
POWERALERT: Integrity Checking using Power
Measurement and a Game-Theoretic Strategy

Ahmed M. Fawaz, Mohammad A. Noureddine, and William H. Sanders
University of Illinois at Urbana-Champaign
{afawaz2, nouredd2, whs} @illinois.edu

Abstract—We propose POWERALERT, an efficient external
integrity checker for untrusted hosts. Current attestation systems
suffer from shortcomings, including requiring a complete check-
sum of the code segment, from being static, use of timing infor-
mation sourced from the untrusted machine, or using imprecise
timing information such as network round-trip time. We address
those shortcomings by (1) using power measurements from the
host to ensure that the checking code is executed and (2) checking
a subset of the kernel space over an extended period. We compare
the power measurement against a learned power model of the
execution of the machine and validate that the execution was
not tampered. Finally, POWERALERT randomizes the integrity
checking program to prevent the attacker from adapting. We
model the interaction between POWERALERT and an attacker
as a time-continuous game. The Nash equilibrium strategy of the
game shows that POWERALERT has two optimal strategy choices:
(1) aggressive checking that forces the attacker into hiding, or (2)
slow checking that minimizes cost. We implement a prototype of
POWERALERT using Raspberry Pi and evaluate the performance
of the integrity checking program generation.

I. INTRODUCTION

Computer systems manage most aspects of our lives includ-
ing those related to critical infrastructures, communication,
finance, and healthcare. Those computers enable better control
of the systems achieving more efficiency while promising
reliability and security. In reality, the promise of security is
elusive and is often disrupted by new exploits and attacks.
Over time, those attacks are becoming more sophisticated,
targeted, and elusive. Since most systems that are intended
to be secure may be compromised by some attacker, intrusion
resiliency as a protection strategy has a better chance at im-
proving security than protection alone. The resiliency strategy
considers compromises inevitable; it protects the best it can
but moves to detect attacks and devises methods to control a
compromise while maintaining an acceptable level of service.
Critical to such a strategy is the ability to detect compromises
and devise methods to find optimal responses that modify the
system to maintain security and service goals.

Detection of compromise is conditioned on the ability to
guarantee that sensors that monitor hosts are not themselves
compromised. Sophisticated attacks, known as advanced per-
sistent threats (APTs), target high-valued assets [16]. APTs,
often meticulously planned, are slow and stealthy operations
that span months to years. As seen in previous attacks, such
as Stuxnet, APTs maintain stealthiness by using custom attack
tools, compromising sensors to thwart detection, and using
rootkits to change kernel operations.

As such, resiliency strategies are vulnerable to a well-
planned adversary. The adversary will attempt to manipulate
monitoring information by tampering with sensors, necessary
for intrusion detection, leading the defender to believe in a
false state of security. Thus, it is essential to validate the
integrity of software running on an untrusted machine whose
aim is to provide resiliency. Checking software integrity is
challenging when faced with a dedicated attacker; the attacker
will learn from previous experience and subvert the detection
methods; she will manipulate measurements that originate
from within the untrusted machine; she will attempt to hide
to avoid detection. Even in the presence of trusted hardware
within the untrusted machine, an attacker can still manipulate
the runtime state of the machine after boot, or also exploit the
trusted base to manipulate the stored trusted state. We propose
a system that tackles the following question: How to validate
the integrity of software against a slow and stealthy attacker
without any trusted components in the machine?

We make the following requirements for the solution to
our problem: it should (1) be independent of the machine
to be checked, (2) use a trustworthy base, as opposed to a
trusted one, that cannot be exploited by an attacker, and (3)
allow for low-cost runtime integrity checking. Today’s golden
standard in security uses in-machine tamper-resistant chips
(such as TPM or AMT) that hold secrets to generate chains
of trust. Those trusted components are assumed to be uncom-
promisable; a property that we cannot verify. Thus, solutions
that are dependent on such hardware are still vulnerable to
undiscovered exploits which raises the security bar but does
not alleviate the problem.

To address the problem, we propose POWERALERT, a low-
cost out-of-box integrity checker that uses the physics of the
machine as a trustworthy base. Specifically, POWERALERT
directly measures the current drawn by the processor and
uses normal behavior models to validate the behavior of the
untrusted device; POWERALERT suspects the presence of an
attacker if the measured behavior deviates from the normal
model. This is based on the observation that an attacker at-
tempting evasive or deceptive maneuvers will have to use extra
energy thus drawing additional current. Traditional techniques
that use side-channel information to validate the behavior of
an untrusted machine are ineffective against persistent and
adaptive attackers; they used network timing information [19]
which is inaccurate as it depends on network conditions and
can thus be subverted by a smart attacker. In our work, POW-



ERALERT uses the current signal as a trustworthy and accurate
side-channel, sampled at 1 million samples per second, to
measure the energy used- and the time needed to perform
integrity checking.

POWERALERT tackles the classical problem of the static
defender, in which an adaptive attacker can learn the protection
mechanism and evade or subvert the defenses (Section VIII).
In our work, we level the playing field by introducing
three main contributions. First, we randomly generate a new
integrity-checking program (IC-program) each time we at-
tempt to verify the integrity of a machine; POWERALERT
generates the IC-programs in a way that is unpredictable to the
attacker (Section IV). Second, each time the POWERALERT-
protocol is initiated, we set each IC-program to check a small
subset of the system’s memory. The subset changes each time a
new IC-program is generated; such that over the lifetime of the
machine, the whole space of addresses is checked many times.
This helps in achieving two desirable goals: (1) it avoids the
problem of the attacker predicting the fraction of the memory
we are checking and taking precautions and (2) it minimizes
the performance overhead needed to perform continuous-time
integrity checking.

Operationally, each time POWERALERT checks the integrity
of the machine it initiates the POWERALERT-protocol. It
sends a randomly generated IC-program to the computer and
measures the current drawn by the processor (Section III).
During execution of the POWERALERT-protocol, the untrusted
machine is expected to load the program, to run it, and to
return the output. POWERALERT validates that the untrusted
machine did not deviate for the expected script by (1) checking
the output of the IC-program, and (2) comparing the frequency
spectrum and timing information extracted from the measured
current signal to a learned energy model (Section V). Any
deviation serves as an indication that the untrusted machine
did not perform the expected tasks.

Finally, we alleviate the problem of an attacker hiding
its traces every time the POWERALERT-protocol is started
by finding the defender’s optimal initiation strategy. We find
the optimal strategy by modeling the interactions between
the defender and the attacker as a continuous- time game
(Section VI). In the game, the attacker attempts to evade the
defender’s integrity checks by disabling its malicious activities
while the defender has to balance the frequency of its checks
along with the performance overheads that the target machine
suffers. Our analysis of the Nash equilibria of the game
reveals that the defender can control the attacker’s behavior by
changing the frequency of her integrity checks. We observer
that (1) the defender can force the attacker to risk detection by
decreasing the frequency of the checks, and (2) the defender
can force the attacker to hide more often by increasing the
rate of the checks. In the former case, the defender intends to
maximize the detection rate while in the later, she minimizes
her checking costs.

II. SYSTEM DESCRIPTION

In order to address the problem of dynamic integrity check-
ing of software (mainly the static memory in the kernel) on an
untrusted machine, we propose POWERALERT, an out-of-box
device that checks the integrity of an untrusted machine. In this
section, we describe our approach for the solution explaining
the architecture of POWERALERT, protection assumptions, and
the threat model.

A. Problem Description

When an attacker compromises a machine, they have com-
plete control of the operations of the machine by injecting
code that modifies memory, function pointers, kernel code,
and device drivers. A rootkit, for example, typically changes
functions pointers in the kernel’s memory space to redirect
execution to malicious functions. A defender wanting to check
if the machine is compromised searches for modifications in
the state of the machine. Unless the defender extracts the state
of the machine without any processes running, the attacker can
tamper with the reads to misrepresent the state of the machine.
The problem is how to validate that the results of integrity
checking are untampered.

B. Solution Approach

POWERALERT is a trusted external low-cost box tied to
the untrusted machine. Figure 1 shows the architecture of
POWERALERT. The box runs an integrity checking protocol,
POWERALERT-protocol, on the untrusted machine. The proto-
col starts by sending a challenge to the untrusted machine. The
challenge is a randomly generated integrity checking program,
called the IC-program. The machine is expected to respond
to the challenge by running the program, which hashes a
randomly selected part of the memory, and sending back the
output. POWERALERT checks the response and compares it
to the known state of the untrusted machine. The process is
repeated over the life of the machine. Thus POWERALERT
avoids checking the whole state of the machine, and instead
checks small portions of the machine periodically. If the
machine is not compromised, the IC-program will always
respond correctly to the challenge; however, if the machine
is compromised, the response will eventually be an invalid.

The attacker might try to deceive POWERALERT by adapt-
ing or running parallel operations (such running a virtual ma-
chine). In order to validate that only the IC-program is running,
POWERALERT measures the current drawn by the processor
of the machine and compares it to the current model for
normal behavior. The power model is specific to the processor
model and thus has to be learned for each machine. During
the initialization of POWERALERT, the machine is assumed
uncompromised. POWERALERT instruments the machine by
measuring the current drawn by the processor while running
operations semantically similar to the POWERALERT-protocol.
POWERALERT learns a power model specific to the machine
that is later used for validation. Finally, an attacker might
attempt to adapt to POWERALERT’s challenge by analyzing
the IC-program and finding an optimized version that hides

2



Fig. 1: The components of PowerAlert.

deception operations from affecting the side-channel measure-
ments. So to prevent an attacker from adapting, POWERALERT
randomizes the challenge, i.e. the IC-program, each time the
POWERALERT-protocol is initiated.

C. Threat Model

We assume a fairly powerful attacker when it comes to
the untrusted machine; the attacker has complete control over
the software. However, we assume that the attacker does not
modify the hardware of the machine; for example, the attacker
does not change the CPU speed, or modify firmware. We do
not assume any trusted modules or components on the machine
to be tested. Our trust base is derived from the randomness
of the protocol and physical properties of the CPU. We
assume that the attacker is completely untrusted runs deceptive
countermeasures to hide her presence and deceive the verifier,
and attempt to reverse-engineer the integrity-checking program
for future attempts. We aim for our approach to resist the
following attacks:

Proxy attack: The attacker uses a proxy remote machine
with the correct state to compute the correct checksum and
returns the result to the verifier.
Active analysis: The attacker instruments the IC-Program
to find memory load instructions in order to manipulate the
program.
Static analysis: The attacker analyzes the IC-program to
determine its control flow and functionality within the time
needed to compute the result. The attacker can precom-
pute and store the results, find location of memory load
instructions, or find efficient methods to manipulate the IC-
program [25].
Data Pointer redirection: The attacker attempts to modify
the data pointer that is loaded from memory.
Attacker hiding: The attacker uses compression [21] or
ROP storage [4] in data memory to hide the malicious
changes when the POWERALERT-protocol is running.
Forced retraining: The attacker forces POWERALERT to
retrain models by simulating a hardware fault resulting in a
change in hardware.

D. Assumptions

In this work, we assume that POWERALERT is a trusted ex-
ternal entity that use a trusted untampered channel to connect
to the untrusted machine. While this assumption can be relaxed
by using authentication, we opt to address it in future work.
We assume that POWERALERT has complete knowledge of

the uncompromised state of the machine. POWERALERT uses
the known uncompromised state to verify the output from the
untrusted machine. Finally, the current measurements provide
a trustworthy side-channel. Those measurements are directly
acquired by tapping the power supply to the CPU and thus
they cannot be tampered with; the learned models are based on
the physical properties of the system which cannot be altered.
Any attacker computation, such as static analysis of the IC-
program, will manifest in the current signal.

III. POWERALERT PROTOCOL

We model the interaction between POWERALERT and the
untrusted machine as a challenge-response protocol between
a verifier and prover. We name the protocol that defines
this interaction the POWERALERT-protocol. The goal of the
checker is to verify that the prover has the correct proof; in
this case, we are interested in the state of the kernel text
and data structures. On a high-level, the verifier requests the
state of a random subset of the kernel state and the prover
has to produce the results. Instead of directly requesting the
memory locations, the verifier sends a randomly generated
function that hashes a subset of the kernel state. The verifier
uses current drawn by the CPU, a side-channel measurement,
to validate the expected runtime and energy of the response.
The POWERALERT-protocol is repeated over time; positive
results increase confidence that the kernel’s integrity is pre-
served. In the following, we describe the interactions in the
POWERALERT-protocol.

The protocol works as follows. At a random instance in
time, based on the initiation strategy developed in section VI,
the verifier initiates the POWERALERT-protocol. The verifier
starts by randomly generating a hash function f , a random
function to generate a random set of address positions L. In
this setting, the hash function f is the IC-program. The verifier
sends the random parameters < f,L > to the prover. The
prover is then supposed to load the hash function, f and run
it with inputs L . Meanwhile, POWERALERT measures and
records the current drawn by the processor i(t). Subsequently,
the prover sends the output of the hash function back to the
verifier. Finally, the verifier stops recording the current trace,
confirms the output, and validates the expected execution with
i(t)– the measured current drawn by the processor.

The verifier introduces uncertainty by changing the hash
function, order of-, and the subset of-addresses. The uncer-
tainty makes it hard for a deceptive prover to falsify the
output. Changing the hash function prevents the attacker from
adapting to the verifier’s strategy; changing the addresses
and nonce prevents the attacker from predicting the verifier’s
target.

In the following sections, we define the method for gener-
ating the hash functions, the strategy for picking a subset of
memory addresses, and the method for measuring current and
trace validation.

3



Fig. 2: General Architecture of the Hash Function

IV. INTEGRITY CHECKING PROGRAM

In this work, we take a different approach to address the
problem of the static defender. Instead of building the strongest
mechanism possible [19], we build a changing mechanism that
prevents the attacker from adapting. Specifically, we randomly
generate a new IC-program each time the POWERALERT-
Protocol is initiated. Moreover, the IC-program has to be
resistant to active and static static analysis. To counter active
analysis, we change the program every time and thus making it
harder for the attacker to catch-up. To counter static analysis,
the program is obfuscated by flattening the control flow
structure so that attacker analysis will show up in the power
trace. We present the method for generating the IC-program
in the following sections.

A. IC-Program Structure

The IC-Program’s purpose is compute a hash of a subset
of the state of the untrusted machine, in order to assess the
integrity of the machine. The general flow of the program
is a loop that reads a new memory location and updates
the state of the hash function. We obfuscate the high-level
structure by flattening the control graph of the program using
the technique in [27]. The obfuscated program makes it harder
for the attacker to locate the load instructions necessary for a
memory redirection attack. Any static or active analysis will
be observed on the power trace and thus can be detected.
Note that the program that is randomly generated is not
polymorphic, that is the functionality of the program changes,
not just the structure.

A new hash function is used for every run of the protocol.
We chain randomly generated LFSRs, the outputs of which are
combined using a Boolean function (such as XOR). Figure 2
shows the high-level configuration of the hash function. The
outputs of the LFSRs are accumulated with the data in a k bit
vector.

The chaining strategy defines the logic for enabling the
LFSRs. The input of the enable logic is the memory address
being processed, not the data itself. By using the memory
address, the attacker will have a harder time to perform a
memory redirection attack. The logic is constructed by creating
a random binary tree of depth n. The tree defines the control
flow of each loop in the IC-program. The control variable at
each level is a unique memory address bit. Each level decides
if an LFSR is enabled or not. For each node, an LFSR is
enabled/disabled, and then the program counter jumps to either
child by comparing an address bit. In case the node only has

one child, the jump instruction will be omitted for a continuous
execution.

B. LFSR generation
On the other hand, each LFSR is also randomly generating

using randomly generated irreducible polynomials in a Galois
Field. An LFSR is related to polynomials in Galois field
GF (2). The process for generating maximal LFSRs uses irre-
ducible polynomial p(x) of degree n. A maximal LFSR has the
highest period, the period of the LFSR is the time it takes for
the register to return to its initial state. A short period makes
it easier to predict the output. A polynomial is irreducible if
x2n = x mod p(x). For a polynomial p(x), the n-bit Galois
LFSR is constructed by tapping the positions in the register
that are part of p(x). In operation, bits that are tapped get
XOR’ed with the output bit and shifted, while untapped bits
are shifted without changed. The output bit is the input to the
LFSR. We generate random polynomials and apply the Ben-
Or irreducibility test [11]. The polynomials are generated by
sampling the uniform distribution, unif(1, 2n − 1). For ex-
ample, p = 24577 (binary representation 110000000000001)
encodes an LFSR where bits 1, 14, and 15 are tapped, that is
p(x) = 1 + x14 + x15.

V. POWER ANALYSIS

We verify the execution of POWERALERT-protocol using
the current drawn by the processor. We learn the normal
Power Finite State machine (PFSM) model using training data
from the machine. Then for each round of the POWERALERT-
protocol we extract the power states and confirm that they are
generated by the normal model.

In the following section we explain the method for current
measurement, the method to extract the power states from
a current signal, the high-level PFSM model, the method to
learn the normal parameters of the model, and the method
for validation. Finally, we use the learned model to aid in the
parameter selection for IC-program generation.

A. Measurement Method
The current drawn by the processor is measured using a

current measuring loop placed around the line. Our setup
works for computers with motherboards that have separate
power line for the processor. Our generation and verification
algorithms are not limited to any sampling rate; in fact, the
algorithms can be adapted for any sampling rate depending
on the needed accuracy. We measure the current directly by
tapping the line from the power supply to the CPU socket on
the motherboard; as opposed to measuring the power usage
by using the instrumentation provided by the processor as
the data will pass through the untrusted software stack. Such
data is susceptible to manipulation and cannot be trusted as
an absolute truth. On the other hand, direct measurement
provides a trusted side channel that we use to validate that
an untampered POWERALERT-protocol is executed.

The measured current signal is either stored for model
learning or processed in real-time for POWERALERT-protocol
execution validation.

4



B. Extracting the Power States

We observe that the current drawn by a processor during
an operation takes the form of multi-power states, where each
state draws a current with a unique profile. Such behavior is
consistent with the way a processor work: different operations
use different parts of the processor’s circuitry. As each part
of the processor switches dynamic current passes through the
transistors. Thus different combinations of the circuitry will
draw current with different profiles.

We start by extract the segments in the current signal that
belong to different power states, by finding areas of change of
operation modes. First, we filter the signal i(t) using a lowpass
filter, h1(t) to remove high frequency noise from the signal,
il(t) = i(t) ∗ h1(t), leading to the orange signal in Figure 3a.
Then we compute the derivative of the filtered signal, I(t) =
dil(t)/dt. The derivative will be near zero for the segments
of i(t) with near constant current level (after filtering) and
mode changes will be non-zero. We filter the derived signal
I(t) with another lowpass filter, h2(t), to remove more high
frequency noise, If (t) = I(t) ∗ h2(t). Finally, we extract the
segments between non-zero changes by computing a threshold
of the signal using an indicator function I>λ(t). The indicator
function is 1 if the absolute value of a signal is greater than
λ. The transformation leads us to finding the segments of the
signal with abrupt current changes, those segments are the
power states. For each segment in is = i(t) for ta < t < tb,
we compute its average Is = 1

tb−ta

∫ tb
ta

is(t)dt and frequency
spectrum, Is(w) = F{is(t)}. Both indicators describe the
current profile during the operation. The duration of each state
is computed as τ = tb − ta.

C. Power Execution Model

We model the operations that take place in POWERALERT-
protocol, network and hashing operations, using an extended
Power Finite State Machines (PFSM). The model and timing
of each power state are used by POWERALERT to validate that
the POWERALERT-protocol was running untampered.

The PFSM, proposed by Pathak [23], is a state machine
where each state represents a power state Sk. We extend each
power state to contain the physical characteristics of each state
as a tuple (duration, average current, and frequency spectrum).

The POWERALERT-protocol starts by a network communi-
cation (network operation) between POWERALERT and the
machine. Then the machine is supposed to load and run
the IC-program (hash operation). The overall operation state
machine is shown in Figure 4. A PFSM has an initial idle
state S0 with power profile (τ0, I0, I0(w)). When an operation
starts, a network receive with a TCP socket, the PFSM moves
deterministically to power state S1. If the network operation is
long, then the states cycles between S0 and S1 until network
communication is complete; this is due to data being pushed
from the network card to memory buffers. Figure 3b shows
the current trace drawn during a network operation. After
communication is done, the hosts loads the IC-program; PFSM
moves from the idle state S0 to S2. Then the hosts runs the
IC-program; PFSM moves to the S3 state. Figure 3a shows

(a) Memory read and hash current trace

0 2000 4000 6000 8000 10000

Time step (2 7s)

0.5

1

1.5

2

2.5

3

cu
rr

en
t (

A
) i

3
=2.34A

i
0
= 870mA

i
2
=1.580A

(b) Network operation current trace

0 2000 4000 6000 8000 10000

Time step (27s)

0.6

0.8

1

1.2

1.4

1.6

1.8

cu
rr

en
t (

A
) i

1
=1.360 A

i
0
=870 mA

Fig. 3: Current drawn during network and memory read
operations.

S0

S2

S3

S1

load
hash

idle

network

Fig. 4: Power Finite State Machine (PFSM) of POWERALERT-
protocol

the current trace drawn during a hash operation. Finally, a
network operation returns the output to POWERALERT; the
PFSM moves from S0 to S1 and back to S0. In the following,
we explain the method for learning the normal PFSM of a
machine.

D. Learning the models

For each machine, we assume that we start the from an
initial uncompromised state. We establish a power behavioral
baseline, build the PFSM and a language for each operation,
and learn an execution time model. We initiate the POW-
ERALERT-protocol multiple times and store the current signal

5



for every run. For each signal the power states are extracted
using the method in section V-B and the current profiles of
are averaged. Moreover, we establish the idle power state by
measuring power when no applications are running.

In our test machine, an AMD Athlon 64 machine running
Linux 4.1.13, the average current drawn during the idle state
is 870mA, the average current drawn during the load phase
is 2.34A, the average current drawn during the hash phase
is 1.580A, and the average current drawn during the network
operation phase is 1.360A.

The idle state current depends on many factors including
the semiconductor manufacturing process. The manufacturing
process determines static power consumption (subthreshold
conduction and tunneling current) which is the current draw
when the gates are not switching. Thus the current levels in the
generated are unique to the machine and need to be learned
for each machine. We decided not fold in semiconductor
aging into the power model. Aging causes degradation of
the transistor leading to failures; however the time scale
where aging affects performance is in the order of 5 years.
Specifically, aging has no effect on dynamic power [13] but it
does affect threshold voltage. The static power is proportional
to the threshold voltage [30]. Studies have shown that the
threshold voltage varies within 1V during thermal accelerated
aging [5] which causes a 0.4% increase in static power. We
consider this increase insignificant to incorporate into the
model especially that it requires years to happen.

In the following, we learn a timing model using the training
data from the machine to be inspected and we propose the
method of validating the execution of the POWERALERT-
protocol using the learned PFSM and the timing model.

Retraining the models: In order to retrain the model when
needed; for example when an operating system is updated.
We opt for the following procedure: (1) backup the data in
permanent storage, (2) wipe storage, (3) install a clean OS,
(4) collect training data and learn the models, and (5) restore
permanent storage. This process, given our assumption of no
hardware attacks, ensures that the attacker cannot interfere
with the training process, as the persistent storage is removed
during the training phase.

E. Learning Power State Timing

We use timing information in our system as part of the
validation process. Specifically, we confirm that an adversary
is not trying to deceive POWERALERT by extracting the timing
information (duration) for each power state and compare it to
a learned model. By extracting the timing information using
the power signal we control the accuracy of the measure as
opposed to using network RTT in remote attestation schemes
which are affected by the network conditions. Moreover, we
have confidence that the timing was not manipulated as it was
extracted from an untampered source. We learn the execution
time model for the hash phase and the network phase.

All IC-programs have a a complexity O(c · N) where
N is the input size and c is the number of instruction

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Fig. 5: Timing difference in current signal due to tampering.

per loop, and use the same type of instructions as any IC-
program. We postulate that any IC-program of equal input
size N and c number of instructions will have the same
execution time. Thus to obtain the training data for learning
the timing model, we generate IC-programs for different input
size and instruction count and find the execution duration per
program. The experiments are repeated multiple times and the
results are averaged. We use multivariate regression to learn
a model of the execution time of the IC-program. The model
uses predictor variables x = [N, c] and a response variable
y = t (execution time). For our test machine, the duration
of the hash phase has is fitted into a multi variate model
y = 1.3958+0.081x(1)−0.017x(2)+0.008x(1)×x(2) with
mean error σ = 5.4542µs. The mean error of the model is
significant because it determines the leeway the adversary. If
the error is high, then the attacker has a wide gap to employ
evasion techniques. Figure 5 shows the impact of an attacker
injecting instructions into the program. The plot shows the
current signal measured during the hash phase. The blue signal
is the normal behavior, and the orange signal is the tampered
one. Both signals have the same power states. However the
tampered signal stays longer in the second state.

During the network phase, the machine is either receiving
data or sending the result. When the POWERALERT-protocol
is initiated, the CPU performs an IO operation to transfer data
from the network card. While when the machine returns the
results, the CPU performs an IO operation to transfer data to
the network card. We learn the timing model of the network
phase by varying the number of bytes to be transferred and
then measuring the time it takes to transfer those bytes. Using
our test machine, yn = 0.129× x+ 12.48 is the linear model
that predicts the timing for the network phase as a function
of the number of bytes (x). The mean error of the model is
σn = 1.902µs. The model’s constant component is the time it
takes the OS to create the buffers and the linear component is
the time to transfer the data over the buses using DMA. The
linear coefficient models the bus speed.

F. Measurement Validation

POWERALERT measures the current drawn in during
POWERALERT-protocol and attempts to validate that the
trace is generated due to the POWERALERT-protocol PFSM
in Figure 4. The power states are extracted from the

6



current signal resulting in a sequence of states S =
S(0), S(1), S(2), . . . , S(n). A state is detected by matching
the frequency spectrum of the current signal to the stored
spectra in the PFSM, and then the duration of each state
is compared to the learned timing model. For each phase
POWERALERT computes the different between the measured
duration and the model estimate, an alarm is raised if the
difference exceeds the maximum value of the model error and
the sampling error.

If errors are not detected during state estimation, POW-
ERALERT then matches the sequence of states to the regular
language which is generated by the POWERALERT-protocol
PFSM learned by POWERALERT during the training phase
(Figure 4).

L = (S0, S1)
+(S0, S2, S3, S0)(S0, S1).

The first part of the language, (S0, S1)
+, is the protocol initi-

ation phase. The second part, (S0, S2, S3, S0), is the hashing
phase. Finally, the last part, (S0, S1), is the output phase. If
the language is not matched an alarm is raised.

G. Parameter Search

The parameters of the IC-program determine the execution
duration; if the execution is within the sampling error or model
error, then an attacker can hide. Thus, we design the IC-
program such that added instructions can be detected.

In order to find the optimal parameters for the IC-program,
the optimization in Equation (V-G) is solved by POW-
ERALERT. The optimization minimizes the total running time
constrained by the hardware sampling rate, the cost to run the
IC-program, and the coverage required. Where N is the input
set size, c is the IC-program size, y(·) and yn(·) are the learned
models, σm and σn are the model errors, σs is the sampling
error, γ is a tolerance factor, cost is the maximum cost, and
coverage is the minimum coverage.

minimize
N,c

y(N, c)

subject to y(N, c+ k)− y(N, c) > γ ·max(σm, σs)

yn(c) > γ ·max(σn, σs)

c < cost, N/Ntotal > coverage.

We compute the parameters of the IC-program for k = 4
with a tolerance factor γ = 10, cost = 300, and coverage =
0.000001. When the sampling rate is 1 MHz, the input set
size is 2,019 bytes for a program size of 40 instructions.
While when the sampling rate is 200 KHz, the optimal input
size becomes 3,269 for a program size of 40 instructions.
Our computations show that the higher the sampling rate the
smaller the input IC-program has to be. So if the designer
invests more in the hardware capabilities of POWERALERT,
the attacker’s leeway will be tighter and with low overhead to
the machine.

VI. ATTACKER-VERIFIER GAME

We model the interaction the interactions between the
defender (POWERALERT) and the attacker using a continuous
time game with actions performed asynchronously. In this
game, the defender initiates the POWERALERT-protocol at ran-
dom times with a pre-defined strategy while the attacker tries
to anticipate the defender’s strategy and disables the malicious
changes to the kernel in order to avoid detection. The attacker’s
goal is to coincide her actions with the defender’s actions so
that her malicious activity is hidden when the POWERALERT-
protocol is taking place.

In what follows, we find the Nash equilibrium strategy
for the game when the defender chooses her action times
by sampling an exponential distribution, then the attacker’s
best strategy is to hide her activities by sampling a different
exponential distribution in response to the defender. The Nash
equilibrium strategy is the optimal strategy for the attacker and
defender such that if either the attacker or defender deviate,
their payoff decreases.

A. Formalization as a Game

We present a continuous time game in which a defender
(Pd) makes a move to detect an attacker and an attacker
(Pa) makes a move to hide in order to avoid detection.
A player’s strategy defines the time instants at which she
wants to make her move. For the attacker, Player a, it is the
set Sa = {ta,0, ta,1, ta,2, ta,3 . . .}. For the defender, Player
d, it is the set Sd = {td,0, td,1, td,2, td,3 . . .}. A strategy
Si is a renewal strategy if the action inter-arrival times are
independent and identically distributed [3].

The attacker’s action consists of hiding her malicious activ-
ity for a specified period of time (duration α). Such an action
would restore the machine to its untampered state, thus avoid-
ing detection in case the defender initiates the POWERALERT-
protocol. After the period α elapses, the attacker restores the
malicious state of the machine.

The defender’s action consists of initiating the POW-
ERALERT-protocol to validate the victim machine’s a portion
state, the ratio of checked state is pc; the ratio pc is the
coverage set by POWERALERT. pc is also the probability of
detection when an attacker is present in the machine. An action
succeeds when the defender detects the attacker has modified a
memory location. The action fails when the detection does not
detect an attacker. A failed action does not necessarily mean
the absence of malicious activities; the attacker might have
changed memory locations not checked by the POWERALERT-
protocol.

B. Analysis of Nash Equilibrium

In this section, we study the game in which both players use
exponential strategies. First, we find the form of the expected
payoff of both players for any renewal strategy; then we
compute the expected payoffs for the exponential strategy.
Finally, we find the best response strategies for both players
and the Nash equilibrium of the game.

7



Let y = Za(t) be the age of the renewal process for the
attacker; it is the time since the last move, i.e., y = t − ta.
Let x = Zd(t) be the age of the renewal process for the
defender, i.e., x = t − td. Let the size-bias density function
of random variable X with PDF f be f∗(z) = 1−F (z)

µ ,
where µ = E[X] and F (z) is the CDF of X . The size-
bias cumulative distribution function F ∗(z) =

∫ z
0

1−F (x)dx

µ .
Based on the results in [9], limt→∞ fZ(t)(z) = f∗(z) and
limt→∞ FZ(t)(z) = F ∗(z). In the following compute the
probability of overlap between the defender’s and attacker’s
actions. Consider the following cases:

• No overlap, x ≤ y or y + α ≤ x:

C1(t) =

∫ +∞

y=0

∫ y

x=0

fa,t(y)fd,t(x)dxdy

C∗
1 =

∫ +∞

0

f∗
a (y) [F

∗
d (y)] dy

C2(t) =

∫ +∞

y=0

∫ ∞

x=y+α

fa,t(y)fd,t(x)dxdy

C∗
2 =

∫ +∞

0

f∗
a (x) [1− F ∗

d (y + α)] dx

• Overlap, y ≤ x ≤ y + α:

C3(t) =

∫ +∞

y=0

∫ y+α

x=y

fa,t(y)fd,t(x)dxdy

C∗
3 =

∫ +∞

0

f∗
a (y) [F

∗
d (y + α)− F ∗

d (y)] dy

• Attacker running, y > α:

C4(t) =

∫ +∞

α

fa,t(y)dy

C∗
4 =

∫ +∞

α

f∗
a (y)dy

We compute the time-averaged payoff for the attacker as:

βa =−cl(pc)(C
∗
1 + C∗

2 )︸ ︷︷ ︸
Detection

+ ca × C∗
4︸ ︷︷ ︸

Attack running

− caα
1

E[Xa]︸ ︷︷ ︸
Hiding

.

The first term is the cost incurred when the action succeeds
and the attack is detected; the second term is the gains of the
attacker when the attack is running; and the third term is the
costs of the action of hiding.

We also compute the time-averaged payoff for the defender:

βd = + cw(pc)(C
∗
1 + C∗

2 )︸ ︷︷ ︸
Detection

− cm × 1

E[Xd]︸ ︷︷ ︸
Action

.

The first term is the benefit of detecting the attack (this is when
the integrity check determines that the state was tampered),
and the second term is the cost incurred when an action is
performed.

Consider the case of the exponential underlying random
variable. Specifically, let Xa ∼ exp(λa) and Xd ∼ exp(λd).

In the following we consider two cases, the defender wanting
to minimize the cost of the checks (Theorem 1), or the de-
fender wanting to inflict damage on the attacker (Theorem 2).

First, observe that fa,t(z) = λae
−λaz , f∗(z) = 1 −

F (z)/E(X) = λa(e
−λaz), and F ∗(z) = 1 − (e−λaz). So

the probabilities for the cases above are as follows:
C1 = 1− λa

λa+λd
C2 = λae

−αλd

λa+λd

C3 = −C1 + 1− λae
−αλd

λa+λd
C4 = e−αλa

In computing the best response for each player, we find
the rate that maximizes the payoff given the rate of the
other player. If the payoff function is convex then the global
maximum represents the best response, dβx

dλx
= 0. For α ≪ 1

λ ,
the exponential terms in the probabilities are approximated as
e−αλ ≈ 1 − αλ. Using the approximation, we compute the
positive root λ∗

a of ∂βa

∂λa
= 0.

λ∗
a = λd

(√
pccl
2ca

− 1

)
With pccl ≫ ca, ∂βa

∂λa
> 0 for λa < λ∗

a and ∂βa

∂λa
< 0 for

λa > λ∗
a. Thus the best response strategy for the attacker

given the defender rate is:

BRa(λd) = λd

(√
pccl
2ca

− 1

)
. (1)

Theorem 1. For a defender wanting to minimize its cost, the
game with exponential strategy has a Nash equilibrium with
λ∗
d = Λd,0 and λ∗

a = Λd,0

(√
pccl
2ca

− 1
)

.

Proof. Examining the defender’s payoff reveals that it is
strictly decreasing at this rate:

dβd

dλd
= −λ2

d − 2λaλd − λ2
a

(
1 +

pcα

cm

)
< 0.

Note that the root of the payoff function, βd(λ
∗
d) = 0,

determines the sign of the payoff function. When the root is
positive, the payoff is positive in the interval 0 < λd < λ∗

d; it
becomes negative after the root. On the other hand, if λ∗

d < 0,
then the payoff is strictly negative for all λd.

The following equation is the closed-form root of the
defender’s payoff as a function of the attacker’s strategy:

λ∗
d(λa) =

√
λ2
ac

2
m + 2λacm(α+ 1)p+ (α− 1)2p2

2cm

− λacm − pα+ p

2cm
. (2)

For all positive values of λa and α, the root is positive:
λ∗
d ≥ 0. Thus the defender will always have a positive payoff.

To maximize the defender’s utility, the defender plays at the
smallest possible rate Λd,0 > 0. The best response function of
the defender is:

BRd(λa) = Λd,0.

The Nash equilibrium of this game is λ∗
a =

BRa(BRd(λ
∗
a)).

We consider the case in which the defender decides to inflict
damage on the attacker.

8



Attacker rate 6
a

D
ef

en
de

r 
ra

te
 6

d

Def. Inflicting Damage

Attacker

Def. Max Utility
$

d,0

NE1

NE2

Fig. 6: Game profile with pure Nash equilibrium.

Theorem 2. For a defender attempting to inflict damage on
the attacker, a Nash equilibrium strategy exists such that λ∗

d =

pc
αX−1
cmX and λ∗

a = λ∗
d(X − 1) where X =

√
pccl
2ca

.

Proof. Increasing λd increases the best response rate of the
attacker, thus forcing the attacker to hide more frequently. We
propose that the defender play a strategy that leads to βd = 0.
The goal of this strategy is to harm the attacker before the
detection succeeds. We define the best response strategy for
the defender in response to the attacker’s λa as the root of the
payoff function:

BRd(λa) =

√
λ2
ac

2
m + 2λacm(α+ 1)p+ (α− 1)2p2

2cm

− λacm − pα+ p

2cm
.

On the other hand, the attacker’s best strategy is highlighted
in Equation (1). Assuming that cm ≪ pcα, then the best
attacker response is to linearly follow the defender’s rate:

BRa(λd) = λd

(√
pccl
2ca

− 1

)
.

The Nash equilibrium is computed as λ∗
d =

BRd(BRa(λ
∗
d)).

Figure 6 shows the game profile for both defender goal and
the Nash equilibria due to said strategies. Our analysis shows
that we have two Nash equilibria depending on the goals of
the defender. If the defender is interested in inflicting damage
on the attacker, the defender plays a Nash equilibrium (NE
2) that uses lots of resources for the sake of detecting the
attacker; at this equilibrium, the utility of the defender is kept
at 0. This NE forces the attacker to hide more often to avoid
detection, thus stopping malicious activity. However, if the
defender wants to maximize his utility, then he selects the
smallest possible rate as a strategy (NE 1). This equilibrium
has the attacker playing at a relatively slow rate in response
to the defender’s slow rate. The defender slowly checks the
state of the system and eventually detects the attacker while
being unpredictable to an adaptive attacker.

VII. DISCUSSION

In this section, we discuss some security details related to
the implementation of this system. Specifically, we discuss the
attack surface of POWERALERT and the security concerns with
the IC-Program. Moreover, we consider the practicality of our
solution, and it’s important despite the existence of TPMs.

A. Implementation Details

Each POWERALERT device has a client on the untrusted
machine. The client is a low-level module that communicates
with POWERALERT. The client is implemented for placement
in the kernel or the hypervisor. The communication channel
between POWERALERT and the client can be over any medium
such as Ethernet, USB, or serial. All those channels are feasi-
ble because of the proximity between POWERALERT and the
untrusted machine. The use of serial or USB communication is
advantageous because it limits the attacker to physical attacks,
making man-in-the-middle and collusion attacks harder. If the
attacker has physical access to the machine, then she could
tamper with POWERALERT.

The client receives the IC-Program as machine code over
the communication channel. POWERALERT signs the code,
their keys are exchanged during the initialization phase of the
system. The signed program allows the machine to attest that
POWERALERT is the generator. We propose using a stream
cipher as it has better performance than public-private key
ciphers or block ciphers. Finally, the client on the machine
has to pause execution of other programs when the protocol
is initiated. In our implementation, the IC-program is run on a
single core using spin_lock_irqsave(), while the other
cores’ executions are blocked by running a sequence of NOP
instructions.

The hardware requirements for POWERALERT are minimal.
We implemented a prototype using Raspberry PI 2. The
prototype uses an ADC to convert the current measurements
from the current loop to a digital signal. The ADC uses a
sampling rate of 500KHz; most low-cost hardware can handle
this sampling rate. Moreover, power state extraction is only
performed when the POWERALERT-Protocol is initiated, the
operation does not need to be real-time.

B. Comparison to TPM

POWERALERT does not rely on specialized hardware within
the untrusted machine such as TPM or Intel’s AMT. However,
POWERALERT and trusted modules are orthogonal systems;
whereas TPMs provide a method for secure boot, dynamic
integrity checking is still costly and harder to enforce. POW-
ERALERT provides an external security solution that can be
tied to a security management across a wide network. In fact,
POWERALERT can use Intel’s AMT as a communication chan-
nel. Finally, our work demonstrates the need for measurements
that do not pass through or origin in the untrusted machine.
Such measurements reduce the risk of attacker tampering and
mimicry. Having POWERALERT be an external box as opposed
to being an internal module aids in separating the boundaries
between the entities. The clear boundary allows us to find a

9



clear attack surface, enables easier alerting capabilities, and
easier methods to update POWERALERT when vulnerabilities
or new features are added.

C. Space of IC-Programs

A large space of IC-programs is required to prevent reuse.
The maximum number of IC-programs that can be generated is
the product of the maximum number of binary trees multiplied
by the maximum number of irreducible polynomials. Thus,
the total number of IC-programs that can be generated is
Dd,n = Md(2) × tn. Where, tn =

∑2n

i=0

(∏i
k=2

i+k
k

)
is the

maximum number of binary trees with depth n, computed
using the Catalan number, and Md = 1

d

∑
k|d µ(k)2

d (the
necklace polynomial) is the maximum number of irreducible
polynomials of degree d in GF (2). The total number of
programs for n = 40 and d = 5, D5,40 = 1.97× 1026

D. Performance Impact

We deem the performance impact of POWERALERT ac-
ceptable. When the POWERALERT-protocol is initiated and
the IC-program starts execution, execution of all other tasks
on the machine is paused. This is needed in order to ensure
that no other tasks interfere with the current measured from
the CPU. The POWERALERT-procotol is initiated, on average,
once every minute for 0.9 ms for the aggressive defense
strategy in Nash Equilibrium 2. The graphical degradation will
not be noticeable by a user, because, in terms of graphical
responsiveness, the pixel response time should not exceed 4
ms [22]. Moreover, CPU overhead due running the protocol
is insignificant at 0.18%.

E. Limitations

In this work, we did not study the variability of the power
model. While we argued that the power model will not
vary over time due to degradation, however, it does vary
due to hardware process variation and operation temperature
variation. Moreover, we did not study the false positives of
the approach because it is determined by three parameters,
the sampling rate, the error of the power model and γ (used
to find the size of the IC-program). The designer is encouraged
to pick those parameters to decrease the false positive rate to
near zero.

VIII. SECURITY ANALYSIS

POWERALERT uses current measurements, timing infor-
mation, and diversity of the IC-Program to protect against
subversion of integrity checking. The power measurements
are used to limit the operation of the machine to just the IC-
Program while diversity limits the attacker’s ability to adapt to
our checking mechanisms. In this section, we list the methods
in which POWERALERT addresses the attacks discussed in
Section II-C.

Proxy attack: In this attacker, the attacker attempts to
forward the IC-Program to a remote machine to compute and
return the result via the same network link. POWERALERT
detects this attack by examining its effects on the current

trace and the timing of the network phase. Using the current
trace, POWERALERT will observe that network operations
took longer than expected as more bytes were transferred
between the CPU and the network card. The size of the
IC-Program, which was picked by the optimization process
described in Section V-G, ensures that our hardware will pick
up the retransmission. Any physical attack, such as tapping
of the network line or firmware changes to the NIC, are not
within our purview.

Active analysis: In this attack, active reverse engineer-
ing is used to learn the usage patterns of the IC-Program.
POWERALERT changes the IC-Program each time the POW-
ERALERT-protocol is initiated; the diversity renders the infor-
mation learned by the attacker from the previous run obsolete.
The probability that a program will ever get repeated is
1/1020. Moreover, it is practically impossible for the attacker
to predict our next IC-Program. The attacker has to predict
the random numbers generated by POWERALERT’s random
number generator; in this work, we require POWERALERT to
use a true random number generator that uses some physical
phenomena as opposed to a pseudorandom number generator
that can be predicted by a dedicated attacker.

Static analysis: Analyzing a flattened control flow is NP-
hard [27]. Thus it will not be possible for the attacker to
analyze the program without significant computations. Note
that we combine control flow flattening with IC-Program
diversity; thus even if the attacker successfully analyzes the
IC-Program the solution is not useful for the next run of the
protocol.

Data pointer redirection attack: In this attack, the attacker
stores an unmodified copy of the data in another portion
of memory. When an address is to be checked, the attacker
changes the address to be checked to that of the unmodified
data. The IC-Program uses the address and the memory
content when computing the hash function. To compute a valid
hash, the attacker has to change the address to the location
of the copy while retaining the original address. In our IC-
Program design phase, the designer sets the smallest number
of instructions that can be added to the program such that
the execution difference is detected when POWERALERT’s
hardware specifications are taken into account (the sampling
rate).

Note that this measure is more effective when combined
with the IC-Program diversity. Each time a new IC-Program
is generated, the attacker has only one chance to find an
injection scheme such that the final number of instructions
is less than the threshold we design for. The new program in
the next iteration will require a new injection method and thus
any runtime method to automatically find the optimal method
will require computations that will be detected by our current
measurements.

However, the attacker can redirect the data pointer by chang-
ing the page table pointer (register cr3); this attack is hard
to thwart, we might consider using the System Management
Mode (SMM) execution mode which disables paging [29].

Attacker hiding: If an attacker attempts to hide, he or she

10



must predict when the POWERALERT-protocol will be initi-
ated. POWERALERT’s random initiation mechanisms ensure
that the attacker cannot predict those instances. Our game-
theoretic analysis shows that when the defender is using an
exponential initiation strategy, the attackers best strategy is
to hide more often if the defender is aggressive. Note that
because POWERALERT is using a random strategy, the attack
will not always correctly predict the strategy. Thus, some of
POWERALERT actions will be run when the attacker is not
hiding, leading to detection. The attacker’s strategy, to be
stealthy, can delay detection but cannot prevent it.

Forced retraining: In this attack, the attacker forces POW-
ERALERT to retrain by simulating a hardware fault that re-
quires a CPU change, to lead POWERALERT to a compromised
model. If this occurs, POWERALERT’s process is to wipe the
permanent storage, retrain using a clean OS, and then restore
data. Since we assume that the attacker does not modify the
hardware state, by removing permanent storage, we prevent
the attacker from affecting the retraining process.

IX. RELATED WORK

1) Timing Attestation: Seshadri et al. propose Pioneer [24]
extended by Kovah et al. [19] a timing-based remote attes-
tation system for legacy system (without TPM). The timing
is computed using the network round trip time. The work
assumes that the machine can be restricted to execution in
one thread. The issue with the work is that the round trip time
is affected by the network conditions which the authors do
not explore, a heavily congested network will lead to a high
variation on the RRT causing a high rate of false positives.
Moreover, the restriction of execution in one thread can be
evaded by a lower level attacker. In later work the authors
discuss the issues of Time Of Check, Time Of Use attacks,
we talk the problem in our work. Later work adapted timing
attestation to embedded devices [10].

Hernández et al. [14] implement a monitor integrity check-
ing system by estimating the time it takes for a software to
run. The timing information is sent from the machine to a
remote server that uses a phase change detection algorithms
to detect malicious changes. The issue of this work is that
the timing information is sent by the untrusted machine and
thus the information can be easily manipulated. Armknecht et
al. [2] propose a generalized framework for remote attestation
in embedded systems. The authors use timing as a method
to limit the ability of an attacker to evade detection. The
framework formalizes the goals of the attacker and defender.
The authors provide a generic attestation scheme and prove
sufficient conditions for provable secure attestation schemes.

2) Power Malware Detection: Several researchers use
power usage to detect malware. In WattsUPDoc, Clark [6]
collect power usage data by medical embedded devices and
extract features for anomaly detection. The authors exploit the
regularity of the operation of an embedded device to detect
irregularities. The authors however do not investigate mimicry
attacks. Kim et al. [17] use battery consumption as a method
to detect energy greedy malware. The power readings are

sent from the untrusted device to a remote server to compare
against a trusted baseline. The problem of this work is that
the power readings can be manipulated by the attacker as the
data is sent through the untrusted software. PowerProf [18] is
another in-device unsupervised malware detection that uses
power profiles. The power information is similarly passed
through the untrusted stack and is thus susceptible to attacker
evasion through tampering.

3) Hardware Attestation: Secure Boot [7] verifies the in-
tegrity of the system, with the root of trust a bootloader.
Later on Trusted Platform Modules (TPMs) uses Platform
Configuration Registers (PCRs) store the secure measurements
(hash) of the system. Both methods are static in that the
integrity is checked at boot time. Dynamic attestation on the
other hand can perform attestation on the current state of the
system. Such features are supported by CPU extensions (for
example Intel TXT). El Defrawy et al. propose SMART [8],
an efficient hardware-software primitive to establish a dynamic
root of trust in an embedded processor, however the authors
do not assume any hardware attack.

4) VM based Integrity checker: OSck [15] proposed by
Hofmann et al. is a KVM based kernel integrity checker
that inspects kernel data structures and text to detect rootkits.
The checker runs as a guest OS thread but is isolated by
the hypervisor. Most VMM introspection intergrity checker
assume a trusted hypervisor. Those techniques are vulnerable
to hardware level attacks [20], [26], [28]. In our work we
do not have any trust assumption as the attestation device is
external to the untrusted machine.

5) Checksum Diversity: Wang et al. [27] propose using
diversity of probe software for security. The authors obfuscate
the control flow by flattening the probing software in order
to make it harder for an attacker to reverse engineer the
program for evasion. While the flattened control flow is
hard to statically analyze, the programs are susceptible to
active learning thus allowing an attacker to adapt over time.
Giffin et al. [12] propose self-modifying to detect modification
of checksum code modification. The experiments show an
overhead of 1 microsecond to each checksum computation, the
method is however costly for large programs adding second
per check. The authors in [1] use randomized address checking
and memory noise to achieve unpredictability.

X. CONCLUSION

In this work we presented POWERALERT, which is an exter-
nal integrity checker that uses power measurements as a trust
base to achieve resilience against a stealthy attacker. By using
the power signal, POWERALERT is relying on an untainted,
trustworthy, and very accurate side-channel to observe the be-
havior of the untrusted computer. POWERALERT initiates the
checking protocol by sending a randomly generated integrity
checking program to the machine. The diversity of the IC-
program prevents the attacker from adapting; we showed that
the space of IC-programs is practically impossible to exhaust.
The untrusted machine is expected to run the IC-program and
send its output back to POWERALERT. While the IC-program

11



is executed, POWERALERT measures the current drawn by
the processor to compare it to a learned model. Any deviation
from the expected output is an indication of tampering by an
attacker. To understand how often checking should be initiated,
we modeled the interaction between POWERALERT and the
attacker using a time-continuous game. Our analysis shows
that POWERALERT can either force the attacker into hiding
or have the attacker risk detection.

REFERENCES

[1] T. AbuHmed, N. Nyamaa, and D. Nyang, “Software-based remote code
attestation in wireless sensor network,” in Proceedings of the 28th
IEEE Conference on Global Telecommunications, ser. GLOBECOM’09.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 4680–4687. [Online].
Available: http://dl.acm.org/citation.cfm?id=1811982.1812159

[2] F. Armknecht, A.-R. Sadeghi, S. Schulz, and C. Wachsmann,
“A security framework for the analysis and design of software
attestation,” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer &#38; Communications Security, ser. CCS ’13. New
York, NY, USA: ACM, 2013, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516650

[3] U. N. Bhat and G. K. Miller, Elements of applied stochastic processes.
J. Wiley, 1972.

[4] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente,
“On the difficulty of software-based attestation of embedded
devices,” in Proceedings of the 16th ACM Conference on
Computer and Communications Security, ser. CCS ’09. New
York, NY, USA: ACM, 2009, pp. 400–409. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653711

[5] J. R. Celaya, P. Wysocki, V. Vashchenko, S. Saha, and K. Goebel,
“Accelerated aging system for prognostics of power semiconductor
devices,” in 2010 IEEE AUTOTESTCON, Sept 2010, pp. 1–6.

[6] S. S. Clark, B. Ransford, A. Rahmati, S. Guineau, J. Sorber, W. Xu,
and K. Fu, “Wattsupdoc: Power side channels to nonintrusively
discover untargeted malware on embedded medical devices,” in
Presented as part of the 2013 USENIX Workshop on Health
Information Technologies. Berkeley, CA: USENIX, 2013. [Online].
Available: https://www.usenix.org/conference/healthtech13/workshop-
program/presentation/Clark

[7] D. L. Davis, “Secure boot,” Aug. 10 1999, uS Patent 5,937,063.
[8] K. Eldefrawy, A. Francillon, D. Perito, and G. Tsudik, “SMART:

Secure and Minimal Architecture for (Establishing a Dynamic) Root
of Trust,” in NDSS 2012, 19th Annual Network and Distributed
System Security Symposium, February 5-8, San Diego, USA,
San Diego, UNITED STATES, 02 2012. [Online]. Available:
http://www.eurecom.fr/publication/3536

[9] W. Felleb, An Introduction to Probability Theory and Its Applications,
2nd ed. John Wiley and Sons, New York, 1957.

[10] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik,
“A minimalist approach to remote attestation,” in Proceedings of
the Conference on Design, Automation & Test in Europe, ser.
DATE ’14. 3001 Leuven, Belgium, Belgium: European Design and
Automation Association, 2014, pp. 244:1–244:6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2616606.2616905

[11] S. Gao and D. Panario, “Tests and constructions of irreducible
polynomials over finite fields,” in Selected Papers of a Conference
on Foundations of Computational Mathematics, ser. FoCM ’97. New
York, NY, USA: Springer-Verlag New York, Inc., 1997, pp. 346–361.
[Online]. Available: http://dl.acm.org/citation.cfm?id=270376.270489

[12] J. T. Giffin, M. Christodorescu, and L. Kruger, “Strengthening software
self-checksumming via self-modifying code,” in Proceedings of the
21st Annual Computer Security Applications Conference, ser. ACSAC
’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 23–32.
[Online]. Available: http://dx.doi.org/10.1109/CSAC.2005.53

[13] B. Greskamp, S. R. Sarangi, and J. Torrellas, “Threshold voltage vari-
ation effects on aging-related hard failure rates,” in IEEE International
Symposium on Circuits and Systems, May 2007, pp. 1261–1264.

[14] J. M. Hernández, A. Ferber, S. Prowell, and L. Hively, “Phase-space
detection of cyber events,” in Proceedings of the 10th Annual Cyber
and Information Security Research Conference, ser. CISR ’15. New

York, NY, USA: ACM, 2015, pp. 13:1–13:4. [Online]. Available:
http://doi.acm.org/10.1145/2746266.2746279

[15] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel,
“Ensuring operating system kernel integrity with osck,” in Proceedings
of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XVI.
New York, NY, USA: ACM, 2011, pp. 279–290. [Online]. Available:
http://doi.acm.org/10.1145/1950365.1950398

[16] A. Juels and T.-F. Yen, “Sherlock holmes and the case
of the advanced persistent threat,” in Presented as part
of the 5th USENIX Workshop on Large-Scale Exploits and
Emergent Threats. Berkeley, CA: USENIX, 2012. [Online].
Available: https://www.usenix.org/conference/leet12/sherlock-holmes-
and-case-advanced-persistent-threat

[17] H. Kim, J. Smith, and K. G. Shin, “Detecting energy-greedy anomalies
and mobile malware variants,” in Proceedings of the 6th International
Conference on Mobile Systems, Applications, and Services, ser.
MobiSys ’08. New York, NY, USA: ACM, 2008, pp. 239–252.
[Online]. Available: http://doi.acm.org/10.1145/1378600.1378627

[18] M. B. Kjærgaard and H. Blunck, Unsupervised Power Profiling for
Mobile Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 138–149.

[19] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and
J. Butterworth, “New results for timing-based attestation,” in 2012 IEEE
Symposium on Security and Privacy, May 2012, pp. 239–253.

[20] X. Kovah, C. Kallenberg, J. Butterworth, and S. Cornwell, “Senter
sandman: Using intel txt to attack bioses,” Hack in the Box, 2015.

[21] Y. Li, J. M. McCune, and A. Perrig, “Viper: Verifying the
integrity of peripherals’ firmware,” in Proceedings of the 18th ACM
Conference on Computer and Communications Security, ser. CCS ’11.
New York, NY, USA: ACM, 2011, pp. 3–16. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046711

[22] R. B. Miller, “Response time in man-computer conversational
transactions,” in Proceedings of the December 9-11, 1968, Fall Joint
Computer Conference, Part I, ser. AFIPS ’68 (Fall, part I). New
York, NY, USA: ACM, 1968, pp. 267–277. [Online]. Available:
http://doi.acm.org/10.1145/1476589.1476628

[23] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-
grained power modeling for smartphones using system call tracing,”
in Proceedings of the Sixth Conference on Computer Systems, ser.
EuroSys ’11. New York, NY, USA: ACM, 2011, pp. 153–168.
[Online]. Available: http://doi.acm.org/10.1145/1966445.1966460

[24] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla,
“Pioneer: Verifying code integrity and enforcing untampered code
execution on legacy systems,” in Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles, ser. SOSP ’05.
New York, NY, USA: ACM, 2005, pp. 1–16. [Online]. Available:
http://doi.acm.org/10.1145/1095810.1095812

[25] M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim, Remote
Software-Based Attestation for Wireless Sensors. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 27–41. [Online]. Available:
http://dx.doi.org/10.1007/11601494 3

[26] W. Song, H. Choi, J. Kim, E. Kim, Y. Kim, and J. Kim, “Pikit:
A new kernel-independent processor-interconnect rootkit,” in 25th
USENIX Security Symposium (USENIX Security 16). Austin, TX:
USENIX Association, Aug. 2016, pp. 37–51. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/song

[27] C. Wang, J. Hill, J. C. Knight, and J. W. Davidson, “Protection
of software-based survivability mechanisms,” in Proceedings of
the 2001 International Conference on Dependable Systems and
Networks (Formerly: FTCS), ser. DSN ’01. Washington, DC, USA:
IEEE Computer Society, 2001, pp. 193–202. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647882.738073

[28] R. Wojtczuk and J. Rutkowska, “Attacking smm memory via intel cpu
cache poisoning,” Invisible Things Lab, 2009.

[29] F. Zhang, K. Leach, K. Sun, and A. Stavrou, “Spectre: A dependable
introspection framework via system management mode,” in Dependable
Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP Interna-
tional Conference on. IEEE, 2013, pp. 1–12.

[30] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan,
“Hotleakage: A temperature-aware model of subthreshold and gate
leakage for architects,” University of Virginia Dept. of Computer Science
Technical Report, 2003.

12


