against its attacker capabilities γ. Lines 3 and 5 say that the attacker capabilities required for the
conditional and set of actions, respectively, must be some subset of the attacker capabilities. For
instance, a rule whose conditional requires the capability ReadMessage to read the MessageType
message property, but whose attacker capabilities γ assume an encrypted model γ = Γencr ypted , would
cause the assertion in line 3 to fail (as ReadMessage /∈ Γencr ypted). Likewise, if one assumes the trivial
case in which an attacker’s capabilities are γ = ∅, then the assertions in lines 3 and 5 of the algorithm
in Figure 4.4 would fail, given that each conditional λ and action in the set of actions α necessarily
require at least one attacker capability.
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4.5 Attack States

It is often intuitive to think of attacks as occurring in a set of “stages”: an attacker may wish to take
some set of actions against particular messages before taking other actions against other messages,
or an attacker may wait to see a certain ordering of messages before taking any actions that actively
affect messages.

We define each of these “stages” as an attack state. Each attack state can be considered as a col-
lection of zero or more rules that dictate the behavior of an attack at a particular point in time in
the progression of the attack. Minimally, an attack consists of at least one state; that state could be
defined such that the attack’s behavior remains the same for the duration of the attack or if no rules
exist. Definition 14 defines an attack state.

Definition 14. An attack state consists of an unordered subset of the system’s rules Φ. The collective
set of the system’s attack states Σ is defined as:

Σ = {σ1, σ2, . . . , σs}, ∣Σ∣ = s, ∣Σ∣ ≥ 1. (4.4)

Each state σi (i ∈ {1, . . . , s}) consists of a subset of the set of rules:

σi ⊆ Φ. (4.5)

The algorithm in Figure 4.5 describes the execution of an attack state within an attack injector.
When an incoming control plane connection message is received, it is considered according to all of
the rules within the particular attack state. One or more of the rules may include transition actions
that do not affect the message; instead, they transition the system to another attack state.

Because the set of rules in an attack state is unordered, the actual order of execution of the rules
is indeterminate. Thus, the set of inputs that make one rule’s conditional logical expression true
should not intersect the set of inputs that make any of the other attack state’s set of rules’ conditional
logical expressions true. For instance, assume that two rules ϕ1 and ϕ2 within an attack state σ1

contain the following conditionals λ1 and λ2, respectively:

λ1 ∶ MessageType = FLOW_MOD (4.6)

λ2 ∶ MessageType = FLOW_MOD ∨MessageType = PORT_MOD (4.7)

As a result, FLOW_MOD messages would evaluate to true for both λ1 and λ2. Which of the two corre-
sponding sets of actions (α1 and α2) would be taken first against the message would be indeterminate.
Thus, care should be taken to define conditionals that do not overlap.
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1: procedure ExecuteAttackState(σ , msg)
2: for each ϕ in σ do
3: ExecuteRule(ϕ, msg)
4: end for
5: end procedure

Figure 4.5: Algorithm for executing an attack state σ .

4.5.1 Attack State Graph

The collective set of attack states Σ defined in Definition 14 can be considered graphically as a state
machine, or an attack state graph.

We define the attack state graph in Definition 15. The graph’s vertices include attack states, and its
edges represent the transition actions among states. Transition from one state to another requires
that one of the current state’s rules contain a transition action to another state. Thus, for instance, if
an action in a rule in attack state σ1 exists that transitions to attack state σ2, then the relation (σ1, σ2)

exists within EΣG . Further, if actions in rules of a given attack state σ3 do not cause transitions to
other states, then the relation (σ3, σ3) exists within EΣG .

Definition 15. The attack state graph is the graphical representation of the state machine that defines
an attack’s series of steps, or states:

ΣG = (VΣG , EΣG , AΣG), (4.8)

where VΣG represents the graph’s vertices containing the set of attack states

VΣG = Σ (4.9)

= {vΣG1
, vΣG2

, . . . , vΣGs
}, ∣VΣG ∣ = ∣Σ∣ = s, (4.10)

where EΣG represents the graph’s edges containing transitions among states

EΣG ⊆ Σ × Σ (4.11)

= {eΣG1
, eΣG2

, . . . , eΣGt
}, ∣EΣG ∣ = t, (4.12)

and where AΣG represents the graph’s edge-labeled attributes

AΣG = {aΣG1
, aΣG2

, . . . , aΣGs
}, ∣AΣG ∣ = ∣EΣG ∣ = t. (4.13)

Each edge-labeled attribute aΣGi
related to a corresponding edge (σx , σy) represents the set of actions

contained within the set of rules of attack state σx that transition the system to attack state σy. For
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reflexive relations (σx , σy) such that x = y, the action(s) cause the system to transition to the (same)
state in which the transition was made, effectively not transitioning the system at all. For irreflexive
relations (σx , σy) such that x ≠ y, the action(s) cause the system to transition to an attack state different
from the one in which the transition was made.

4.5.2 Special States

A functional attack must consist of at least one attack state, as noted in the constraint in Defini-
tion 14. A single start attack state, σstart ∈ Σ, or initial attack state must necessarily exist to define the
beginning of the attack. This is the state from which the attack injector initializes the rules it will
use for conditional matches and actions against control plane connection messages.

One or more optional absorbing attack states3, σabsorbing ⊆ Σ, define the states with the character-
istic that no further transitions to other states exist (i.e., none of the state’s set of rules contain the
GoToState transition action). In effect, once such an absorbing attack state has been entered, the
behavior of the current state of the attack will continue indefinitely.

A special case of the absorbing attack states is the end attack states, σend ⊆ σabsorbing ⊆ Σ. An
end attack state consists either of 1) rules whose actions contain the single action PassMessage and
whose conditionals are true (i.e., λ matches all messages), or 2) a state with no rules (i.e., σ = ∅).
The former case is an explicit declaration of the functionality of the latter case. In effect, the behavior
in the end attack states will allow all messages to flow without any interference from the interposing
actuated by the attack injector. These states are useful for defining the conditions upon which an
attack is considered “completed.”

4.5.3 Modeling Normal Operation

An “attack” that takes no special actions against any control plane connection messages other than
to allow them to pass—in effect, not an actuation of an attack but rather a way to allow normal
operation of the control plane—can be modeled as shown in Figure 4.6. The dashed edge in Fig-
ure 4.6b indicates that there is no explicit action that keeps the state in its current state since there
are assumed to be no rules. The attack consists of one (and only one) attack state, σ1, and no rules
(i.e., Φ = ∅, σ1 = ∅). Thus, σ1 is also σstart and an element (the only element) of σabsorbing and an
element (the only element) of σend .

3We borrow the terminology from the states in Markov chains that are called absorbing states, which have the char-
acteristic that the probability of leaving the state once in the state is 0.
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σ1 ∶ σ1 = ∅ (σstart = σ1; σabsorbing = {σ1}; σend = {σ1})

(a) Attack states Σ = {σ1}.

σ1σstart

(b) Attack state graph ΣG representation.

Figure 4.6: Example of a trivial attack that models normal control plane operation.

4.5.4 Modeling Memory

It may be desirable to take a set of actions against control plane connection messages (e.g., modi-
fication or dropping of messages) only after a certain sequence of the messages have been seen by
the attack injector. Given that each state in the attack state graph is inherently memoryless—the
only memory in the system is of the system’s current state—the relations among state transitions
can capture and encapsulate prior message history.

For instance, assume that an attack against flow modifications in the data plane may need to be de-
fined so as to take some action against the flow modification message (MessageType = FLOW_MOD)
only if it has been preceded by an outgoing data plane packet (MessageType = PACKET_OUT), and,
before that, an incoming data plane packet (MessageType = PACKET_IN). Perhaps no actions need
to be taken against the PACKET_IN and PACKET_OUT messages themselves; rather, the sequence of
the messages is the only relevant aspect.

This scenario can be modeled in a minimum of three states, as shown in Figure 4.7. All three
states assume that the attacker can read the control plane connection messages between controller
c1 and switch s1. Let σstart = σ1. When a message of type PACKET_IN arrives, the message is allowed to
pass, and the attack injector system transitions to state σ2. In state σ2, the system waits for a message
of type PACKET_OUT to arrive. Upon receiving such a message, the system transitions to state σ3.
Now, as soon as a FLOW_MOD message is received, the rest of the attack can occur. This method of
modeling captures the fact that the PACKET_IN and PACKET_OUT messages were seen before the
FLOW_MOD message arrived.

Figure 4.7b shows the actions related to transitioning or not transitioning among various states in
the attack state graph. Actions α11 and α21 do not transition the system to other attack states, so they
are represented in the reflexive edges. On the other hand, actions α12 and α22 transition the system
from state σ1 to σ2 and from state σ2 to σ3, respectively, and are represented in the irreflexive edges.
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σ1 ∶ σ1 = {ϕ1} (σstart = σ1)

ϕ1 = (n1, γ1, λ1, α1)

n1 = (c1, s1)

γ1 = Γunencr ypted
λ1 = ReadMessage(msg , MessageType = PACKET_IN)
α1 = {α11 , α12}

α11 = PassMessage(msg)
α12 = GoToState(σ2)

σ2 ∶ σ2 = {ϕ2}

ϕ2 = (n2, γ2, λ2, α2)

n2 = (c1, s1)

γ2 = Γunencr ypted
λ2 = ReadMessage(msg , MessageType = PACKET_OUT)
α2 = {α21 , α22}

α21 = PassMessage(msg)
α22 = GoToState(σ3)

σ3 ∶ σ3 = {ϕ3}

ϕ3 = (n3, γ3, λ3, α3)

n3 = (c1, s1)

γ3 = Γunencr ypted
λ3 = ReadMessage(msg , MessageType = FLOW_MOD)
α3 = {α31 , . . . }
α31 = . . .

(a) Attack states Σ = {σ1, σ2, σ3, . . . }.

σ1σstart σ2 σ3{α12}

{α11}

{α22}

{α21} {. . . }

(b) Attack state graph ΣG representation.

Figure 4.7: Example of an attack with attack states that model prior message history.
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CHAPTER 5

ATTACK INJECTOR

Describing attack models and writing attack scenarios are of little utility if such attacks cannot be
implemented in practice in a development (or possibly production) SDN network environment, so
that it is possible to understand the attacks’ ramifications or establish a mechanism for verifying that
certain properties of a system hold in practice when the system is under attack. To realize the attacks
in practice using the aforementioned attack model and language (described in Chapters 3 and 4,
respectively), we describe the attack injector architecture necessary to implement such attacks.

5.1 Components

Figure 5.1 shows the components of the attack injector architecture. At a minimum, an attack injec-
tion includes the devices under study (in this case, controllers and switches), a compiler to generate
executable code, a runtime injector to inject the attack, and a set of monitors to record the results.
Although the attack injector could be used in both the testing stage of software development or in
an active production setting, use in the latter scenario would require additional validation mecha-
nisms to validate the security of the injector itself. In the case of a testing or experimental network,
the injector is assumed to be secure.

5.1.1 Compiler

The compiler converts user-defined files specifying the system model, attack model, and attack states
into executable code that can be run in the attack injector.

System model parser The system model parser parses the user-defined system model file. The sys-
tem model file includes all of the major components of the network, including the address
identifiers of end hosts, controllers, and switches. Each switch or controller in the control
plane network is identified by a combination of its IP address and TCP port number. End
hosts in the data plane are identified by their MAC addresses. The graphical and relational
representations of the data and control planes are also contained in the system model file.
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Figure 5.1: Attack injector architecture.

Attack model parser The attack model parser parses the user-defined attack model file. The attack
model file includes a listing of the capabilities of the control plane connections in the control
plane network. The attack model necessarily depends on the information gathered from the
system model file.

Attack states parser The attack states parser parses the user-defined attack states file. The attack
states file includes the definitions for the attack states in an attack, including the states’ associ-
ated rules, conditionals, and actions. The file also includes definitions for the start attack state
and any optional absorbing or end attack states.

Executable code generator The executable code generator takes the data parsed from the parsers
and generates an executable code file that is included in the runtime injector for actuating
attacks.

5.1.2 Runtime Injector

The runtime injector actuates the attack in the network system under study using the generated
executable code.

Control plane connection proxy The control plane connection proxy proxies all control plane con-
nections to allow for message interposing. The proxy simultaneously serves as a TCP server
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for accepting incoming TCP client connections from switches, as well as one or more TCP
clients for connecting to controllers that are themselves acting as TCP servers. In effect, the
proxy serves as a MitM device. The only modification that the user must make in the network
is to redirect the switches’ configuration for the location of the controller to the location of
the attack injector’s control plane connection proxy.

Protocol message encoder/decoder The protocol message encoder/decoder encodes and decodes
the raw message payloads of control plane protocol messages based on a library for the Open-
Flow protocol. For encrypted payloads, messages cannot be encoded or decoded.

Message modifier The message modifier modifies message payloads or message metadata accord-
ing to the actions in the attack states’ rules. It can also generate and inject new messages as
described in the attack language. The message modifier uses messages that have been decoded
by the protocol message encoder/decoder and is called from the attack executor.

Attack executor The attack executor runs the executable code generated from the compiler. The
attack executor keeps track of the attack injector’s current attack state and compares incom-
ing messages against the current state’s set of rule conditionals to take appropriate actions.
Transition actions within rules tell the attack executor to transition to a different attack state.
Incoming messages that do not match any rules will be allowed to pass by default.

5.1.3 Monitors

The attack injector also includes a set of monitors placed strategically throughout the network that
record relevant events in the system. The collected data from the monitors can be analyzed either
offline after an attack has been executed or online when the attack injector architecture is coupled
with an IDP system. We leave the analysis of the collected data as future work but note that injected
attacks can provide ground truth for validating the results of alerts generated by an IDP system.

Monitors can be highly system-dependent, can vary in their placement, and can vary in terms
of the depth and detail of data they record. Examples of monitors include the following: network
traffic monitors (e.g., tcpdump, Snort IDP, Bro IDP); controller log files; controller northbound API
query results; switch log files; switch forwarding tables (queried directly); and end host log files (not
shown in Figure 5.1).
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5.2 Complexity

We consider the memory and runtime complexity analysis of the attack injector architecture for
scalability.

5.2.1 Memory Complexity

The memory complexity for storing the system model file include entries for each of the components
(C, S, H, P), the data plane graph (ND), and the control plane connections (NC).

The data plane graph ND contains ∣S∣ + ∣H∣ vertices, up to (∣S∣ + ∣H∣)2 edges (network links), and
up to 2 × (∣S∣ + ∣H∣)2 edge-labeled attributes (egress and ingress ports over network links). Thus,
memory complexity is of the order O(∣S∣ + ∣H∣ + 3 × (∣S∣ + ∣H∣)2) = O((∣S∣ + ∣H∣)2).

The control plane connections relation NC contains ∣C∣ number of controllers mapped to ∣S∣ num-
ber of switches. As a result, up to ∣C∣∣S∣ relations can be formed in the worst case (i.e., each and ev-
ery controller maintains a control plane connection with each and every switch), and thus memory
complexity is of the order O(∣C∣∣S∣).

Each attack state contains some subset of the system-wide set of rules Φ. Thus, the union of the
collective set of attack states equals Φ. As a result, the memory complexity of storing the attack is
of order O(∣Φ∣).

5.2.2 Runtime Complexity

The runtime complexity for executing a given rule ϕ as shown in the algorithm in Figure 4.3 depends
on the number of actions to take as specified in the rule’s set of actions α. Since every action in the
set of actions is being executed, the runtime complexity for each rule is of the order O(∣α∣).

The runtime complexity for executing a set of rules in a given attack state σ , as shown in the
algorithm in Figure 4.5, depends on the number of rules present. Given that each state consists of a
subset of rules, the worst-case runtime complexity within a given state is of the order O(∣Φ∣).

When the runtime complexity is considered against the number of actions actuated, there are two
possible cases. In the case when only one rule’s conditional logical expression evaluates to true, then
only that rule’s sets of actions will be actuated. Thus, the worst-case runtime complexity for the first
case is of the order O(∣Φ∣+ ∣αexecuted ∣) for the executed rule. In the case where more than one rule’s
conditional logical expressions evaluate to true, then all of the actions within all of the rules whose
conditionals evaluate to true will be actuated. Thus, the worst-case runtime complexity for the
second case is of the order O(∣Φ∣∣αmax ∣), where αmax denotes the set of actions that contains the
largest number of actions among all rules in the state whose conditionals evaluate to true.
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5.3 Implementation

We implemented the compiler and runtime injector in the Python programming language.
For the compiler, we use XML to describe the system model, attack model, and attack states. (The

attack language grammar is described in detail in Appendix A.) After the user files are parsed by
the system model parser, attack model parser, and attack states parser, we use the parsed informa-
tion to generate new Python code that can be included by the runtime injector as the executable
(interpreted) code file.

For the runtime injector, we use the open-source Loxi [42] library for Python to decode and
encode OpenFlow messages. The message modifier and attack executor are contained as data struc-
tures within the executable code generated by the compiler. For simplicity, we assume that all control
plane connections are proxied through a single instance of a runtime injector rather than distributed
through a fully distributed runtime injector implementation, and we implement the instance as a
single-threaded process to avoid concurrency issues related to message ordering. However, to ex-
tend the implementation from a centralized to a distributed approach, we would only need to share
the value of the current (global) state σ in a consistent way among participating instances.

We discuss the implementation of the controllers, switches, and monitors for our use case exper-
iments in Section 6.2.
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CHAPTER 6

USE CASE

In this chapter, we present a use case of the attack injector in practice against a representative small-
scale enterprise network. We consider the system model of the enterprise network and explore
various experiments using different attacks to understand their effects on the network.

6.1 System Model

6.1.1 Context

For the use case, we modeled a small-scale enterprise network as shown in Figure 6.1. As its name
implies, an enterprise network forms the communications network of an enterprise organization
such as a corporation, a school, a business, or a university. An enterprise may have a diversity of
users and requirements, including (but not limited to) front-facing Web services (e.g., Apache Web
servers), internal databases and storage (e.g., employee databases), directory and domain services
(e.g., Microsoft’s Active Directory, LDAP), and user workstations and clients.

Two isolation mechanisms are traditionally used within enterprise networks for security pur-
poses: demilitarized zones (DMZs) and virtual local area networks (VLANs). DMZs isolate a net-
work’s external-facing services (e.g., Web servers, e-mail servers) from its internal services (e.g.,
LDAP server) and users (e.g., employee workstations). A firewall device, typically implemented as
a separate middlebox or within a router, helps to implement the DMZ configuration by preventing
incoming external traffic from entering the internal network and by allowing only selected services
in the external-facing network to access the internal network. VLANs isolate sets of traffic flows
within shared physical infrastructure to preclude certain classes of LAN-based attacks and to parti-
tion broadcast domains, though they should be seen strictly as an isolation mechanism rather than
a security mechanism [43].

As noted in the introductory chapter, the SDN architecture differs from the traditional network
architecture in terms of its flexibility in providing similar security services. Rather than operate
disparate networking hardware devices and middleboxes, it is possible to program forwarding be-
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Figure 6.1: Enterprise network use case system.

havior so as to enforce user-defined security policies [8]. Instead of using DMZs and VLANs to
implement security practices, one can incorporate logically isolated networks and verified security
policies into the network design [43, 44]. Thus, the SDN architecture attempts to unify the devices
and control them centrally.

However, such centralization may arguably make it easier for an adversary to attack and influence
the behavior of the network, if he or she has the right capabilities. For this use case, to understand
the potential shortcomings of the design and implementation with respect to attacker capabilities
and goals, we modeled a small enterprise network that uses the SDN architecture instead of the
traditional architecture.

6.1.2 Components

Our system model of the enterprise network includes the following components:

• An external-facing Web server (h1).

• A gateway interface to a router that connects to the Internet (h2).

• Servers providing internal services (h3 and h4).

• User workstations (h5 and h6).
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Figure 6.2: Enterprise network use case data plane graph ND.

• An external network OpenFlow-based SDN switch (s1).

• A DMZ firewall OpenFlow-based SDN switch (s2).

• Local internal (intranet) OpenFlow-based SDN switches (s3 and s4).

• An OpenFlow-based SDN controller (c1).

Thus, H = {h1, h2, h3, h4, h5, h6}, S = {s1, s2, s3, s4}, and C = {c1}. We model the data plane net-
work topology ND as shown in Figure 6.2. Furthermore, we assume that the network is centrally
controlled through one controller and that the controller maintains separate control plane connec-
tions NC with each switch, as shown in Figure 6.3. Thus, NC = {(c1, s1), (c1, s2), (c1, s3), (c1, s4)}.

6.2 Experimental Setup

We used the National Science Foundation’s Global Environment for Networking Innovations
(GENI) [45] national networking testbed to deploy a network topology for the enterprise network
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Figure 6.3: Enterprise network use case control plane connections NC .

use case. The topology includes 11 virtual machine (VM) hosts, with 6 of the hosts acting as end
hosts, 4 of the hosts acting as virtual OpenFlow-enabled switches for the data plane, and 1 host
acting as the control plane network switch (not shown in Figure 6.1). Each VM runs the Ubuntu
14.04.1 LTS operating system, contains one core of an Intel® Xeon® E5-2450 2.10GHz processor, and
contains 1 GB of memory.

For the controller, we used the Floodlight Open SDN controller [9] version 1.2. Floodlight is
an open-source, Java-based controller platform that provides many standard networking function-
alities, such as a northbound API interface to network applications, a learning switch mode for
operating the network as a Layer 2 switch, a static flow pusher for instantiating user-defined flows,
and a firewall. While an open-source controller is not a strict requirement for using the attack injec-
tor, the nature of open-source code allows us to understand the intent behind certain control plane
protocol messages and the messages’ intended use. We enabled Floodlight’s Forwarding module
for all experiments; the Forwarding module allows the switches in the SDN network to act just like
the learning switches found in a traditional network.

For the switches, we used the Open vSwitch (OVS) virtual switch [46] version 1.9.3. OVS al-
lows for the creation of virtual switches (or bridges) to connect hosts, and each switch is controlled
through the Open vSwitch Database Management Protocol (OVSDB). OVS switches can be config-
ured to be controlled through OpenFlow. The open nature of OVS allows us to more easily instru-
ment and monitor the events to understand an attack’s behavior. However, the use of open-source
virtual switches does not preclude the use of the attack injector on physical hardware switches to
test other implementations.

For the OpenFlow protocol, we used the OpenFlow version 1.0 specification [6]. Version 1.0
is the earliest stable version of the protocol specification and the most widely implemented [47].
Furthermore, version 1.0 provides the basic primitives for interacting with forwarding behavior,
topology information, and configuration.

To actuate traffic in the data plane of the network, we used the ping and iperf utilities. The ping
utility generates ICMP messages to test for end-to-end connectivity, and the iperf utility measures
the bandwidth (throughput) of TCP connection requests between a client host and a server host.

For the sets of monitors, we used log data from the ping and iperf utilities, the Floodlight
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controller process, and the runtime injector. The runtime injector logged the connections and dis-
connections of all control plane connections, all of the messages sent across them, and notifications
of triggering of rules.

6.3 Experiments

In the set of experiments, we aimed to answer three high-level questions:

1. To what extent does an attack have a noticeable effect on the operation of the SDN control
plane or the end hosts in the data plane? (Are the attack’s results visible?)

2. To what extent does an attack in the control plane propagate to the data plane and application
plane? (How far does the attack spread?)

3. How do the results reflect vulnerabilities in the SDN architecture’s design, implementation,
and/or configuration?

We narrow our focus to a subset of interesting experiments that we feel have wide-ranging impli-
cations for the security of the network and its hosts. For each experiment, we consider an attacker’s
high-level objective (based in part on the computer and network attack taxonomy by Howard and
Longstaff [20]), how the attack could be described in our attack model and language, what kinds of
data the monitors should seek to detect such attacks, and whether the monitors found such data.
The analysis of our monitoring occurs offline.

We made several assumptions for all experiments about the role of the DMZ firewall in the net-
work operation. First, the non-firewall switches s1, s3, and s4 operate as learning switches with idle
flow timeouts. Second, the firewall switch s2 behaves by default according to a simplified forwarding
table given in Figure 6.4. External data plane traffic that originates from the Internet (in this case,
modeled as originating from h2) is allowed to traverse to the external-facing public Web server h1

and is not allowed to traverse (by default) to any of the internal servers h3 and h4 or the internal
workstations h5 and h6. Internal traffic that originates from the external-facing public Web server is
allowed to traverse to the internal servers; this is typical for Web servers whose back-end databases
are further isolated from the external network so as to mitigate external threats. Other internal
traffic is allowed to traverse to the external Internet. If we further assume that the firewall is state-
ful rather than stateless, then additional flow entries can be instantiated with higher priorities that
override the behavior detailed in Figure 6.4; this would occur in cases where connections instigated
from within the internal network require that returning incoming traffic enter the internal network.

We assume that the controller c1 resides as a process on one of the internal servers, h3, and that the
control plane of the network resides in a separate network from the data plane. For simplicity, we do
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Incoming port Source address Destination address Action

p22 h2 h1 Pass; send out p21

p22 h2 H ∖ {h1} Drop
p21 h1 h2 Pass; send out p22

p21 h1 H ∖ {h2} Pass; send out p23

p23 H ∖ {h1, h2} h1 Pass; send out p21

p23 H ∖ {h1, h2} h2 Pass; send out p22

Figure 6.4: Default behavior of incoming data plane traffic into the enterprise network use case
DMZ firewall switch.

not use VLANs, but given that VLANs are meant as an isolation mechanism rather than a security
mechanism, they are vulnerable to traditional methods of attacks at the Layer 2 level (e.g., VLAN
hopping, ARP spoofing). Thus, it is plausible that an attacker could attack one of the internal hosts
via some mechanism outside the scope of the model and influence control plane communications
by masquerading as the controller. As noted in Chapter 3, the attack model does not capture how the
control plane has come to be attacked, but rather what the attacker is capable of performing given
assumptions about what has been compromised.

6.3.1 Flow Modification Suppression

In this experiment, we attempted to disrupt modification of the flow tables of the network’s switches
by intercepting and dropping flow modification request messages sent by the controller. Flow mod-
ification request messages, as instantiated by the controller through FLOW_MOD messages, can add,
modify, or delete flow entries in a switch’s flow table. The flow table’s flow entries describe the for-
warding behavior that the switch is to take when receiving incoming traffic in the data plane. In
particular, we are concerned with the flow modification requests that add new flow entries to a
switch’s flow table.

An attacker may wish to disrupt the flow modification requests as an indirect method of causing a
degradation or denial of service against the controller and/or the end hosts in the data plane network
by generating superfluous traffic in either the data plane or the control plane.

Figure 6.5 shows an example of the messages exchanged between a switch, s2, and the controller,
c1, in the (c1, s2) control plane connection, both with and without flow modification suppression.
Figure 6.5a shows a normal message exchange. When an incoming packet of a new traffic stream
in the data plane does not match any flow entries in the switch’s forwarding table1 (i.e., a flow table

1Alternatively, a flow entry may be added explicitly to create a behavior such that incoming data plane messages that
do not match other flow entries are forwarded to the controller.
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(b) Message exchange between c1 and s2 with flow modification suppression.

Figure 6.5: Control plane connection message exchange for new flow entries.

miss), the packet is sent to the controller for a decision. Upon deciding what to do to change the
forwarding behavior of the network, the controller sends the packet back to the switch to be sent
out to the data plane; the controller also instantiates one or more flow modification requests that set
one or more new flow entries in the flow table. All future data plane packets in that traffic stream in
the data plane that match the initial packet will be checked against the flow entry (i.e., a flow table
hit) rather than be sent to the controller for inspection.

Figure 6.5b shows a message exchange with flow modification suppression. As in Figure 6.5a, an
incoming data plane packet is sent to the controller and returned to the switch with a flow modi-
fication request. However, in our attack, the flow modification request is dropped. As a result, the
corresponding flow entry is not instantiated in the switch’s flow table. Subsequent packets of the
traffic stream in the data plane result in flow table misses, and such packets must be sent to the con-
troller. Because no flow entries are ever instantiated, every data plane message is necessarily sent
to the controller for processing. The overhead is significant: for every n packets in the data plane
that are flow table misses, the flow modification suppression may generate up to 3n messages in the
control plane (PACKET_IN, PACKET_OUT, and a suppressed FLOW_MOD, depending on the controller
implementation); additional messages may be generated if the controller attempts to instantiate flow
modification requests to other switches to create an end-to-end path for the traffic stream. Further-
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more, traffic may be broadcast in the data plane if the controller cannot make a decision and the
controller decides instead that the switch must flood the traffic out every port except the port on
which the traffic was received. This is analogous to the functionality of a network hub.

We describe the attack in Figure 6.6. In state σ1, messages in the control plane connections that
are flow modification requests destined for the switch (rules ϕ1, ϕ2, ϕ3, and ϕ4) are dropped. We
assume that an attacker has the ability to interpose on unencrypted messages and thus can filter on
flow-modification-related messages.2

We hypothesize that the flow modification request suppression will result in a degradation or
denial of service against the controller and/or the end hosts in the data plane of the network.

The run of the experiment is as follows:

t = 0 s: Initialize Floodlight controller on h3.

t = 5 s: Initialize attack injector on h3. The state is initialized to state σ1.

t = 30 s: Run ping on h1, pinging to h6 for 60 trials. Each trial lasts approximately 1 s. The
total amount of time spent on ping trials is approximately 60 s.

t = 95 s: Initialize iperf server on h6.

t = 96 s: Run iperf client on h1, connecting to the server on h6. Each iperf trial lasts for
approximately 10 seconds. Wait 10 s after each trial concludes, and repeat the server
and client initializations for a total of 30 trials. The total amount of time spent on
iperf trials is approximately 600 s.

6.3.2 Connection Interruption

In this experiment, we attempted to disrupt control plane connections by intercepting and dropping
control plane connection messages that originated from one of the switches. An attacker may wish to
disrupt the control plane connections to increase access to formerly protected hosts on the network;
to obtain information from the hosts, processes, or data stores on the hosts (i.e., data exfiltration);
or to perform a denial of service attack against legitimate data plane network traffic.

Given that the DMZ firewall switch s2 is responsible for protecting internal network end hosts and
preventing external connections from entering the internal network if they were not first instigated

2Although it is not modeled in the attack description in Figure 6.6, one could also imagine the case where the
messages are encrypted and the attacker’s capabilities are limited to reading the metadata of the message (i.e., Γencr y pted ).
Since flow modification requests may coincide with previously unseen data plane traffic (e.g., as a result of a flow table
miss) and because the length of the flow modification request message has the potential to be constant or near constant
(unlike PACKET_IN or PACKET_OUT messages, which may encapsulate the data plane packet), an attacker could use a
side-channel timing analysis attack to infer the message type.
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σ1 ∶ σ1 = {ϕ1, ϕ2, ϕ3, ϕ4} (σstart = σ1; σabsorbing = {σ1}; σend = ∅)
ϕ1 = (n1, γ1, λ1, α1)

n1 = (c1, s1)

γ1 = Γunencr ypted
λ1 = ReadMessageMetadata(msg , MessageSource = c1)

∧ ReadMessageMetadata(msg , MessageDestination = s1)

∧ ReadMessage(msg , MessageType = FLOW_MOD)
∧ ReadMessage(msg , MessageTypeOptions.command = ADD)

α1 = {α11}

α11 = DropMessage(msg)
ϕ2 = (n2, γ2, λ2, α2)

n2 = (c1, s2)

γ2 = Γunencr ypted
λ2 = ReadMessageMetadata(msg , MessageSource = c1)

∧ ReadMessageMetadata(msg , MessageDestination = s2)

∧ ReadMessage(msg , MessageType = FLOW_MOD)
∧ ReadMessage(msg , MessageTypeOptions.command = ADD)

α2 = {α21}

α21 = DropMessage(msg)
ϕ3 = (n3, γ3, λ3, α3)

n3 = (c1, s3)

γ3 = Γunencr ypted
λ3 = ReadMessageMetadata(msg , MessageSource = c1)

∧ ReadMessageMetadata(msg , MessageDestination = s3)

∧ ReadMessage(msg , MessageType = FLOW_MOD)
∧ ReadMessage(msg , MessageTypeOptions.command = ADD)

α3 = {α31}

α31 = DropMessage(msg)
ϕ4 = (n4, γ4, λ4, α4)

n4 = (c1, s4)

γ4 = Γunencr ypted
λ4 = ReadMessageMetadata(msg , MessageSource = c1)

∧ ReadMessageMetadata(msg , MessageDestination = s4)

∧ ReadMessage(msg , MessageType = FLOW_MOD)
∧ ReadMessage(msg , MessageTypeOptions.command = ADD)

α4 = {α41}

α41 = DropMessage(msg)

(a) Attack states Σ = {σ1}.

σ1σstart

{α11 , α21 , α31 , α41}

(b) Attack state graph ΣG representation.

Figure 6.6: Attack description for flow modification suppression experiment.
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internally, the firewall is a likely target of attack. Furthermore, the s2 switch physically divides the
external and internal networks; since there are no redundant paths in the data plane topology, a
successful division could cause a denial of service if traffic needs to cross the switch. Thus, we
generated an attack aimed at the (c1, s2) control plane connection.

We describe the experiment’s attack in Figure 6.7.3 In the initial state σ1, the injector waits for a
connection setup message that the switch sends to the controller on the switch’s initialization; upon
success, the state transitions to state σ2.4 Assuming that the controller reactively instantiates new
flow entries, the injector waits for a flow modification request that would otherwise prevent host h2

from connecting to one of the internal hosts in the enterprise network (i.e., H ∖ {h1}); the injector
then prevents the flow modification request from being received by the switch and subsequently
transitions to state σ3. In state σ3, the injector drops switch-originated messages destined for the
controller as well as any messages the controller decides to insert into the data plane of s2.

We divide the connection interruption experiment into two cases: one in which switches are
configured to “fail safe,” and one in which switches are configured to “fail secure”. In the former
case, a switch that determines that it has lost the connection to the controller will act as a legacy
Layer 2 forwarding switch. In the latter case, a switch that determines that it has lost the connection
to the controller will continue its programmed behavior as determined by its existing flow entries;
traffic not matching existing flow entries is dropped, and existing flows will continue to be active
unless they time out through idle or hard timeouts.

The run of the experiment is as follows:

t = 0 s: Set the OVS switch configuration for s2 to either fail secure or fail safe.

t = 5 s: Initialize Floodlight controller on h3.

t = 10 s: Initialize attack injector on h3. The state is initialized to state σ1.

t = 30 s: Let h2 (the host representing the Internet) ping h1 (the external-facing Web server)
for 10 s. This connection represents an external user’s attempt to access an external-
facing service in the enterprise network.

Concurrently, let h6 (an internal user workstation) ping h1 for 10 s. This connec-
tion represents an internal user’s attempt to access an external-facing service in the
enterprise network.

3Although it is not modeled in the attack description in Figure 6.7, one could also imagine the case where the
messages are encrypted and the attacker’s capabilities are limited to reading the metadata of the message (i.e., Γencr y pted ).
Since the source and destination attributes are unencrypted, an attacker could simply use interposing to drop switch-
originated messages destined for the controller.

4The purpose of state σ1 is to ensure that at least one HELLOmessage has arrived, as otherwise initiation of the control
plane connection setup has not begun. Additional states that ensure that a full handshaking process has occurred could
optionally be inserted in the path between σ1 and σ2 in ΣG for completeness.

58



σ1 ∶ σ1 = {ϕ1} (σstar t = σ1; σabsorbing = {σ3}; σend = ∅)

ϕ1 = (n1 , γ1 , λ1 , α1)

n1 = (c1 , s2)

γ1 = Γunencr y pted
λ1 = ReadMessageMetadata(msg , MessageSource = s2)

∧ ReadMessageMetadata(msg , MessageDestination = c1)

∧ ReadMessage(msg , MessageType = HELLO)
α1 = {α11 , α12}

α11 = PassMessage(msg)
α12 = GoToState(σ2)

σ2 ∶ σ2 = {ϕ2}

ϕ2 = (n2 , γ2 , λ2 , α2)

n2 = (c1 , s2)

γ2 = Γunencr y pted
λ2 = ReadMessageMetadata(msg , MessageSource = c1)

∧ ReadMessageMetadata(msg , MessageDestination = s2)

∧ ReadMessage(msg , MessageType = FLOW_MOD)
∧ ReadMessage(msg , MessageTypeOptions.command = ADD)
∧ ReadMessage(msg , MessageTypeOptions.match.eth_src = h2)

∧¬( ReadMessage(msg , MessageTypeOptions.match.eth_dst = h1))
α2 = {α21 , α22}

α21 = DropMessage(msg)
α22 = GoToState(σ3)

σ3 ∶ σ3 = {ϕ3 , ϕ4}

ϕ3 = (n3 , γ3 , λ3 , α3)

n3 = (c1 , s2)

γ3 = Γunencr y pted
λ3 = ReadMessageMetadata(msg , MessageSource = c1)

∧ ReadMessageMetadata(msg , MessageDestination = s2)

∧ ReadMessage(msg , MessageType = PACKET_OUT)
α3 = {α31}

α31 = DropMessage(msg)
ϕ4 = (n4 , γ4 , λ4 , α4)

n4 = (c1 , s2)

γ4 = Γunencr y pted
λ4 = ReadMessageMetadata(msg , MessageSource = s2)

∧ ReadMessageMetadata(msg , MessageDestination = c1)
α4 = {α41}

α41 = DropMessage(msg)

(a) Attack states Σ = {σ1, σ2, σ3}.

σ1σstart σ2 σ3

{α11}

{α12}

{α21}

{α22}

{α31 , α41}

(b) Attack state graph ΣG representation.

Figure 6.7: Attack description for connection interruption experiment.
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t = 50 s: Let h2 ping h3 (an internal server) for 60 s. According to the forwarding behavior in
Figure 6.4, the connection is dropped, since an external user is attempting to access
an internal resource. At that point, the state transitions to state σ2 and subsequently
to σ3, where all messages that originated from the switch are dropped (cf. rule ϕ4 in
Figure 6.7).

t = 95 s: Let h6 ping h1 for 10 s again. This connection represents an internal user’s attempt
to access an external-facing service in the enterprise network. An unsuccessful con-
nection represents a violation of availability through a denial of service attack on end
hosts that are attempting to use the network.

6.4 Results

6.4.1 Flow Modification Suppression

Table 6.1 shows the results of experiments performed with and without5 flow modification sup-
pression. We consider the performance metrics of data plane latency and data plane throughput to
understand the effects of the network attack on the end hosts, and we also consider the number of
control plane connection messages intercepted by the attack injector during the attack.

Given that traffic between h1 and h6 necessarily traverses every switch in S, and given that this
path represents the network’s diameter, we performed ping and iperf experiments between the
two hosts to measure worst-case latency and throughput metrics, respectively. To perform a run of
the experiment, we first instantiated the Floodlight controller. Next, we instantiated the runtime in-
jector, allowing for the switches to set up their proxied connections to the controller via the runtime
injector. Following an initialization period, we performed 60 trials of a ping request from h1 to h6.
Then, to measure throughput, we instantiated an iperf server on h6 and allowed an iperf client
on h1 to connect to it to create a TCP stream for 10 seconds; we repeated this process for 30 trials.
Finally, we concluded the experiment run and collected relevant log data files produced from the
monitors on the ping utility, the iperf utility, the runtime injector, and the Floodlight controller.

The results in Table 6.1 show that average latency increased (from 3.14 ms to 24.5 ms, or a 680%
increase), average throughput decreased (from 97.8 Mbps to 11.9 Mbps, or an 87% decrease), and the
control plane produces more flow-related messages6 (from 1, 606 to 57, 957, or a 3, 509% increase) as
a result of flow modification suppression. The effects of the attack injection manifested themselves

5Experiments without attacks are each represented by a single state σ1 = ∅ (i.e., a state with no rules); all messages
are allowed to pass without any conditional checking as described in Section 4.5.3 and shown in Figure 4.6.

6The total number of PACKET_IN, PACKET_OUT, and FLOW_MOD messages.
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Table 6.1: Flow Modification Suppression Experiment Results

Without suppression With suppression

Data plane latency results between h1 and h6 with ping
Number of trials, total 60 60
Number of trials, total without outliers 59 58
Average latency [ms] 3.14 24.5
Standard deviation of latency [ms] 0.92 3.4
95% confidence interval of latency [ms] [2.90, 3.38] [23.6, 25.4]

Data plane throughput results between h1 and h6 with iperf
Number of trials, total 30 30
Number of trials, total without outliers 29 27
Average throughput [Mbps] 97.8 11.9
Standard deviation of throughput [Mbps] 0.7 1.0
95% confidence interval of throughput [Mbps] [97.5, 98.0] [11.5, 12.3]

Control plane message results with runtime injector
Instances of PACKET_IN requests 461 38,117
Instances of PACKET_OUT requests 946 19,607
Instances of FLOW_MOD (ADD) requests 199 233
Instances of rule ϕ1 triggered — 37
Instances of rule ϕ2 triggered — 79
Instances of rule ϕ3 triggered — 72
Instances of rule ϕ4 triggered — 45

most prominently in the data plane by affecting network performance, as well as in the control plane
by increasing the amount of message processing that the controller had to handle.

We note that the OpenFlow protocol design does not have an acknowledgment mechanism for
notifying a controller that a switch has successfully instantiated a flow entry as a result of a flow
modification request; an acknowledgment is sent only if there has been an error wherein a switch
could not add the flow entry (e.g., because a flow table was full) [6, 10]. A sufficient number of
negative acknowledgments might be useful for a controller implementation, because it would know
that its intended flow modifications had been instantiated; interestingly, the results in Table 6.1 show
that the suppression of FLOW_MODmessages did not increase the number of FLOW_MODmessages that
the controller attempted to send to the switches to the same extent that the number of PACKET_IN
or PACKET_OUT messages increased.

Analysis of the runtime injector log file showed that the PACKET_OUT messages included instruc-
tions to output the (encapsulated) data plane message to all ports other than the port on which
the data plane message arrived. This suggests that, in addition to the throughput penalty that re-
sults in the control plane because all data plane messages are encapsulated twice in the PACKET_IN
and PACKET_OUT messages, the data plane message is broadcast in the data plane with a worst-case
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throughput performance of order O(∣pi ∣ − 1), where ∣pi ∣ is the number of ports on switch i. This
broadcast mechanism, while not efficient, does allow the data plane traffic to traverse between the
source end host and the intended destination end host. However, the degradation of the controller’s
service (and potential for a denial of service with high traffic loads) implies that the attack exploits
the controller in an unintended way because of the protocol design. Although our enterprise net-
work use case’s data plane topology ND does not contain any cycles, a broadcast storm possibility
exists if messages are forwarded within the cycle forever, potentially leading to catastrophic failure
of the network components if they must deal with traffic that never leaves the network.

In summary, the attack raises questions about the unintended consequences of using the proto-
col’s own messages to effect a degradation or denial of service.

6.4.2 Connection Interruption

For this experiment, we considered the security metric of availability as it applies to the availability
of the switch’s control plane and the availability of the data plane to allow end hosts to communicate.

The log files generated from the ping tests show that before the attack entered state σ2, the hosts
representing both external (h2) and internal (h6) users were able to communicate with the external-
facing server (h1), as expected. The subsequent message drops of the flow modification requests
(rule ϕ2) and incoming data plane packet messages (rule ϕ3) prevented the host that represented the
external user from communicating with the internal user, as shown by the failures to receive replies
from the ping test. Subsequently, the lack of messages from the switch caused the controller to
disconnect its control plane connection. As shown in the ping log files, one of the hosts representing
internal users (h6) was unable to communicate with the external-facing server in the final state of the
attack, resulting in a denial of service of the data plane of the network. The Floodlight controller and
runtime injector both generated error messages related to the disconnections of the (c1, s2) control
plane connection.

Whether the DMZ firewall switch failed safely or securely, the availability of the switch’s control
plane was violated. In the violation of availability of the control plane, the Floodlight controller log
files from both cases show the disconnection of the (c1, s2) control plane connection. Surprisingly,
violation of the availability of the switch’s control plane caused a cascading effect on the availability
of the data plane in both cases. In the fail-safe case, one might expect that the disconnection of the
control plane connection would cause the switch to revert to a (non-SDN) learning switch mode,
as documented in the OVS manual [48]. However, the attack does not prevent subsequent control
plane connections from being reestablished at the Layer 4 (TCP) level; the attack only interposes on
messages sent over such connections. The DMZ firewall switch (acting as a TCP client) continues to
reestablish a connection with the controller (acting as a TCP server) but cannot send any messages
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to the controller, because the attack interposed on the initial HELLO message in the handshaking
process. The end results are that 1) the switch’s continued attempts to perform a TCP handshake
are successful in forming a TCP connection at Layer 4; 2) the message interposition prevents an
OpenFlow handshake from occurring in Layers 5–7; and 3) the successful TCP handshaking means
that the switch’s behavior never reverts to its non-SDN learning switch mode. As no new flows can
be established, the attack’s cascading effect is a denial of service and violation of availability in the
data plane.

In summary, the attack violates the security metric of availability for the switch’s control plane
and data plane. However, the attack’s mechanism for exploiting unintended side effects is subtle: if
an attacker allows for reestablishing of control plane connections at Layer 4 but blocks the sending
of messages within the connections in Layers 5–7, then the switch can never fail safely, and there is
a denial of service in the data plane.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This thesis presented an attack model, language, and injector for the control plane of OpenFlow-
based software-defined networks.

In the attack model, we defined a system model of the various components of the SDN architec-
ture in the data and control planes, a threat model that considers the vulnerabilities of the control
plane, and a set of attacker capabilities that an attacker could use against messages in the control
plane based on user-defined assumptions about what an attacker is capable of doing.

Next, we presented an attack language to describe and specify attacks. Given that attacks may go
through a series of stages as they are carried out, we defined the attacks in terms of a set of a finite
number of states. Each state has a set of rules by which incoming messages may conditionally match
and by which actions can be taken that reflect the attacker’s assumed capabilities.

To put the attacks into practice, we developed an attack injector that compiles a user’s specified
system model, attack model, and attack description into executable code that can be run in a runtime
injector that interposes on control plane messages. To capture the effects of the attack, a set of
system-dependent monitors record the effects from various vantage points within the system.

Finally, we used a small-scale enterprise network architecture as a use case for implementing at-
tacks in practice. We implemented the attack injector and its related architecture in an experimental
network that used the GENI networking testbed. We considered attacks based on flow modification
suppression and connection interruption, and we used performance metrics (latency and through-
put) and a security metric (availability) of the control and data planes to understand the extent that
each attack’s effects had on the system. Based on the experiments’ empirical results, we found that
the flow modification suppression attack generated significantly more traffic in both the data and
control planes and increased end-to-end latency because of the need to send all traffic to the con-
troller for the forwarding decision process; the result was a degradation in service in the data plane.
Furthermore, we found that the connection interruption attack generated a denial of service in both
the data and control planes in both the fail-safe and fail-secure cases because of the subtle effects of
allowing connections to be reestablished but suppressing the messages in such connections.
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7.2 Future Work

We intend to extend the attack model to include elements in the northbound API and east-
bound/westbound API. We did not explicitly consider those APIs in the current attack model be-
cause of their lack of standardization; given that the southbound API (OpenFlow) is standardized,
the attack model, attack description, and attack injector can be used on any implementations of the
SDN architecture that use OpenFlow.

We further intend to experiment with various implementations of controllers and switches.
Cross-controller comparisons may yield results regarding the assumptions that each controller’s
algorithm makes about when and which messages to use to communicate policy or change the net-
work’s behavior; the relative lack of information in the OpenFlow specifications of what a controller
ought to do makes such comparisons useful. Cross-switch comparisons may yield results regarding
the efficacy of performing switches as required by the OpenFlow specification.
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APPENDIX A

ATTACK LANGUAGE GRAMMAR

Here, we use the Backus-Naur Form (BNF) notation to describe the grammar of the attack language
presented in Chapter 4. Nonterminal symbols are italicized; terminal symbols are in boldface; and
textual descriptions are in normal font for some production rules, if the meaning would otherwise
be unclear. For simplicity, delimiter symbols necessary for syntactical purposes (e.g., parentheses,
new lines) and certain literals have been omitted. The grammar forms the basis for the XML-based
implementation of the attack state parser of the compiler discussed in Chapter 5.

⟨attack⟩ ::= ⟨initial_attack_state⟩ ⟨states⟩

⟨initial_attack_state⟩ ::= ⟨state_uid⟩

⟨states⟩ ::= ⟨state⟩
| ⟨state⟩ ⟨states⟩

⟨state⟩ ::= ⟨state_uid⟩ ⟨rules⟩

⟨rules⟩ ::= ⟨rule⟩
| ⟨rule⟩ ⟨rules⟩

⟨rule⟩ ::= ⟨rule_uid⟩ ⟨control_plane_connection_uid⟩ ⟨capabilities_uid⟩ ⟨conditional⟩ ⟨actions⟩

⟨conditional⟩ ::= ⟨expression⟩

⟨expression⟩ ::= ⟨or-expression⟩

⟨or-expression⟩ ::= ⟨and-expression⟩
| ⟨or-expression⟩ ∨ ⟨and-expression⟩

⟨and-expression⟩ ::= ⟨not-expression⟩
| ⟨and-expression⟩ ∧ ⟨not-expression⟩

⟨not-expression⟩ ::= ⟨par-expression⟩
| ¬ ⟨par-expression⟩
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⟨par-expression⟩ ::= ReadMessageMetadata ⟨message⟩
| ReadMessage ⟨message⟩
| ⟨boolean⟩
| ( ⟨expression⟩ )

⟨message⟩ ::= ⟨message_uid⟩ ⟨message_property⟩

⟨message_property⟩ ::= ⟨message_source⟩
| ⟨message_destination⟩
| ⟨message_timestamp⟩
| ⟨message_length⟩
| ⟨message_type⟩
| ⟨message_id⟩
| ⟨message_type_options⟩

⟨message_source⟩ ::= MessageSource ⟨operator⟩ ⟨controller_uid⟩
| MessageSource ⟨operator⟩ ⟨switch_uid⟩

⟨message_destination⟩ ::= MessageDestination ⟨operator⟩ ⟨controller_uid⟩
| MessageDestination ⟨operator⟩ ⟨switch_uid⟩

⟨message_timestamp⟩ ::= MessageTimestamp ⟨operator⟩ ⟨time⟩

⟨message_length⟩ ::= MessageLength ⟨operator⟩ ⟨byte_length⟩

⟨message_type⟩ ::= MessageType ⟨operator⟩ ⟨openflow_message_type⟩

⟨message_id⟩ ::= MessageID ⟨operator⟩ ⟨xid⟩

⟨message_type_options⟩ ::= MessageTypeOptions ⟨key⟩ ⟨operator⟩ ⟨value⟩

⟨actions⟩ ::= ⟨action⟩
| ⟨action⟩ ⟨actions⟩

⟨action⟩ ::= ⟨action_uid⟩ ⟨action_type⟩

⟨action_type⟩ ::= ⟨drop_message⟩
| ⟨pass_message⟩
| ⟨delay_message⟩
| ⟨duplicate_message⟩
| ⟨modify_message_metadata⟩
| ⟨fuzz_message⟩
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| ⟨modify_message⟩
| ⟨inject_new_message⟩
| ⟨go_to_state⟩

⟨drop_message⟩ ::= DropMessage ⟨message_uid⟩

⟨pass_message⟩ ::= PassMessage ⟨message_uid⟩

⟨delay_message⟩ ::= DelayMessage ⟨message_uid⟩ ⟨time_length⟩

⟨duplicate_message⟩ ::= DuplicateMessage ⟨message_uid_original⟩ ⟨message_uid_new⟩

⟨modify_message_metadata⟩ ::= ModifyMessageMetadata ⟨message_uid⟩ ⟨message_property⟩

⟨fuzz_message⟩ ::= FuzzMessage ⟨message_uid⟩ ⟨number_bits⟩

⟨modify_message⟩ ::= ModifyMessage ⟨message_uid⟩ ⟨message_property⟩

⟨inject_new_message⟩ ::= InjectNewMessage ⟨message_uid_new⟩ ⟨message_properties⟩

⟨go_to_state⟩ ::= GoToState ⟨state_uid⟩

⟨message_uid_original⟩ ::= ⟨message_uid⟩

⟨message_uid_new⟩ ::= ⟨message_uid⟩

⟨message_properties⟩ ::= ⟨message_property⟩
| ⟨message_property⟩ ⟨message_properties⟩

⟨boolean⟩ ::= true
| false

⟨operator⟩ ::= ⟨equality_operator⟩
| ⟨membership_operator⟩
| ⟨assignment_operator⟩

⟨equality_operator⟩ ::= =

⟨membership_operator⟩ ::= in

⟨assignment_operator⟩ ::= ←

⟨time⟩ ::= a valid physical timestamp

⟨byte_length⟩ ::= i ∣ i ∈ N (a nonnegative integer, unit of bytes)
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⟨number_bits⟩ ::= i ∣ i ∈ N (a nonnegative integer, unit of bits)

⟨time_length⟩ ::= i ∣ i ∈ R∗ (a nonnegative real number, unit of seconds)

⟨openflow_message_type⟩ ::= a message type found in Table 2.1

⟨xid⟩ ::= i ∣ i ∈ {0, 1, . . . , 232 − 1} (a 32-bit integer)

⟨key⟩ ::= a key in a key-value pair of protocol message-dependent attributes specified in [6] or [10]

⟨value⟩ ::= a value in a key-value pair of protocol message-dependent attributes specified in [6]
or [10]

⟨state_uid⟩ ::= σ ∣ σ ∈ Σ

⟨rule_uid⟩ ::= ϕ ∣ ϕ ∈ Φ

⟨control_plane_connection_uid⟩ ::= nC ∣ nC ∈ NC

⟨capabilities_uid⟩ ::= γNC ∣ γNC ∈ ΓNC

⟨controller_uid⟩ ::= c ∣ c ∈ C

⟨switch_uid⟩ ::= s ∣ s ∈ S

⟨action_uid⟩ ::= αi j ∣ αi j ∈ αi

⟨message_uid⟩ ::= msg
| a user-defined unique message identifier

69



REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner, “OpenFlow: Enabling innovation in campus networks,” SIGCOMM Computer
Communication Review, vol. 38, no. 2, pp. 69–74, Mar. 2008.
(Cited on pages 1, 6, and 8.)

[2] D. Levin, M. Canini, S. Schmid, and A. Feldmann, “Incremental SDN deployment in enterprise
networks,” in Proceedings of ACM SIGCOMM 2013. New York, NY, USA: ACM, 2013, pp. 473–
474.
(Cited on page 1.)

[3] R. Jain and S. Paul, “Network virtualization and software defined networking for cloud com-
puting: A survey,” IEEE Communications Magazine, vol. 51, no. 11, pp. 24–31, Nov. 2013.
(Cited on page 1.)

[4] X. Dong, H. Lin, R. Tan, R. K. Iyer, and Z. Kalbarczyk, “Software-defined networking for smart
grid resilience: Opportunities and challenges,” in Proceedings of the 1st ACM Workshop on
Cyber-Physical System Security (CPSS ’15). New York, NY, USA: ACM, 2015, pp. 61–68.
(Cited on page 1.)

[5] D. Kreutz, F. Ramos, P. Esteves Veríssimo, C. Esteve Rothenberg, S. Azodolmolky, and S. Uhlig,
“Software-defined networking: A comprehensive survey,” in Proceedings of the IEEE, vol. 103,
no. 1, Jan. 2015, pp. 14–76.
(Cited on pages 1, 2, 7, 8, and 9.)

[6] Open Networking Foundation, “OpenFlow switch specification version 1.0.0,” Dec. 2009. [On-
line]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-spec-v1.0.0.pdf
(Cited on pages 2, 8, 9, 10, 11, 21, 28, 34, 52, 61, and 69.)

[7] T. Xing, D. Huang, L. Xu, C.-J. Chung, and P. Khatkar, “SnortFlow: A OpenFlow-based intru-
sion prevention system in cloud environment,” in Proceedings of the 2013 Second GENI Research
and Educational Experiment Workshop (GREE), Mar. 2013, pp. 89–92.
(Cited on page 7.)

[8] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and M. Tyson, “FRESCO: Modular
composable security services for software-defined networks,” in Proceedings of the 2013 Network
and Distributed System Security Symposium (NDSS ’13), Feb. 2013.
(Cited on pages 7, 13, and 50.)

70

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf


[9] Big Switch Networks, “Project Floodlight: Open source software for building software-defined
networks,” Jan. 2016. [Online]. Available: http://www.projectfloodlight.org/floodlight/
(Cited on pages 7, 8, 21, 28, and 52.)

[10] Open Networking Foundation, “OpenFlow switch specification version 1.3.0,” June 2012. [On-
line]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-spec-v1.3.0.pdf
(Cited on pages 7, 8, 9, 10, 11, 12, 21, 28, 34, 61, and 69.)

[11] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, “OFRewind: Enabling record and
replay troubleshooting for networks,” in Proceedings of the 2011 USENIX Conference. Berkeley,
CA, USA: USENIX Association, 2011, p. 29.
(Cited on pages 8 and 15.)

[12] Open Networking Foundation, “Northbound interfaces working group charter,” Oct.
2013. [Online]. Available: https://www.opennetworking.org/images/stories/downloads/
working-groups/charter-nbi.pdf
(Cited on page 8.)

[13] Hewlett-Packard Development Company, “HP VAN SDN controller software,” Apr. 2015.
[Online]. Available: http://h20195.www2.hp.com/v2/getpdf.aspx/4AA4-9827ENW.pdf
(Cited on pages 9 and 28.)

[14] J. Miserez, P. Bielik, A. El-Hassany, L. Vanbever, and M. Vechev, “SDNRacer: Detecting con-
currency violations in software-defined networks,” in Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research (SOSR ’15). New York, NY, USA: ACM,
2015, pp. 22:1–22:7.
(Cited on page 11.)

[15] D. Kreutz, F. M. Ramos, and P. Veríssimo, “Towards secure and dependable software-defined
networks,” in Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking (HotSDN ’13). New York, NY, USA: ACM, 2013, pp. 55–60.
(Cited on pages 12 and 15.)

[16] P.-W. Chi, C.-T. Kuo, J.-W. Guo, and C.-L. Lei, “How to detect a compromised SDN switch,” in
Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft), Apr. 2015, pp.
1–6.
(Cited on page 12.)

[17] K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability assessment,” in Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN ’13).
New York, NY, USA: ACM, 2013, pp. 151–152.
(Cited on page 12.)

[18] S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: Defending SDNs from malicious administra-
tors,” in Proceedings of the Third Workshop on Hot Topics in Software Defined Networking
(HotSDN ’14). New York, NY, USA: ACM, 2014, pp. 103–108.
(Cited on page 13.)

71

http://www.projectfloodlight.org/floodlight/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/working-groups/charter-nbi.pdf
https://www.opennetworking.org/images/stories/downloads/working-groups/charter-nbi.pdf
http://h20195.www2.hp.com/v2/getpdf.aspx/4AA4-9827ENW.pdf


[19] Y. Zhang, N. Beheshti, and R. Manghirmalani, “NetRevert: Rollback recovery in SDN,” in Pro-
ceedings of the Third Workshop on Hot Topics in Software Defined Networking (HotSDN ’14).
New York, NY, USA: ACM, 2014, pp. 231–232.
(Cited on page 13.)

[20] J. D. Howard and T. A. Longstaff, “A common language for computer security incidents,”
Sandia National Laboratories, Tech. Rep. SAND98-8667, Oct. 1998. [Online]. Available:
http://prod.sandia.gov/techlib/access-control.cgi/1998/988667.pdf
(Cited on pages 13, 18, and 53.)

[21] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility in software-defined net-
works: New attacks and countermeasures,” in Proceedings of the 2015 Network and Distributed
System Security Symposium (NDSS ’15), Feb. 2015.
(Cited on page 13.)

[22] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN security: A survey,” in Proceedings of
the 2013 IEEE SDN for Future Networks and Services (SDN4FNS), Nov. 2013, pp. 1–7.
(Cited on page 13.)

[23] A. Akhunzada, E. Ahmed, A. Gani, M. Khan, M. Imran, and S. Guizani, “Securing software de-
fined networks: Taxonomy, requirements, and open issues,” IEEE Communications Magazine,
vol. 53, no. 4, pp. 36–44, Apr. 2015.
(Cited on page 13.)

[24] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow: Verifying network-wide in-
variants in real time,” in Proceedings of the First Workshop on Hot Topics in Software Defined
Networks (HotSDN ’12). New York, NY, USA: ACM, 2012, pp. 49–54.
(Cited on pages 13, 16, 17, and 18.)

[25] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis: Static checking for net-
works,” in Proceedings of the 9th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI ’12). Berkeley, CA, USA: USENIX Association, 2012, p. 9.
(Cited on pages 13, 16, and 17.)

[26] L. Schehlmann, S. Abt, and H. Baier, “Blessing or curse? Revisiting security aspects of software-
defined networking,” in Proceedings of the 2014 10th International Conference on Network and
Service Management (CNSM), Nov. 2014, pp. 382–387.
(Cited on page 14.)

[27] R. Klöti, V. Kotronis, and P. Smith, “OpenFlow: A security analysis,” in Proceedings of the 2013
21st IEEE International Conference on Network Protocols (ICNP), Oct. 2013, pp. 1–6.
(Cited on page 14.)

[28] J. M. Voas and G. McGraw, Software Fault Injection: Inoculating Programs Against Errors. New
York, NY, USA: John Wiley & Sons, Inc., 1997.
(Cited on pages 15, 18, and 19.)

72

http://prod.sandia.gov/techlib/access-control.cgi/1998/988667.pdf


[29] R. Durairajan, J. Sommers, and P. Barford, “Controller-agnostic SDN debugging,” in Proceed-
ings of the 10th ACM International on Conference on Emerging Networking Experiments and
Technologies (CoNEXT ’14). New York, NY, USA: ACM, 2014, pp. 227–234.
(Cited on page 15.)

[30] M. Gupta, J. Sommers, and P. Barford, “Fast, accurate simulation for SDN prototyping,” in
Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Net-
working (HotSDN ’13). New York, NY, USA: ACM, 2013, pp. 31–36.
(Cited on page 15.)

[31] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai, E. Huang, Z. Liu, A. El-Hassany,
S. Whitlock, H. Acharya, K. Zarifis, and S. Shenker, “Troubleshooting blackbox SDN control
software with minimal causal sequences,” in Proceedings of ACM SIGCOMM 2014. New York,
NY, USA: ACM, 2014, pp. 395–406.
(Cited on page 15.)

[32] Big Switch Networks, “Project Floodlight: OFTest,” Jan. 2016. [Online]. Available: http:
//www.projectfloodlight.org/oftest/
(Cited on page 15.)

[33] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and J. Rexford, “A NICE way to test OpenFlow
applications,” in Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation (NSDI ’12). Berkeley, CA, USA: USENIX Association, 2012, p. 10.
(Cited on pages 16, 17, and 19.)

[34] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte, “Real time network
policy checking using header space analysis,” in Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation (NSDI ’13). Berkeley, CA, USA: USENIX
Association, 2013, pp. 99–112.
(Cited on page 16.)

[35] A. Avižienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy of de-
pendable and secure computing,” IEEE Transactions on Dependable and Secure Computing,
vol. 1, no. 1, pp. 11–33, Jan. 2004.
(Cited on page 18.)

[36] C. Basile, M. Gupta, Z. Kalbarczyk, and R. Iyer, “An approach for detecting and distinguishing
errors versus attacks in sensor networks,” in Proceedings of the 2006 International Conference
on Dependable Systems and Networks (DSN ’06), June 2006, pp. 473–484.
(Cited on page 18.)

[37] S. Dawson, F. Jahanian, and T. Mitton, “ORCHESTRA: A fault injection environment
for distributed systems,” University of Michigan at Ann Arbor, Tech. Rep., Nov. 1996.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.6485&rep=
rep1&type=pdf
(Cited on page 19.)

73

http://www.projectfloodlight.org/oftest/
http://www.projectfloodlight.org/oftest/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.6485&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.6485&rep=rep1&type=pdf


[38] R. Chandra, R. M. Lefever, M. Cukier, and W. H. Sanders, “Loki: A state-driven fault injector
for distributed systems,” in Proceedings of the 2000 International Conference on Dependable
Systems and Networks (DSN ’00). Washington, DC, USA: IEEE Computer Society, 2000, pp.
237–242.
(Cited on page 19.)

[39] N. Neves, J. Antunes, M. Correia, P. Veríssimo, and R. Neves, “Using attack injection to discover
new vulnerabilities,” in Proceedings of the 2006 International Conference on Dependable Systems
and Networks (DSN’06), June 2006, pp. 457–466.
(Cited on pages 19 and 20.)

[40] J. Antunes, N. Neves, M. Correia, P. Veríssimo, and R. Neves, “Vulnerability discovery with
attack injection,” IEEE Transactions on Software Engineering, vol. 36, no. 3, pp. 357–370, 2010.
(Cited on pages 19 and 20.)

[41] J. Fonseca, M. Vieira, and H. Madeira, “Vulnerability and attack injection for Web applica-
tions,” in Proceedings of the 2009 International Conference on Dependable Systems and Networks
(DSN ’09), June 2009, pp. 93–102.
(Cited on page 20.)

[42] Big Switch Networks, “LoxiGen: OpenFlow protocol bindings for multiple languages,” May
2016. [Online]. Available: https://www.github.com/floodlight/loxigen
(Cited on page 48.)

[43] Open Networking Foundation, “SDN in the campus environment,” Sep 2013. [On-
line]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/
solution-briefs/sb-enterprise-campus.pdf
(Cited on pages 49 and 50.)

[44] Open Networking Foundation, “Software-defined networking: The new norm for networks,”
Apr. 2012. [Online]. Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/white-papers/wp-sdn-newnorm.pdf
(Cited on page 50.)

[45] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri, R. Ricci, and
I. Seskar, “GENI: A federated testbed for innovative network experiments,” Computer Net-
works, vol. 61, pp. 5–23, 2014, special issue on Future Internet Testbeds – Part I.
(Cited on page 51.)

[46] Open vSwitch, “Open vSwitch: Production quality, multilayer open virtual switch,” May 2016.
[Online]. Available: http://www.openvswitch.org/
(Cited on page 52.)

[47] B. Oliver, “Pica8: First to adopt OpenFlow 1.4; why isn’t anyone else?” May 2014. [Online].
Available: http://www.tomsitpro.com/articles/pica8-openflow-1.4-sdn-switches,1-1927.html
(Cited on page 52.)

74

https://www.github.com/floodlight/loxigen
https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-enterprise-campus.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-enterprise-campus.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://www.openvswitch.org/
http://www.tomsitpro.com/articles/pica8-openflow-1.4-sdn-switches,1-1927.html


[48] Open vSwitch, “Open vSwitch manual: ovs-vsctl,” Dec. 2015. [Online]. Available:
http://www.openvswitch.org/support/dist-docs/ovs-vsctl.8.txt
(Cited on page 62.)

75

http://www.openvswitch.org/support/dist-docs/ovs-vsctl.8.txt

	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1 Introduction
	Chapter 2 Background and Related Work
	2.1 Software-Defined Networking
	2.1.1 Architecture
	2.1.2 OpenFlow Protocol
	2.1.3 Architecture Vulnerabilities
	2.1.4 Classifying Vulnerabilities and Attacks
	2.1.5 Debugging and Testing
	2.1.6 Network Correctness

	2.2 Fault and Attack Injection
	2.2.1 Definition
	2.2.2 Fault Injectors
	2.2.3 Attack Injectors


	Chapter 3 Attack Model
	3.1 System Model
	3.1.1 Components
	3.1.2 Data Plane
	3.1.3 Control Plane

	3.2 Threat Model
	3.3 Attacker Capabilities
	3.3.1 Modeling Attacker Capabilities
	3.3.2 Modeling Encryption
	3.3.3 Modeling of No Capabilities
	3.3.4 Mapping Attacker Capabilities to System Model


	Chapter 4 Attack Language
	4.1 Message Properties
	4.2 Conditionals
	4.3 Actions
	4.4 Rules
	4.5 Attack States
	4.5.1 Attack State Graph
	4.5.2 Special States
	4.5.3 Modeling Normal Operation
	4.5.4 Modeling Memory


	Chapter 5 Attack Injector
	5.1 Components
	5.1.1 Compiler
	5.1.2 Runtime Injector
	5.1.3 Monitors

	5.2 Complexity
	5.2.1 Memory Complexity
	5.2.2 Runtime Complexity

	5.3 Implementation

	Chapter 6 Use Case
	6.1 System Model
	6.1.1 Context
	6.1.2 Components

	6.2 Experimental Setup
	6.3 Experiments
	6.3.1 Flow Modification Suppression
	6.3.2 Connection Interruption

	6.4 Results
	6.4.1 Flow Modification Suppression
	6.4.2 Connection Interruption


	Chapter 7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Appendix A Attack Language Grammar
	References

