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ABSTRACT

Interconnection networks of various designs have been proposed for use as fast packet
switches for broadband ISDN applications. While each of these designs has its own merits
and drawbacks, it is not clear how they perform, relative to one another, in this applica-
tion area. We use stochastic activity networks to model and simulate these designs, and
show that the choice of network design to use depending on both the workload experienced
and the action taken when contention for a particular switch element occurs. In particu-
lar, we use stochastic activity networks to compare three different switch designs (basic
banyan, modified delta, and a design with multiplexer and demultiplexer) under both uni-
form and non-uniform workload assumptions, and with different resolution policies when
contention for a particular switch element occurs. Regarding contention resolution, we
consider two policies, one with blocking, and one where the packet is rejected and must
be retransmitted. For each scenario, we determine blocking probability and mean trans-
mission delay. We find that while traditional designs work well with uniform workloads,
they do not work so well with non-uniform workloads, and, in fact, the simpler design
with multiplexer and demultiplerer works better in some reject-retransmission cases. The
modeified delta network, due to its multiple path, performs the best among the three

designs with uniform workloads.
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CHAPTER 1

INTRODUCTION

1.1 General Background

The goal of a broadband Integrated Services Digital Network (ISDN) is to integrate
different types of traffic such as voice, data, image and video into an unified network.
As envisioned, broadband ISDNs will be able to provide a wide variety of services in the
future. With growing demands of these services, a carrier of high bandwidth and a switch
capable of handling such workload are essential. Among those criteria being considered
in building such network, the cost and speed of a switch are two of the most important
ones. A switch not only needs to deal with high traffic intensity but also be affordable.
Therefore, it is beneficial to study the performance of different switch designs.

The choice of switching method used to construct the communication network serving
the various traffic types is a major design decision. Voice traffic requires low delay and
high throughput, but can tolerate some errors. Interactive data traffic requires low delay
and a low bit error rate, but does not typically require high throughput. Image traffic
requires high throughput because of its bulk of data. It also requires a low bit error rate,

but not a low delay.
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There are mainly two candidates in switching techniques suitable to handle these var-
ious requirements: packet switching and circuit switching. Packet switching and circuit
switching differ in many respects. The basic difference lies on that circuit switching
guarantee bandwidth in advance, while packet switching does not.Thus packet switching
provides a more flexible way of utilizing the resources.

However, traditional packet switching has some drawbacks. The key problems are
routing and congestion control. In high-speed packet switched network, large and variable
delay as well as throughput bottlenecks may develop [29]. These problems motivated the
development of a “fast packet switching”, which is a hardware implementation of basic
switching and protocol functions. Switching is done by using large self-routing networks
[30]. This fast packet switching was favored in recent study of switching techniques
[13]. ‘A class of fast packet switch designs, based on multi- stage interconnection networks
implemented from identical switching elements, is investigated in this research. This class
of networks has been considered a candidate for the packet network with high throughput
because:

1. Several packets can be switched simultaneously and in parallel.
2. The switching function can be implemented in hardware.

3. This type of switches is capable of operating in either synchronous or asynchronous
mode in packet level.

Multistage interconnection networks have been used extensively in multiprocessor ap-
plications and communication systems. The banyan network [7] is the basic type of these

multistage interconnection networks.
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1.2 Previous Work on Banyan-type Interconnection Networks

First proposed by Goke and Lipovski [6], the banyan network (see Figure 2.2, baseline
network) has the following properties:

1. There is exactly one path from any input to any output.

2. The structure of the network is highly modularized, composed of identical switching
elements with the same number of input and outputs. Hence the switch network
can be easily implemented by VLSI technique.

3. The network consists of logy IV stages and N/bnodes per stage, where b is the number
of input for each switching element.

4. Network has the self-routing property for the packet movement from any input to

any output by using a unique set of k ( k = logyN ) digit, base b destination address.

Furthermore, banyan networks are blocking networks, i.e. packets can collide with
each other and get lost in the network. There are basically three types of blocking:

1. internal link blocking: packets are blocked due to the contention for the same link
inside the network.

2. ezternal blocking, or output port blocking: packets are blocked because they are
destinated to the same output port.

3. head of line (HOL) blocking: A Head Of Line blocking is caused by blocking of the
packet at the head of the queue. Since the first packet is blocked, the delivery of
later packets in the same queue is prohibited (blocked) even the output ports of
these packet are available at that time.

The analysis of unbuffered banyan network has been studied by Patel [24] and Kumar

et al. [14] In his paper, Patel analyzed the performance of unbuffered delta networks in
which the interconnection pattern is a permuted form of banyan network. An uniform

traffic load is applied. He indicated that the performance of the network is independent

of the choice of interconnection pattern, and that the throughput of an unbuffered delta
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network under uniform traffic load can be expressed as a quadratic recurrence relation.
Kruskal and Snir [12] provided the asymptotic solution for this recurrence relation.
To increase the performance of the banyan network and to reduce the blocking prob-

ability, several techniques have been proposed:
1. placing buffers in every switching element.
2. increasing the internal processing speed relative to the applied workload.

3. using a handshaking mechanism between stages or a back—pressure mechanism to
delay the transfer of blocked packets.

4. using multiple networks in parallel to provide multiple paths from any input to any
output or multiple links for each switch connection.

5. using a distribution network in front of the banyan network to distribute the load
more evenly.

The performance of buffered banyan networks has been studied by several researchers
(3, 10, 11, 12, 32]. In particular, an analytical packet switch model based on single-
buffered banyan network was studied by Jenq [10]. The building block of this model was
a 2 X 2 switching element. The results showed reasonably low blocking probabilities and
low delays for balanced internal loads. A similar result was obtained by Dias and Jump
[3]. They noticed that as the number of buffers between stages increased, the throughput
converged to a constant whereas the turn-around-time increased almost linearly. They
suggested the number of buffers between stages be limited to one or two. Kruskal and
Snir [12] derived an equation for the performance of buffered banyan networks. Using the
analysis, they compared buffered banyan networks built of different sized switches and
determined where each switch size was most effective. Wu [32] studied the performance
of a buffered banyan network under the mixing traflic condition. In the 4-stage single-

buffered banyan network, Wu found that the overlapping point-to-point traffic had very
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little effect on the background uniform traffic until its throughput reached beyond 45%. If
the point-to-point load increases further, the maximum throughput of the uniform traffic
decreases almost linearly and become zero when the dedicated channel operated at its full
speed.

Kim and Leon-Garcia [11] evaluated single-buffered and multibuffered banyan networks
under nonuniform traffic patterns. Their analysis showed that the single-buffer banyan
network suffered from performance degradation caused by nonuniformity of the traffic
pattern. The degradation became more pronounced as the size of the network increased.
The multibuffered banyan network showed an improvement in throughput capacity over
the single-buffered banyan. However, the improvement was not significant when the size
of the network was large.

To overcome the internal blocking problem posed by the banyan network, a front-
end sorting network has been suggested (8, 9]. Packets are first sorted based on their
destination addresses and then routed through the banyan network. Examples of such
sort-banyan networks are: Batcher-Banyan network reported in Huang and Knauer [8],
Hui and Arthurs [9]. Huang and Knauer [8] also implemented this idea in their Starlite
switch. A distribution network is another option to reduce the blocking inside the banyan
network. Turner’s integrated services packet network [30] used a distribution network,
which had the same structure as the routing network, to distribute packets evenly across
all its output ports.

Finally, in his design of a fast packet switch, Newman [22, 23] adopted a distribution

network, known as Benes network (see Figure 2.2), as the distribution fabric in front
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of the modified banyan routing network. Other approach has been taken to reduce the

blocking probability.

1.3 Previous Work on Switch Designs based on Interconnection Net-

works

A broadband self-routing packet switch design for providing flexible multiple bit-rate
broadband services was proposed by Hui and Arthurs [9]. The switch fabric delivers
exactly one packet to each output port from one of the input ports which requested
packet delivery to that output port. This is done by first passing the destination address
through a Batcher sorting network [1], which sorts the request destinations in ascending
order so that only one request for the same destination is retained. The winning request
acknowledges its originating port from the output of the Batcher network, with the ac-
knowledgement routed through a Batcher-banyan self-routing switch. The acknowledged
input port then send the full packet through the same Batcher-banyan switch without
any conflict. Unacknowledged ports buffer the blocked packet for reentry in the next
cycle. They analyzed the throughput-delay characteristics for uniform traffic, modeled by
random output port requests and a binomial distribution of packet arrival. They demon-
strated with a buffer size of around 20 packets, a 50 percent loading can be achieved with
almost no overflows of the buffer. They also studied the performance of the switch in the
presence of periodic broadband traffic.

A feedback banyan switching network topology was described in the paper by Uematsu

and Watanabe [31]. They proposed a feedback banyan switching network consisting of
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feedback loops to connect the output ports of the network to its input ports. The input
virtual paths encounter congestion are fed back to the input ports via these loops. They
are then rerouted through the switching network. This reduces congestion and realized
connections with high specified throughput. However, this design needs two times as
many switch cells of a normal banyan network and dismisses self-routing ability of the
network.

Newman (1988) [22, 23] proposed a fast packet switch of high traffic capacity based
on a nonbuffered, multistage interconnection network. Both input and output ports
contain buffers. An incoming packet arrives in a first-in first-out queue. When free,
the respective input port controller extracts the label from the packet at the head of
queue and uses it to reference a connection table. Each input port controller operates
asynchronously, at the packet level, and independently of all other controllers. The switch
fabric includes a routing fabric and a distribution fabric. The routing fabric is constructed
by combining self-routing, multistage interconnection networks known as delta networks.
FEach interconnection link in the delta network consists of two paths, a forward path to
carry the data and a reverse path to carry the collision signal. The distributed fabric has a
Benes topology. Its function is to distribute the incoming traffic across an delta network.
Newman has examined the performance of the switch constructed by switching element
of various sizes, from 2 x 2 to 16 x 16. He also investigated two algorithms, searching and

flooding, in selecting between equivalent paths.
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1.4 Statement of the Problem

The need of a fast and efficient switch is obvious when we march into the era of
broadband ISDN. Although some work has been done to improve the performance of
the banyan network, as mentioned above, a éomparison of different designs is yet to be
furnished. In particular, investigating the effects of various workloads and contention
resolution algorithms to different switches can be important when it comes to a design
decision.

Switch designs based on the banyan network are the possible solutions to the future
communication needs. It is useful to compare different designs and algorithms in order
to find out the most practical one in terms of the throughput and cost.

Specifically, we will compare three types of switching fabrics based on banyan networks:
1. an 8 x 8 modified delta network constructed from 4 x 4 banyan switching networks.

2. an 8 X 8 modified switch made of 4 X 4 banyan networks, multiplexers and demul-
tiplexers (Mux-Demux).

3. an 8 x 8 baseline banyan network.

Switching fabric (1) has more than one path from one input port to any output port.
Thus provides extra route for packets. While switching fabric (2) makes use of multiplexer
and demultiplexer. Which lowers the cost of building the switch. These two switching
fabrics can then be compared with (3) basic 8 X 8 banyan network (baseline network).
More elaborated discussions will be provided in Chapter 2 and Chapter 4. I will evaluate
the performance of the switching fabrics in terms of throughput, packet loss probability,
and packet time delay. Since a number of paths may share common links within banyan

network, it is also interesting to investigate different algorithms in handling the blocking
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of packets caused by simultaneous connections of more than one input and output pair.
Two contention resolution algorithms will be examined, namely back-pressure and reject.
The back-pressure algorithm states that whenever there is a conflict in using internal link,
(i.e. a packet is blocked,) the system simply delays the transfer of that packet. Due to the
holding back of one packet, there could be a series of holding back of packets in previous
stages. Thus this blocking effect will migrate to the input ports of the switching fabric.
The reject algorithm works as following: whenever a packet is blocked, the system rejects
the packet. The rejected packet is dropped. Depending on the type of packet, it may be
re-transmitted by upper layer protocol. Furthermore, applying various workloads to each
switch system will allow us to better understand the types of traffic which a switch can
adequately handle.

Simulation using stochastic activity networks will be used due to the complexity of the
system. Stochastic activity network is an probabilistic extension of Activity Networks,
which are non-deterministic models. The extension is done by specifying the spatial
and temporal uncertainties with probability distributions and probability distribution
functions for a subclass of activity networks that are well behaved.

Chapter 2 provides a general description of switching techniques. This starts with
the comparison between circuit switching and packet switching. Then the fast packet
switching is introduced in detail along with the architecture of the switch.

Chapter 3 talks about the definition of the stochastic activity network model and
briefly touches the simulation tool employed in this study. It also describes the structure

of the tool.
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Chapter 4 states the construction of the switch models. First functional models is pre-
sented, followed by the SAN models of three types of banyan network design. Performance
variables are then discussed.

Chapter 5 presents the results of the simulation runs based on constructed models.

Chapter 6 summarizes the finding of this research and suggests avenues for future

study.
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CHAPTER 2

OVERVIEW OF SWITCHING TECHNIQUES

2.1 Circuit versus Packet Switching

2.1.1 Traflic Characteristics

There are four types of traffic a switch should handle: voice, data, image (bulk data)
and video. Each of them has different operational constraints. Voice traffic must meet the
minimum requirement of sampling the speech. Furthermore, because of the nature of the
voice communication, voice traffic requires small delay and high throughput. A very low
error rate in this case is not a critical issue. An example is the voice conversation through
current phone system. An occasional error is acceptable in these voice conversations. In
contrast, data traffic can tolerate little error. Communication between terminals and host
computers is a typical case of this kind of traffic. A single error in the transmitted data
can change its meaning completely. In most of the cases, data traffic requires low delay
(interactive). However, it does not have a particularly high throughput requirement. An
high throughput is expected in image traffic because of large amount of data needed to
be transmitted. It also requires a low bit error rate for the same reason as in data traffic.

Low delay is not as a critical issue in bulk transfer as it is in voice or data traffic. Data
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Table 2.1: Characteristics of Different Types of Network Traffic

] Class I Class 1I |
Type of traffic Digitized voice, Narrative/record, Nosensor bulk
video,facsimile, interactive, data
sensor bulk data "query /response,
data base update
Call duration Several minutes Seconds to minutes Minutes to hours
Error control Generally none Automatic repeat May or may not
(possibly forward request, forward be required
error correction error correction/
for video and automatic repeat
facimile) request
Cross network delay Less than 200 msec Less than 1 sec Minutes to hours
Message length 105 ~ 107 bits 600-6000 bits 108 — 108 bits
Transmission rates  2.4-200 kbit/sec 45 BPS-100 kbit/sec  4.8-100 kbit/sec
Availability Blocking No blocking, but may No blocking, but
be delayed may be throttled

and image traffic tend to be bursty. Voice traffic is more regular. Video data require low
delay and high throughput.

The performance characteristics of the different types of traffic are listed in Table 2.1
[16]. Communication traffics are categorized into two classes. Class I contains traffic with
real time traffic which requires continuous real-time delivery, such as voice or video. Class
IT traffic is characterized by short, discrete data messages to long messages of store-and-

forward type. This class of traffic usually can tolerate some delay.

2.1.2 Circuit Switching

Circuit switching in a communication network means there is a physical link (“copper
path”) between two communicating stations. This path is dedicated to the connection of

these stations for the duration of communication. Of course, the physical link between
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two stations may be microwave links onto which thousands of paths are multiplexed. The
property of the circuit switching is that once the connection is setup, a dedicated path
exists until the communication is completed. Hence there is a need to set up an end-to-end

path before any data is transmitted. Three phases are involved in the circuit switching.

1. Circuit establishment: the originating station sends out a request to establish a link
to the destination station. If, for any reason, the link cannot be established, a busy

signal is returned to the originating station.
2. Data transfer: When the link is established, the stations start to transmit data.

3. Circuit disconnect: Connection is terminated after a period of time. This is origi-

nated by one of the two stations.

A delay is expected in the first phase of circuit establishment because the connecting
request needs to propagate to the destination, and be acknowledged. However, there is no
delay other than propagation delay once a connection is setup. The network is effectively
transparent to the users in the second phase. In effect, the network provides a “pipeline”

for the two stations. However, there are two drawbacks [28]:

1. In a typical terminal-to-host data connection, much of the time the line is idle.

Thus, with data connections, a circuit-switched approach is inefficient.

2. In a circuit-switched network, the connection provides for transmission at a set of
fixed data rate. This limits the flexibility of the network in transmission of the

variety of different bandwidths.
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2.1.3 Packet Switching

Another type of switching is packet switching, in which a block of data is broken into
small, possibly-fixed size cells called packets. Each packet contains a portion of user’s
data and control information. There is no dedicated path and guaranteed bandwidth
established in advance between sender and receiver. Instead, at each node en route,
packets are received, stored briefly in the buffer, and passed on to the next node. There

are two approaches used in packet switching networks:

1. datagram approach: Each packet is treated independently. There is no connection
between packets, even they are all from the same source and going to the same
destination. Thus packets from the same source can take different routes to reach
the same destination. A packet sent early can arrive late just because it took a
longer route. It is also hard to detect a lost packet since the destination node does

not know the routing of packets.

2. wvirtual circuit approach: A route is established before any packet is sent. Pack-
ets from one source node to same destination node follow the same route. This

guarantees the order of packets and provides some error control mechanism.

Over all, packet switching has the several advantages over circuit switching.

1. It is a more efficient way to use the line for data.

2. It provides flexible speed conversion. Two stations of different data rates can ex-
change packets. The network buffers the data and delivers it at the appropriate

data rate.



3.

25

A host can converse with a number of terminals over a single line simultaneously.

However, packet switching has some disadvantages compared to circuit switching.

1.

2.

2.2

Complex routing and congestion control.

The delay time varies, and is a function of load.

Fast Packet Switching

Due to demands for higher and faster networks, a switching technique capable of han-

dling high-speed transmission with low error rates has been developed. This concept, fast

packet switching, is an adaptation of packet switching for use in high-speed environments.

The traditional packet switching technique is adopted because it is independent of data

rate and accommodates bursty traffic. To address the drawbacks of the packet switching

such as variable delay and throughput bottlenecks, several additional features have been

incorporated into the fast packet switching technique.

1.

No link-by-link error control.

. No link-by-link flow control.

End-to-end error control if necessary.
Use of internal virtual circuit.

Hardware switching.

The traditional error control at the data-link level is no longer needed due to the high

quality and speed of the modern digital transmission trunks. The use of flags and a

Frame Check Sequence (FCS) is sufficient for error detection. If an error is detected, the

packet is simply discarded. There is no hop-level retransmission. Error control can be
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Header check Frame check

Virtual-circuit .
Type | Priority sequence Data sequence(FCS) Flag

number

Flag

Figure 2.1: Fast Packet Switching Format

implemented at higher level protocol. Thus fast packet switching provides only end-to-
end error recovery mechanism. A virtual—cirm.lit number field is still required to provide
routing information of the virtual circuit. An example of the fast packet switching frame
is shown in Fig 2.1 [19, 29]. In fast packet switching, the basic switching function is
implemented by hardware. The hardware configuration that best fulfills this purpose is

a multi-stage interconnection network.

2.3 Multi-stage Interconnection Networks

Multi-stage interconnection networks (MINs) have been studied in multiprocessor ap-
plications and communication systems. In particular, Feng [5] in his survey discussed
the various topologies and communication protocols of the MINs. A multistage network
consists of more than one stage of switching elements and is usually capable of connecting
an arbitrary input terminal to an arbitrary output terminal. Among MINs, those with
blocking property are most common ones. Figure 2.2 shows some examples of MINs.

A banyan network is one type of interconnection networks. It usually consists of 2-
input and 2-output switching elements connected together in stages. An N X N banyan
network is composed of logy N stages with N/2 switching elements in each stage. There
is only one path from any input to any output port. The routing of a packet is done
by individual switching element within the switch fabric. Each packet has an n—bit

header in an n—stage switch. The switching element at stage 1 (shown as a small box
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Figure 2.2: Examples of Multi-stage Interconnection Network
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in the figure) routes the packet up or down according to the first bit of the header
(“zero” or “one” indicate up or down respectively). It then removes the first bit from
the header. The succeeding switching elements perform the same routing function based
on the information in the packet header until the packet arrives at its destination port.
At each stage, different packets may be treated differently depending on the state of the
switching element and the congestion condition at the later stage. This characteristic of
routing by switching element is called “self-routing”. The self-routing property enable
the switch to operate in either synchronous or asynchronous mode. Indeed, the control
of the network is distributed. The merit of this configuration is that the network can be
constructed modularly and can be easily implemented by using VLSI technology, reducing
the cost of the switching fabric. Since several packets can be switched at the same time
in parallel, the switch is able to handle a higher traffic load. Nevertheless, some problems
need to be addressed. Most important of all, the problem in which packet blocking caused
by contention of the same internal link, by destined to the same output port or simply
by waiting in the input queue where the head of the queue is blocked due to one of the
two previous reasons. This blocking can generate a local congestion point and reduce the
performance of the switch.

To minimize the problem of packet blocking, a pre-processing network can be used.
The pre-processing network can be either a sorting network, as in Huang and Knauer (8]
and Hui and Arthurs [9], or distribution network, as in Turner [30] and Newman [22, 23].
In particular, Hui and Arthurs [9] used a Batcher network in front of the banyan network

to first sort the connection requests. After sorting, the conflicting requests are adjacent
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to each other, and a request wins the contention if the request above it in the sorted order
is not for the same output port. The winning requests then send back acknowledgments
to their inputs. Input ports, upon receiving the acknowledgments, transmit the full
packets through the network. Input ports which fail to receive an acknowledgment retain
the packet in a buffer for retry in the next time slot. Huang and Knauer [8] suggested
a similar approach, except that the whole packets instead of connection requests were
sent through the network. The packets which lose the contention are concentrated by a
concentration network and fed back to the front end of the Batcher sorting network for
reentry. Turner [30] in his “integrated services packet network” proposed a distribution
network in front of the switching network. The function of distribution network is to
distribute packets evenly across all its output ports. This is done by having each switch
element route packets alternately out its two ports. In his paper, Turner used the same
banyan network as a distribution network. In contrast, Newman [23] used a Benes network
as his distribution fabric in front of a modified banyan network which served as a routing

fabric.

2.4 Contention Resolution Algorithms

When blocking occurs, an algorithm is needed to determine what happens to the
blocked packet. Two approaches are usually taken. The first approach is to hold the
packet at the previous switching element, provided there is enough buffer space to save

the packet. The second approach is that we simply discard the blocked packet to make
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way for the following packets. The discard packet needs to be retransmitted. This is done
usually by upper layer protocol.

The first approach, which we call back-pressure algorithm retains blocked packets in
the buffers at the previous stage of the switching fabric. When a buffer at a particular
stage is full, the packets at the previous stage destined to this switching element are
delayed. The internal buffers between two stages are usually small. Single space buffers
are quite common [10, 32]. Therefore, it is possible that the blocking in one switching
element causes a chain effect which propagates to input queues of the switch fabric. In
other words, this chain effect is caused by the back-pressure from the blocked packet in
the switching element’s buffer. The size of the buffer in the switching element affects the
performance of the switch. This has been studied analytically and using simulation by
several scholars {2, 3, 4, 10, 11, 14, 24, 30, 32].

In the second approach, which we call reject algorithm, the blocked packet is dropped
whenever there is a contention for the link. For some types of packet, such as voice,
retransmission is not necessary. For other types of packet, the retransmission is needed and
is done by the upper layer protocol. However, the retransmission produces the problem

that packets may arrive out of order and must be reordered by the receiving host.
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CHAPTER 3

STOCHASTIC ACTIVITY NETWORKS

3.1 Model Definition and Execution

Stochastic activity networks (SANs)[18, 21] are extensions of activity networks(ANs).
They incorporate features of both stochastic Petri nets [20] and queueing models. SANs
were developed to facilitate unified performance/dependability evaluation. It also includes
the features which permit the representation of parallelism, timeliness, fault tolerance, and
degradable performance [17].

SAN structures are made up of four types of primitives:places, activities, input gates,
and output gates(see Figure 3.1. Places are denoted by circles. Activities (“transitions” in
Petri net terminology) can be either timed or instantaneous. Timed activities represent
activities in the modeled system whose durations affect the system’s ability to perform.
Instantaneous activities represent those activities of the system which complete in a small
amount of time, relative to the performance variables considered Timed and instantaneous
activities are depicted as elongated ovals and vertical bars respectively. There are cases
associated with activities to realize uncertainty as to what happens when an activity
completes. Cases are represented by hollow dots attached to one side of the ovals or bars.

Each small circle depicts one case. Gates, denoted as triangles, provide greater flexibility
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Output Gate ‘ >
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Instantaneous Activity

Figure 3.1: Symbols for Stochastic Activity Network

in describing rules of enabling and completing activities. Input gates consist of a finite
set of input places and are connected to a single activity. Output gates are connected
to a single activity and a finite set of output places. Each input gate has associated
with it an enabling predicate and an input function. The enabling predicate specifies the
enabling rules for the associated activity. Each output gate contains an output function.
The input and output functions describe the changes which result from the completion of
the associated activity. The state of a SAN is defined by its “marking”. A marking is an

assignment of “tokens” to the places of a SAN.
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A stochastic activity network is an interconnection of finite number of these primitives,

subject to the following connection rules [21]:

1. Each input of an input gate is connected to a unique place and the output of an

input gate is connected to a single activity.
2. Different input gates of an activity are connected to different places.

3. Each output of an output gate is connected to a unique place and the input of an

output gate is connected to a single activity (via some case).
4. Different output gates of an activity for a case are connected to different places.

5. Each place and activity is connected to some input gate or output gate.

The stochastic nature of a SAN is realized by associating an activity time distribution
function with each timed activity and a probability distribution with each set of cases.
Generally, both distributions can depend on the global marking of the network. A mech-
anism for restarting activities that have been activated is also provided in the nets. A
reactivation function [18] specifying a set of reactivation markings for each marking is
included in each timed activity. Given that an activity is activated in a specific marking,
the activity is reactivated every time a marking in the set of reactivation markings is
reached.

SANs execute in time through completions of activities which result in changes in the
markings. Specifically, an activity is chosen to complete in the present marking based on

the relative priority among activities (instantaneous activities take presidence of timed
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activities) and the activity time distributions of enabled activities. A case of the activity
is then selected and completed based on the case distribution the activity. This uniquely
determines the next marking of the network. The marking is obtained by first executing
the function in each input gate (input function) connected to the input of chosen activity
and then executing the function in each output gate (output function) of the chosen case.
Once the new marking is obtained, the procedure repeats itself. A detailed discussion for
the SAN execution can be found in [26].

Stochastic activity networks can be solved by both analysis and simulation, depending
on system characteristics. Informally, SANs can be solved via analytic methods when
all activity time distributions are exponential and activities are reactivated often enough
to ensure that their rates depend only on the current state. When this is the case, the
analytic solutions for a wide class of behavior variables can be obtained through solution of
appropriate stochastic processes. Simulation can alos be used to solve for SAN behavior.

The complexity of the evaluation procedures and the sizes of the base models requires
their implementation in software. A software package, called METASAN! | has been

developed to address this need.

!METASAN is a Trademark of the Industrial Technology Institute.
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3.2 Evaluation Tool - METASAN

METASAN [27] was written using UNIX tools (C, Yacc, Lex, and Csh) and consists
of about 37,000 ines of source code. Solution options include analytical techniques (ap-
plicable under certain well defined conditions) as well as both terminating and steady-
state simulation.

A user to interacts with METASAN through a menu. Two files are needed to execute
a METASAN model: a structure file and an experiment file. The structure file is a direct
translation of the SAN into a textual form that can be understood by the package. The
experiment file specifies the solution algorithm and the performance variables. These files
are accessible from the menu. Model construction consists of describing the structure
of the system to be modeled using the editor, compiling the description, describing the
experiment file, and compiling the experiment file. The result of these actions is a machine
understandable description of the system to be modeled and the desired performance
variables. Then user selects the desired solution options and executes the model.

The SAN description language, Sanscript® , permits a SAN to be specified in a textual
form understandable to the (SAN) complier. Sanscript also permits easy specification
of complex enabling predicates, activity time functions, reactivation functions, and gate
functions. At a high-level, a Sanscript description consists of four parts: a header, lo-
cal variable declarations, definition of all the primitives used, and a specification of all
function values and interconnection associated with each primitive. A host of activity

time distribution types are available, representing all service distributions normally used

2Sanscript is a Trademark of the Industrial Technology Institute
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in evaluation. Complex activity time distribution parameters, case distributions, gate
predicates and functions, and reactivation functions may be specified using the “MARK”
function and a few lines of C code. Here the notation “MARK (place)” refers to the current
marking of place “place”. Many stochastic activity networks contain numerous similar
subnetworks that are replicated many times. Construction of these subnetworks directly
in Sanscript would be tedious. To simplify such construction a macro-preprocessor for
METASAN is provided. This preprocessor allows one to define subnetworks once in a
parameterized manner, an then construct a specific subnetwork via a single macro call.
After the specification of the SAN in Sanscript is complete, it is passed to the SAN
compiler and translated into an internal form understandable by the solution modules.

The experiment file has great flexibility in the definition of performance variables. Un-
like many modeling packages which limit evaluations to a few pre-defined variables (e.g.
queue length, server utilization), METASAN permits the specification of complex user—
defined performance variables. Performance variables specified for solution by simulation
are based on the notion of a path. A path is a sequence of marking-activity—case triples
which define a possible behavior on the net. Events such as initiations of paths, com-
pletions of paths, and traversals of paths are then naturally defined. Definition of these
events make it possible to estimate a variety of time related characteristics of path sets.
All convertional performance variables plus a wide class of unconvertional variables can
be represented in this framework.

A variety of analytic solvers are implemented in the package. Steady-state state oc-

cupancy probabilities are obtained either by Gaussian elimination or by Gauss-Seidel
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iteration, depending on the size of the state-space and convergence characteristics of the
particular model. Reward model solution techniques are also implemented.

Solution via simulation is also supported by METASAN. Simulation is normally used
when solution of the base model via analytic means becomes intractable. This can occur,
for example, when complex reactivation functions are specified, activity time distributions
are general, the desired performance variables are sufficiently complex, or the state space
is extremely large. Both the terminating and steady—state simulation solvers are based
on a discrete~event next—event time advance simulator core. Currently, two methods for
confidence interval estimation are supported. The first is an iterative method based on
the replication approach, and is used or terminating simulations. Using this method, one
specified the relative precision and level of confidence desired as part of the experiment
file input. The second method is used for steady-state simulations and is an iterative
batching procedure, where the user must specify the length of initial transient, bathc
size, relative precision desired, and level of confidence desired. This simulation package

was chosen as the evaluation tool for this research.
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CHAPTER 4

MODELING SWITCHES

4.1 Switch Models

Three designs of Multistage Interconnection Network are presented here: a basic 8 X 8
banyan network (baseline network), 8 x 8 modified delta network, and 8 x 8 modified
network with 4 x4 banyan network, multiplexers and demultiplexers(Mux-Demux). These
designs are represented by the stochastic activity network first and then translated into
descriptions understandable to METASAN. METASAN is then used to obtain the results
which illustrate the performance of different designs. Due to the complexity of the models,

the simulation solver in METASAN is used.

4.1.1 General Model Assumptions

As mentioned in previous sections, the switching elements in banyan network can have
no buffer, single, or multiple buffers. Furthermore, the input queue is usually short.
Therefore, our models assume each input queue holds 3 packets. Each input queue obeys
first in first out queueing discipline. Single internal buffer is placed before each switching

element. Packet arrival rate A is assumed to have a Poisson behavior. Packet processing
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time in each switching element is assumed to be the normally distributed with very little
variance (1/100).

It is assumed that each input controller operates asynchronously in packet level. The
minimum delay is achieved when a packet proceeds to next stage without waiting any-
where in the entire network. Thus the minimum delay is n X (processing time) where n
is the number of stages in the network.

In the back-pressure algorithm, the control signals are assumed to be passed across
the network from the current stage to the previous stage in the switch so that input port
at different stages is able to determine whether to send or hold the current packets. The
packets are lost at the input queues only when the queues are full. Otherwise, the packets
are sent according to the destination address within the packets.

In the reject-retransmission algorithm, packets are routed according to the destination
address. However, there is no control signal being passed back from subsequent stage.
The switching elements forward the packets at all circumstances. If the input buffer is
full at the certain element, that packet is simply rejected and dropped. This packet then
is re-transmitted again using a possibly different route.

We now examine each of the three interconnection networks designs in more detail.

4.1.2 Model of Basic 8 x 8 Banyan Switching Network

An 8 X 8 banyan network, containing elements of 2 X 2 cross—bar switch, is shown in
Figure 4.1. This is a three-stage network which contains 4 switch elements at each stage.

Fach stage is connected to the adjacent stage in the fashion that any of the input ports
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Figure 4.1: 8 x 8 Basic Banyan (Baseline) Network

can be connected to any of the output ports. Since network operates simultaneously, there
is no holding back for the packets coming to different input ports except the packets going
to the same output ports.

Packets are assumed to arrive at an input buffer controller at a rate of A. If the
corresponding buffer of the switching element at first stage is able to accept a packet, the
input buffer controller will allow a packet into the input buffer. Otherwise, the packet
is rejected. The input buffer can hold only three packets at one time. The packets are
placed in the input buffers in the order of their arrivals, and they are passed to the first
stage of banyan network in first-in-first-out mode. Each switching element in the first
stage routes the packet according to the first bit of the address. “Zero” in the first bit
will cause the packet to be routed to the upper output port of the switching element,
while “one” will cause the packet to be routed to the lower output port. The packet is
stored tefnperately in the buffer of the second stage switching elements, which only holds

one packet. The second stage switching element will perform the routing according to
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the second bit of the destination address and then save the packets in the buffers of the
third stage switching elements. The switching elements in the third stage do the same
routing function using the third bit. The packets are routed to the outputs of the third
stage elements, which are the destinations. Thus so ends the journey of these packets.
The SAN representation of a 2 X 2 switching element is shown in Figure 4.2. It consists
of four places, two timed activities and two associated input gates. The input.l and
input_2 places represent the single input-buffers of the 2 x 2 cross-bar switching element.
Gates ck_1 and ck_2 check the content of the buffers. If there is a packet in the input buffer
(token in input_1 or input-2) and the designated output buffer for that packet (output-1 or
output-2) is available (empty), the timed activity (processing.I or processing_2) is enabled.
Upon completion of the activity, the packet (tokens) in the input buffer is moved to the
proper output buffer which in turn is the input buffer of the switching element at next
stage. The address of packet is modeled by different numbers of tokens in places. In
the case of 2 X 2 switch, there are only two types of packets, i.e., one that goes to the
upper output port and one that goes to the lower. They are modeled by single token and
two tokens in a place. processing_I and processing_2 represent the processing time needed
for the switching elerﬁent. Each of them has a normally distributed activity time with
mean g and variance §. The mean u varies to reflect different rates of time needed for
processing one packet, while variance is always set to one-hundredth of mean (6§ = 11@ K.
The distributions of the activities, gate functions and predicates for the this SAN model

are listed in Table 4.1 and Table 4.2.

Figure 4.3 presents the SAN model for a 8 x 8 Baseline Banyan network. A detailed
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Figure 4.2: SAN representation for 2 x 2 switching element

Table 4.1: Activity Parameters for 2 x 2 Switching Element

| Activity ] Rate ] Probability ]
processing-1 | normal(py)(é1 ) | 1
processing-2 | normal(uz)(d2 ) | 1
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Figure 4.3: SAN Representation for 8 X 8 Baseline Switch
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Table 4.2: Input Gate Parameters for 2 x 2 Switching Element

| Gate | Enabling Predicate | Function |
ckl | (MARK(input_-1)== 1 and MARK(output.1)==0) or | if (MARK(input_1)==1)
(MARK(input_l)== 2 and MARK (output_2)==0) MARK (output.1)=1;
MARK (input-1)=0;
else

MARK(output.2)=2;
MARK(input-1)=0;
ck2 | (MARK(input_2)== 1 and MARK(output.1)==0) or | if (MARK(input_2)==1)
(MARK(input_2)== 2 and MARK(output.2)==0) MARK (output_1)=1;
MARK (input_2)=0;
else
MARK (output 2)=2;
MARK(input 2)=0;

diagram of part A of Figure 4.3 is shown in Figure 4.4. A detailed diagram of part B
is shown in Figure 4.5. The timed activities arr’s represent the arrivals of the packets
to the system and according to the assumption made above, have an exponential activity
time distribution with rate a. In our evaluations, the rate of arrival is always assumed to
be one (o = 1). Eight cases connecting to output gates G1’s,G2’s,...,G8’s are associated
with each timed activity arr. The output gate function, when executed, generates tokens
which represent the address of packet destination. One token in a place stands for a packet
which is designated to output port 1, represented by place output.1. Two token stands for
a packet addressed to output port 2, output_2, and so on. Places in_g.buf!’s, in_q-buf2’s
and in_g.buf3’s are three buffer spaces in the input queues. Instantaneous activities
advl’s and adv?’s along with input gates ckl’s and ck2’s are the SAN representations of
FIFO queueing discipline to account for different types of packets. Presence of one or more

token in place in_q.bufl and vacancy of the next place in_g_buf2 enables the instantaneous
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Table 4.3: Output Gate Parameters for Part A of 8 x 8 Baseline Switch SAN

| Gate | Function ]

Gla | MARK(ingbufli)=1
G214 | MARK(in_gbufli) = 2;
G34 | MARK(in_g-bufli) = 3;
G44 | MARK(in_gbufl_i) = 4;
G5 | MARK(in_g_bufl.i) = 5;
6;
7
8

3

?

i

G6-t | MARK(in_gbufla) =
G74 | MARK(in_g-bufli) =
G8. | MARK(in_g-bufli) =

Y

3

i

activity advl. advl completes immediately and the input function of gate ckl moves all
tokens in in_g.buf! to in_g-buf2. Input gate ck2 examines the content of places in_g_-buf2
and in.g-buf3 to enable/disable the instantaneous activity adv2. Upon completion of adv?,
in_q-buf2 is vacated and tokens are moved to in_¢g-buf3. The output gate functions for
this SAN are listed in Table 4.3. The input gate predicates and functions for this SAN
can be found in Table 4.4. The activity parameters are shown in Table 4.5. Part A’, A”
and A”’ are exactly the same as part A.

Figure 4.5 shows a stochastic activity network of 4 X 4 unit in 8 X 8 switch model.
This is a detailed drawing of part B in Figure 4.3. Each switching element in the unit
has the same processing time, represented by the activity time of each activity processing.
The enabling predicates of the input gates are the same-when an input buffer is filled
and output buffer is free, the gate holds. The gate functions of input gates ck’s move the
tokens according to the packet address (number of tokens). The input gate predicates,

functions and activity parameters can be found in Tables 4.6, 4.7 and 4.8, respectively.
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Table 4.4: Input Gate Parameters for Part A of 8 X 8 Baseline Switch SAN

Gate | Enabling Predicate

l

Function ]

ckll | MARK(in_gbuf1.1) > 0 and MARK(in_g_buf2.1)= MARK(in_g buf1.1);
MARK(in_g buf2.1) == MARK (in-g-bufl_1)=0;
ckl2 | MARK(in.g buf1.2) > 0 and MARK(in.q-buf2.2)= MARK(in_q_buf1.2);
MARK(in.g buf2.2) == 0 MARK(in_g-buf1.2)=0;
ck2.1 | MARK(in g buf2_1) > 0 and MARK(in_q.buf3.1)= MARK(in_g_buf2_1);
MARK(in_gbuf3.1) == MARK (in_g_buf2.1)=0,
ck2.2 | MARK(in_gbuf2_2) > 0 and MARK(in_g buf3-2)= MARK(in_g-buf2.2);
MARK(in.gbuf3.2) == 0 MARK(in_q-buf2.2)=0;
k31 | (1< MARK(ingbuf31) < 4 and | £ (1 < MARK(inqbuf3.1) < 4)
MARK(output_A)==0) or MARK (output_A)= MARK(in_g buf3_1);
(5 < MARK(in-g-buf3.1) < 8 and MARK(in-g-buf3.1) = 0;
MARK(output_B) == 0) else
MARK (output-B) = MARK(in_qbuf3-1);
MARK(in_gbuf3.1) = 0;
ck32 | (1 < MARK(ing-buf3.2) <4 and | if (1 < MARK(in.g-buf3.2) < 4)
MARK (output A)==0) or MARK (output-A)= MARK(in.q-buf3_2);
(5 < MARK(in_g-buf3-2) < 8 and MARK(in_gbuf32) = 0;
MARK (output_B) == 0) else
MARK(output_B) = MARK(in_q-bu f3.2);
MARK(in_g-buf3.2) = 0;
Table 4.5: Activity Parameters for Part A of 8 x 8 Baseline Network
Probability
Activity Rate case
T (2 [3 4 [5 [6 [7 3
arr-1 exp(}) 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125
arr.2 exp(A) 0.125 | 0.125 | 0.125 { 0.125 | 0.125 | 0.125 | 0.125 | 0.125
advl. 1 inst 1 - - - - - - -
adv2_1 inst 1 - - - - - - -
advl 2 inst 1 - - - - - - -
adv2.2 inst 1 - - - - - - -
processing_1 | normal(p)(6) | 1 - - - - - - -
processing-2 | normal(u)(8) | 1 - - - - - - -
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Input gates G, Gy, Ge and G4 check whether the places output’s are occupied. If so,
instantaneous activities pk_ezit’s are enabled. When these activities complete, the gate
functions in G, Gy, G, and G4 remove all the token in related output’s and subtract one
token each from place packet_in_system (not shown in the figures) which represents packets
exiting the switch. The place, packet_in_system, is an internal counter which holds the
number of packets in the system at any moment. Part B’ in Figure 4.3 is the same as
part B except the input gates ck_1,..., ck_6 now check for the packet addresses from 5 to

8 instead of from 1 to 4.

4.1.3 Model of 8 x 8 Modified Delta Network

Delta networks [24, 25], also known as shuffle-exchange networks [14], are the second
class of banyan network studied. Generally, a delta network of size N consists of logqV,
with N/d switching elements per stage. A typical 16 x 16 delta network can be found
in Figure 2.2. Newman [23] proposed a modified version of delta network in which in-
terconnection links are replicated in order to build networks with size that is an integer
power of 2. A 16 X 16 modified delta network of switching elements of degree 8 is shown
in Figure 4.6. The modified delta network, under the rigid definition, does not belong to
the class of banyan networks since there is more than one path existing between any pair
of input and output.

The second switching fabric we will examine is based on the modified delta network.
It is an 8 X 8 switching fabric constructed by four 4 X 4 switching networks. The 4 x 4

switching network made of 2 x 2 switching elements is adopted here instead of the 4 x 4
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Table 4.6: Input Gate Parameters for Part B of 8 x 8 Baseline Switch Model

Gate ] Enabling Predicate

| Function

ck.l | (1< MARK(input-A) < 2and |if (1 < MARK(input-A4) < 2)
MARK(input.1)==0) or MARK(input.l)= MARK(input_A);
(3 < MARK(input-A) < 4 and MARK(input_A) = 0;
MARK(input_2) == 0) else
MARK(input_2) = MARK(input_A);
MARK(input_A) = 0;
ck2 | (1< MARK(input.A’) < 2 and |if (1 < MARK(input_A') < 2)
MARK(input_1)==0) or MARK(input-1)= MARK(input_A’);
(3 < MARK(input_-A') < 4 and MARK(input-A") = 0;
MARK(input.2) == 0) else
MARK (input-2) = MARK(input.A");
MARK(input.A’") = 0;
ck3 | (MARK(input-1) == 1 and if (MARK(input_1) == 1)
MARK (output-1)==0) or MARK (output-1)= MARK(input_l);
(MARK(input-1) == 2 and MARK(input-1) = 0;
MARK(output-2) == 0) else
MARK (output-2) = MARK(input_1);
MARK(input_1) = 0;
ck4 | (MARK(input3) == 1 and if (MARK(input.3) == 1)
MARK(output_-1)==0) or MARK(output-1)= MARK(input_3);
(MARK(input3) == 2 and MARK(input_3) = 0;
MARK(output_2) == 0) else
MARK(output_2) = MARK(input_3);
MARK(input_3) = 0;
ck5 | (1 < MARK(input_A”) < 2 and | if ( 1 < MARK(input.A”) < 2)

MARK(input_3)==0) or
(3 < MARK(input-A”) < 4 and
MARK(input_4) == 0)

MARK(input-3)= MARK(input_A”);
MARK(input_A”) = 0;

else
MARK(input-4) = MARK(input_A”);
MARK(input_A”) = 0;
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Table 4.7: Input Gate Parameters for Part B of 8 X 8 Baseline Switch Model (cont.)

Gate | Enabling Predicate

| Function |

ck6 | (1< MARK(input_A") < 2 and | if (1 < MARK(input_A") < 2)
MARK(input.3)==0) or MARK((input_3)= MARK(input.A"");
(3 £ MARK(input_A") < 4 and MARK(input_A") = 0;
MARK(input.4) == 0) else
MARK(input.4) = MARK(input_A"");
MARK (input_A") = 0;
ck7 | (MARK(inpui2) == 3 and if (MARK (input 2) == 3)
MARK(output_3)==0) or MARK (output_-3)= MARK(input.2);
(MARK(input2) == 4 and MARK(input_2) = 0;
MARK(output_4) == 0) else
MARK(output-4) = MARK(input_2);
MARK(input_2) = 0;
ck8 | (MARK(input4) == 3 and if (MARK(input4) == 3)
MARK(output_3)==0) or MARK (output_-3)= MARK(input_4);
(MARK(input4) == 4 and MARK((input_4) = 0;
MARK(output4) == 0) else
MARK (output_4) = MARK(input.4);
MARK(input4) = 0;
Ga MARK(output_1) > 0 and MARK(packet_in_system)=
MARK(packet_in_system)— 1;
MARK(output.1)=0)
Gb MARK(output.2) > 0 and MARK(packet_in_system)=
MARK(packet_in_system)— 1;
MARK(output_2)=0)
Ge MARK(output_3) > 0 and MARK(packet_in_system)=
MARK(packet_in_system)— 1;
MARK (output_3)=0)
Gd MARK(output4) > 0 and MARK(packet_in_system)=

MARK(packet_in_system)— 1;
MARK(output4)=0)




Table 4.8: Activity Parameters for Part B of Baseline Switch

Activity

] Rate

I Probability |
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processing.3
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)
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pk_exit 2

exp(X )
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Figure 4.6: 16x16 Modified Delta Network
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Figure 4.7: 8 x 8 Modified Delta Network

switching element. The reason for this change is that the 2 X 2 switching element is more
commonly used than 4 X 4 element, and hence it would probably be more cost effective.
Figure 4.7 shows the block diagram of this modified 8 x 8 delta network.

The arriving packets are queued in the input buffers. The input port controller launches
a packet when it is at the front of the queue. Since there are multiple paths available
for a packet to reach its destination port, a searching algorithm is employed to determine
the route. The controller would attempt to transmit the packet through each available
paths in sequence until it successfully finds one. If all the routes fail, the packet is either
held in the input queue or rejected. After packets are launched into the switching fabric,
the switching element, with single buffer, queues packet and send it to the next switching
element. If the buffer of the next switching element is full, the packet is retained at the
current switching element or simply discarded.

A SAN representation is shown in Figure 4.8. The ARR block of the switch model is

shown in Figure 4.9, which represents the SAN for the packet arrival, arr. Figure 4.10



54

o8e15 qp

ofe1g pig

oﬁvo <
oﬁo <kO A

umﬁ.m puz

K

uwﬁ._m 181

Figure 4.8: SAN representation for 8 X 8 Modified Delta Network

R




55

Figure 4.9: SAN for 8 x 8 Modified Delta Network ARR block

depicts Part B in Figure 4.8. Part C in Figure 4.3 is the same as Part B in SAN
for the 8 x 8 baseline switch and is shown in Figure 4.5. Packet arrival is modeled by
the timed activity arr with eight cases. Each case represents the arrival of packet with
different address. An output gate is connected to each case. When the case is chosen,
the output gate completes and put certain number of tokens (the address label) in place
in_g-bufl. There are total of eight output gates, G1,...,G8 When case 1 is chosen,
G1 generates 1 token in place in.g.bufl_i. Similarly, when case 8 is chosen, G§ puts 8
tokens in the place. All ARR blocks in Figure 4.8 are the same. In part B, the place
in_g_bufl_i, in_g_buf2_i and in_q_buf3_i represent the three stage input buffer(Figure 4.10).
The instantaneous activities advl.i, adv2.7 and adv3-i, as mentioned in previous section,
represent the advance of a packet from one buffer to another toward the front of queue.
ckl.1’s and ck2.1’s, the input gates associated with these adv’s, check for the existence

of token(s) in places connected to them. FEach input gate is connected to two places
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in_g-buf; and in_gbuf;y;. If place in_g.bufiyq is empty and in.g_buf; is occupied, the
tokens are forwarded from in_q_bu f; to in_q_bu f;1; immediately. At the front of the queue,
in.q_buf3_i, a packet is processed by a first stage 2 x 2 switching element. Input gates ck3_1
ck3_2, ck3.3 and ck3_4 examine the number of tokens in places in.q.buf3_1, in_q-buf3.2,
in_q-buf3_8 and in_q_buf3_4. If the token numbers in these places are between 1 and 4,
the packets are forwarded to place in_buf_1 and in_buf 3. If the token numbers in these
place are between 5 and 8, the packets are forwarded to place in-buf_2 and in_buf 4. The
switching elements in the second stage perform a search to find a first available route, since
each packet has more than one route to reach its destination. A searching algorithm is
adopted here. The input gate of the timed activity processing-t (ck-1, ck-2, ck_3 or ck_4),
search for an available path to the next stage of switching element. Refer to the gate
predicates for these gates in Tables 4.9 and 4.10 for the implementation. If an available
place is found, the tokens in in_buf_1, in_buf_2, in.buf.8 and in_buf_4 are removed and same
number of tokens are placed in the available place in_buf_5, in_buf 6, in_buf.7 or in.buf.8.
The activity parameters for this SAN are listed in Table 4.11. Part B’ in Figure 4.8 is
the same as Part B. The SAN for this submodel can be found in Figure 4.5, which is
part B of the baseline banyan model. The gate functions and predicates are exactly the
same as in that model. In general, the gate functions’ predicates check for the number
of the tokens (address) in the place of current stage (input buffer) and the availability
of the designated place of the next stage (output buffer). Eventually, a packet reaches
the output of last (fourth) stage switching element, represented by the place output-i.

Functions of input gates G, ...Gq then subtract one token (representing one packet) each
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from the internal counter packei_in_system for every completed activity, pki_exit_i. Part
C’ is the same as part C. The difference lies in the input gates of third stage and fourth
stage switching elements. The predicates now check for packet number between 5 and 8

instead of between 1 and 4.

4.1.4 Model of 8 x 8 Modified Network with Multiplexer and Demulti-

plexers

A way of reducing the cost of the switch would be to make use of the components such
as multiplexer and demultiplexer as suggested by [15]. They are usually less expensive
than the switch fabrication. In addition, it is easy to increase the size of the switch in
Mux-Demux design. As number of input and output ports increases, the Mux-Demux
design needs only linearly increasing the number of switching elements. Whereas in
other designs with interconnection networks, the number of switching elements required
is increased in proportional to (NlogN) as switch grows. Figure 4.11 depicts a design
of 8 x 8 switching fabric. It consists of multiplexers, demultiplexers, and a less amount
of 2 x 2 switching elements. As shown in the figure, the input and output ports of the
switching fabric can be divided into two groups: the banyan side and the mux-demux side.
This is easily observed because of the non-symmetrical configuration of the switch. We
can expect a different performances for two groups of I/O ports. Due to the time delay
introduced by the multiplexer, we can further expect that the throughput from banyan
set of outputs will be higher than it from the mux-demux set. Thus this design is well

suit to adapting the non-uniform traffic. Speciﬁcally, the switch is good in handling the
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| Gate | Enabling Predicate | Function ]
ckl 1l | MARK(in_g¢-buf1.1) > 0 and MARK(in-g-buf2.1)= MARK(in.g buf1_1);
MARK(in_qbuf2.1) == MARK(in_g-buf1.1)=0;
ckl.2 | MARK(in-g-buf1.2) > 0 and MARK(in_g buf2.2)= MARK(in_g bufl_2),
MARK(in-qbuf2.2) == MARK(in_g_buf1.2)=0;
ck2_1 | MARK(in_¢-buf2_1) > 0 and MARK(in_g-buf3-1)= MARK(in_q_buf2.1);
MARK(in_gbuf3.l) == 0 MARK(in_g-buf2_1)=0;
ck2.2 | MARK(in.¢g.buf2.2) > 0 and MARK(in_g.buf3-2)= MARK(in_g-buf2.2);
MARK(in_g buf3.2) == 0 MARK(in_gbuf2.2)=0;
ck3.1 | (1 < MARK(in_g-buf3-1) < 4 and | if ( 1 < MARK(in-gbuf3_1) < 4)
MARK(in_buf_-1)==0) or MARK(in-buf-1)= MARK(in_g-buf3_1);
(5 < MARK(in-g-buf3-1) < 8 and MARK(in_qbuf3-1) = 0;
MARK(in.buf_2) == 0) else
MARK(in-buf-2) = MARK(in_gbuf3-1);
MARK(in-gbuf3.1) = 0;
ck3.2 | (1 < MARK(in-g-buf3.2) <4 and | if ( 1 < MARK(in-gbuf3.2) < 4)
MARK(in_buf_1)==0) or MARK(in_buf.-1)= MARK(in_g-buf3.2);
(5 < MARK(in-g-buf3-2) < 8 and MARK(in_gbuf32) = 0;
MARK(inbuf.2) == 0) else
MARK(in buf.2) = MARK(in_¢_buf3.2);
MARK(in_g-buf3.2) = 0;
ckl | (MARK(inbuf1) > 0 and if ( MARK(in_buf.5) == 0)
MARK(in buf.5)==0) or MARK(in_buf_5)= MARK(in buf_.1);
(MARK(inbuf_1) > 0 and MARK(in buf-1) = 0;
MARK(in_buf.6) == 0) else
MARK (in_buf.6) = MARK (in_buf.1);
MARK(in_buf_3) = 0,
ck2 | (MARK(in_buf-3) > 0 and if ( MARK(in-buf5) == 0)
MARK(in_buf 5)==0) or MARK(in_buf_5)= MARK(in_buf_3);
(MARK(in_buf3) > 0 and MARK(inbuf-1) = 0;
MARK(in.buf6) == 0) else
MARK(in-buf-6) = MARK(in_buf_3);
MARK(in_-buf-3) = 0;




60

Table 4.10: Input Gate Parameters for Part B of 8 x 8 Modified Delta Switch (cont.)

I Gate | Enabling Predicate

Function

|

MARK(in_buf_T)==0) or
(MARK(in_buf4) > 0 and
MARK(in_buf_8) == 0)

ckl3 | MARK(in_¢-buf1.3) > 0 and MARK(in_g-buf2_3)= MARK(in_g_bufl.3);
MARK(in_g buf2.3) == MARK(in_¢ buf1.3)=0;
ckl4 | MARK(in_g bufl4) > 0 and MARK(in_g-buf2.4)= MARK(in_g-bufl.4);
MARK(in.qbuf2.4) == 0 MARK (in_g_buf1.4)=0;
ck2-3 | MARK(én_¢-buf2.3) > 0 and MARK (in.q.buf3-3)= MARK(in_g_buf2.3);
MARK(in-gbuf3.3) == 0 MARK(in_g buf2.3)=0;
ck2.4 | MARK(in_¢ buf2.4) > 0 and MARK(in_g-buf3.4)= MARK(in_q-buf2_4);
MARK(in_gbuf3.4) == MARK(in_qg_buf2.4)=0;
ck3.3 | (1 < MARK(ingbuf33) <4 and | if (1 < MARK(in-g-buf3.3) < 4)
MARK(in_buf-3)==0) or MARK (in_buf_3)= MARK(in-g buf3.3);
(5 < MARK(in-g-buf3.3) < 8 and MARK(inqbuf3.3) = 0;
MARK(in_buf_4) == 0) else
MARK(in-buf-4) = MARK(in_g_buf3.3);
MARK(in_¢ buf3.3) = 0,
ck3.4 | (1 < MARK(in-g-buf3.4) < 4 and | if (1 < MARK(ingbuf34) < 4)
MARK(in buf.3)==0) or MARK(in-buf-3)= MARK(in.q-buf3.4);
(5 < MARK(in-g-buf3.4) < 8 and MARK(in-g-buf34) = 0;
MARK(in_buf4) == 0) else
MARK(in_buf_4) = MARK(in_g_buf3_4);
MARK(in_g buf3.4) = 0;
ck3 | (MARK(inbuf2) > 0 and if ( MARK(inbuf7) == 0)
MARK(in_buf.7)==0) or MARK(inbuf_-T)= MARK(in.buf 2);
(MARK(in_buf_2) > 0 and MARK(in_buf2) = 0;
MARK(in_buf_8) == 0) else
MARK (in.buf 8) = MARK(in-buf_2);
MARK(inbuf_2) = 0;
ck4 | (MARK(inbuf4) > 0 and if ( MARK(inbuf7) == 0)

MARK(inbuf_-7)= MARK(in-buf_4);
MARK(in-buf4) = 0;

else
MARK(in-buf-8) = MARK(in-buf_4);
MARK(inbuf 4) = 0;




Table 4.11: Activity Parameters for Part B of Modified Delta Network

] Activity [ Rate ] Probability I
advl.1 inst 1
adv2_1 inst 1
advl2 inst 1
adv22 inst 1
advl3 inst 1
adv2.3 inst 1
advl 4 inst 1
adv2.4 inst 1
processing-1 | normal(p)(6 ) | 1
processing-2 | normal(u)(6 ) | 1
processing-3 | normal(u)(§ ) | 1
processing.4 | normal(p)(6 ) | 1
processing.5 | normal(p)(6 ) | 1
processing-6 | normal(p)(6 ) | 1
processing-7 | normal(p)(6 ) | 1
processing-8 | normal(u)(6 ) | 1
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Figure 4.11: 8 x 8 Network with Mux and Demux

non-uniform workload in which the traffic from one side (banyan side) is much heavier
than the traffic from the other side (mux-demux side).

Packets wait their turns in the input queue in the order of their arrivals. When
available, the input port controller removes the head of the queue and sends it into the
switch fabric. Each switching element has a single-buffer in its input port to temperately
store one packet. Fach demultiplexer is connected to two or three multiplexer in order
to route packets to the proper output port. At the banyan side of the network, packet
is stored temporarily in the buffer of switching element. It then is sent to proper port
depending on its destination. If the destination port is on the mux-demux side of the
network, the packet is forwarded to one of the two demultiplexers. The function of
the demultiplexer is to direct the packet to the correct path. Packets going through
demultiplexer are then routed to the multiplexer. Multiplexers collect the packets to
same outputs and send them to their destinations. Packets enter from mux-demux side

of the switch follow similar process except they are routed by the demultiplexers and
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multiplexers first. Each multiplexer has a buffer which would hold 5 packets. No buffer
is necessary for the demultiplexer since the speed of the lines connecting the multiplexer
and demultiplexer is the same as it in the other part of the switching network. Multiple
paths can be accessible to route the packet. In this case, packets are always routed to the
first available route.

Figure 4.12 shows the SAN representation of this modified 8 X 8 switching network.
Packet arrival is modeled by a timed activity arr, shown in Figure 4.13. The distribution
of arrival is  exponential. Three cases are associated to the arrival activity: case 1
connected to output gate G1, case 2 to gate G2 and case 3 to gate G3. Case 1 represents
that the arriving packet is designated to the output in the same 4 x 4 switch. Case 2
represents that the arriving packet is addressed to the output at the banyan side of the
8 x 8 switch but not in the same 4 X 4 switch. The arrival of packets to be routed to the
mux-demux side of the switch are represented by case 3. If case 1 is chosen, gate G'1 puts
1 token in the place in_g_bufi_i. If case 2 is chosen, G2 creates 2 tokens in in_q_bufi_i.
Similarly, G3 generates 3 tokens in in_g_bufl_iif case 3 is selected. Each output gate sends
one token to an internal counter packet_in_system when executing the gate function. The
activity parameters and output gate functions are listed in Table 4.12 and Table 4.13.
Parts A, A’, A” and A™ as well as parts B, B’, B” and B”’ in Figure 4.12 are all the
same as in Figure 4.9 and represent the arrivals of packets to the switch. A SAN model
for the 4 x 4 part(denoted by C in Figure 4.12) of the network is shown in Figure 4.14.
Places in_bufl_i, in_buf2_i and in_buf3.i are the buffers in the input queue. Activities

advi_i, adv2_i and advd_i are instantaneous activities which model the advance of packets
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in_bufl

Figure 4.13: SAN Representation for Arrival in Modified 8 x 8 switch with Mux and
Demux

in the queue. Input gates cki_i and ck2.i examine the contents of buffers, as described
in the previous models, and move the tokens from one place to the next. Blocks X, X’,
X” and Y are the 2 x 2 blocks shown in the block diagram (Figure 4.11). Each 2 x 2
switching element performs similar functions except the one in block Y. Of course, the
gate functions in these similar 2 X 2 switch models check for different number of tokens.
I will describe block X here.

This SAN model of 2 X 2 switching element includes four places, two input gates and
two timed activities. Places in_buf3_1 and in_buf3_2 represent the input buffers of the
switching element. Each holds one packet. Input gates ck3-1 and ck3-2 first check the
type of packets in the buffers. If the packet is destined for a local output port (in this
case, places out.I or out_2, and token number = 1) and the lower place in_buf_4 is free,
then the timed activity (processing-1 or processing-2) is completed, the place in.-buf3-i is
emptied, and same number of tokens are added to in-buf_4. This signified the routing of
packet. Otherwise, if the type of packets is not for the local outputs and the in_buf.3 is

free, the tokens is moved to in.buf.3. The gates ck-5 and ck-6 in X’ check the packets to
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Table 4.12: Activity Parameters for ARR block of 8 x 8 Network with Mux and Demux

Probability
Activity | Rate case
1 | 2 | 3
arr exp(A) | 0.3333 | 0.3333 | 0.3334

see which output ports they are going. If the number of tokens in the input-buffer place
is 2, the packet is to be routed to the lower 4 X 4 switch. If the token number is 3, the
packet is to be routed to the output ports at mux-demux side. The gates ck_§ and ck_4
in block X” examine the token numbers in places in_buf-5 and in-buf-6. If token number
is 1, the packet will be moved to place in_buf-8. If token number equals 2 or 3, the packet
will be moved to place in-buf_7.

Block Y also represents a 2 X 2 switching element. Input gates ck_7 and ck_& check for
the existence of tokens in input-buffer places in_buff and in_buf 8. If true, the activity
processing.b or processing.6 is completed. Two cases associated with the activity. These
are to signify that packets go to both outputs evenly. Therefore, one packet has 0.5
probability to choose case 1. This causes the packet to exit through place out_1. There
is 0.5 probability that the packet will choose case 2 and exit through place out_2. The
input gate functions and predicates for this 4 x 4 SAN model are shown in Table 4.14 and
Table 4.15, respectively. The output gate functions are listed in Table 4.16 and activity
attributes for the model are in Table 4.17. Part C’ of Figure 4.12 is a mirror image of

Part C. Everything in Part C’ is the same as in Part C except that:
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Table 4.13: Output Gate Parameters for ARR block of 8 x 8 with Mux and Demux

| Gate l Function ]
G1 MARK(in_g-bufl) = 1;
MARK(packet_in_system) = MARK(packet_in_system) + 1;
G2 MARK(in_gbufl) = 2;
MARK(packet_in_system) = MARK(packet_in_system) + 1;
G3 MARK(in_g-bufl) = 3;
MARK(packet_in_system) = MARK(packet_in_system) + 1;

a) Gates ck3_i, ck_8 and ck_4 now check for token number equal 2 for the local output

ports and token number 1 and 3 for the upper 4 X 4 switch and mux-demux side.

b) Gates ck-5 and ck-6 check for token number 1 to be routed to place oui-_4.

Two SAN models of demultiplexers are shown in Figure 4.15 and Figure 4.16. Fig-
ure 4.15, a detailed depiction of part Demux in the 8 x 8 switch, has two places, two
activities, two input gates and six output gates. Places in_buf_-9 and in_buf_10 are input
buffers of the demultiplexers. These input buffers are also the output buffers out_3 and
out_4 in part C of the switch. Input gates Gdemuz_1 and Gdemuz.2 check for the presence
of tokens in input-buffer places. If they hold, the instantaneous activity Ademuz_I or Ade-
muz_2 is enabled and completed immediately. Upon completion, one case of the activity
will be chosen. There are four cases, Ga, Gb, Gc and Gd, associated with Ademuz.I
with equal probability (0.25) and two cases, Ge and Gf, associated with Ademuz_2 also
with equal probability (0.5). This is to make sure that one packet bears the equivalent
probability to each output. If the packets is designated to the output ports of the lower

4 x 4 switch (token number = 2), the packet is routed to the multiplexer in part Mux’.
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Table 4.14: Input Gate Parameters for Part C of 8 X 8 Switch with Mux and Demux

| Gate | Enabling Predicate | Function |
ckl.l | MARK(in_g-buf1.1) > 0 and MARK(in_g-buf2.1)= MARK(in_g bufl_1);
MARK(in_g_buf2.1) == MARK(in_qbuf1.1)=0;
ckl.2 | MARK(in-g-buf1.2) > 0 and MARK(in-g-buf2.2)= MARK(in_g_buf1_2);
MARK (in_q_buf2.2) == MARK (in_q_buf1.2)=0;
ck2_1 | MARK(in_g buf2.1) > 0 and MARK(in.q-buf3.1)= MARK(in_g_buf2.1);
MARK(in_g buf3.1) == MARK(in-q-buf2-1)=0;
ck2_2 | MARK(in_¢ buf2.2) > 0 and MARK (in_g_buf3.-2)= MARK(in_q.-buf2_2);
MARK(in_gbuf3.2) == 0 MARK (in_q buf2_2)=0;
ck3.1 | (2 < MARK(in-g-buf3.1) < 3 and | if (2 < MARK(in_g-buf3.1) < 3)
MARK (in_buf-3)==0) or MARK(in_buf.3)= MARK(in_g-buf3.1);
(MARK(in_¢-buf3.1) == 1 and MARK(in_g-buf3.1) = 0;
MARK(inbuf4) == 0) else
MARK(inbuf-4) = MARK(in_g-buf3-1);
MARK (in_gbuf3.1) = 0;
ck32 | (2 < MARK(ingbuf3-2) < 3 and | if ( 2 < MARK(in-¢-buf3.2) < 3)
MARK(in-buf-3)==0) or MARK(in-buf-3)= MARK(in_g-buf3-2);
(MARK(in_g buf3-1) == 1 and MARK(in_g-buf3.2) = 0;
MARK(in_buf 4) == 0) else
MARK(in_buf.4) = MARK(in_g-buf3.2);
MARK(in-g-buf3.2) = 0;
ck3 | (2 < MARK(inbuf5) < 3 and if (2 < MARK(in-buf.5) < 3)
MARK(in buf_T)==0) or MARK(inbuf_7)= MARK(in_buf_5);
(MARK(inbuf5) == 1 and MARK(in buf_5) = 0;
MARK(in_buf_8) == 0) else
MARK(in_buf.8) = MARK(in-buf.5);
MARK(inbuf.5) = 0;
ck4 | (2 <MARK(inbuf8) < 3 and if (2 < MARK(in_buf6) < 3)
MARK (én_buf_7)==0) or MARK (in_buf.T)= MARK(in_buf 6);
(MARK(in-buf6) == 1 and MARK(inbuf_6) = 0;
MARK(in_buf_8) == 0) else
MARK(in-buf.8) = MARK(in-buf.6);
MARK(in_buf.6) = 0;
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Table 4.15: Input Gate Parameters for Part C of 8 x 8 Switch with Mux and Demux
(cont.)

| Gate | Enabling Predicate | Function ]
ck5 | (MARK(inbuf3) == 3 and | if (MARK(in_buf-3) == 3)
MARK(in_buf 9)==0) or MARK(in buf.9)= MARK(in_buf_3);

(MARK(in-buf-3) == 2 and MARK(inbuf.3) = 0;
MARK(inbuf_10) == 0) else

MARK (in_buf_10) = MARK(in_buf.3);
MARK(inbuf3) = 0;

ck6 | (MARK(inbuf_7) == 3 and | if (MARK(in-buf.7) == 3)
MARK(inbuf_9)==0) or MARK(inbuf9)= MARK(in-buf.7);
(MARK(in_buf.7) == 2 and | MARK(inbuf.7) = 0;
MARK(in.buf_10) == 0) else

MARK (in_buf_10) = MARK(in-buf_7);
MARK(inbuf.7) = 0,

k7 | MARK(inbuf4) > 0 MARK(in_buf4) = 0.

k8 | MARK(inbuf3) > 0 MARK (inbuf8) = 0,

Table 4.16: Output Gate Parameters for Part C of 8 x 8 with Mux and Demux

Gate l Function ]

goout.l | MARK(out_1) = MARK(out-1) + 1;
goout2 | MARK(out-2) = MARK(out_2) + 1;




Table 4.17: Activity Parameters for Part C of 8 x 8 Network with Mux and Demux

Activity Rate Probability
case 1 | case 2
advl 1l inst 1 -
adv2_1 inst 1 -
advl 2 inst 1 -
adv22 inst 1 -
processing_l | normal(p)(é6 ) | 1 -
processing 2 | normal(p)(6 ) | 1 -
processing.3 | normal(p)(6) | 1 -
processing-4 | normal(p)(6 ) | 1 -
processing.5 | normal(p)(6 ) | 1 -
processing.6 | normal(p)(6 ) | 1 -
processing-7 | normal(u)(6 ) | 0.5 0.5
processing-8 | normal(u)(6) | 0.5 0.5
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Otherwise, the packets, after completing the activity Ademuz_1 and choosing one of the
four cases, go to multiplexer in part M or M’. Part Demux’ in Figure 4.12 is a mirror
image of SAN model in Demux. Every SAN entity in Demux’ is the same as in Demux.
Another demultiplexer model is shown in Figure 4.16. This is the SAN for part De
and De’ in the 8 x 8 model. It consists an input queue of 3 buffers, with activities adv’s
and associated input gates ckl’s and ck2’s. This is exactly the same as the input queue
mentioned above. Input gates Gdemuz_8 and Gdemuz_4 check the address of the packet
(number of tokens) in place in-buf8-3 and in-bufs_4. If the token number equals to 1 or
3, the packet will be routed to place muz_bufi_1 in part Mux. If the token number is 2 or
3, the packet will be sent to place muz_-bufi_2’in part Mux’. The input gate, output gate

and activity parameters of both demultiplexer are listed in Tables 4.18, 4.19 and 4.20.
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Table 4.18: Input Gate Parameters for Demux of 8 X 8 Switch with Mux and Demux
Gate | Enabling Predicate | Function ]
Gdemuz_1 | MARK(in_buf 9) > 0 MARK(inbuf.9) = 0;
Gdemuz 2 | MARK(in_buf.10) > 0 MARK(in_buf_10) = 0;
ck1.3 MARK(in_g-bufl1.3) > 0 and MARK(in_¢-buf2.3)= MARK(in_¢ buf1.3);
MARK(in_q-buf2.3) == 0 MARK(in-g-buf1.3)=0;
ckl 4 MARK(in_gbufl_4) > 0 and MARK(in_g buf2.4)= MARK(in_q-bufl_4);
MARK(in_g-buf2.4) == MARK(in_g bufl.4)=0;
k23 MARK (in_q buf2.3) > 0 and MARK (in_q buf3-3)= MARK(in_qbuf2.3);
MARK(in_g buf3.3) == MARK(in_g buf2.3)=0;
k24 MARK (in_g buf24) > 0 and MARK (in_q_buf3-4)= MARK (in-qbuf2.4);
MARK(in_g buf34) == 0 MARK((in_g_buf2_4)=0;
Gdemuz 3 | (MARK(ing-buf3.3) == (1 or 3) and | if ( MARK(in_q-buf3.3) == (1 or 3)
MARK(muz bufl_1)==0) or MARK(muz_bufl.1)= MARK(in-g buf3.3);
(MARK(in-g-buf3.3) == (2 or 3) and MARK(in-g-buf3.3) = 0;
MARK(muz_buf1.2') == 0) else
MARK(muz_buf1.2') = MARK(in.q buf3.3);
: MARK(in_g buf3.3) = 0;
Gdemuz 4 | (MARK(in-g-buf3.4) == (1 or 3) and | if ( MARK(ingbuf34) == (1 or 3)
MARK(muz bufl-2)==0) or MARK(muz_bufl_2)= MARK(in_gbuf3.4);
(MARK(in_gbuf3.4) == (2 or 3) and MARK(in-g-buf3_4) = 0;
MARK(muz_bufl.1") == 0) else
MARK(muz_buf1.1") = MARK(in_g buf3_4),
MARK(in_g-buf3.4) = 0;

Table 4.19: Output Gate Parameters for Demux of 8 x 8 with Mux and Demux

| Gate ] Function

|

Ga MARK(muz_buf_1) = MARK(muz_buf.1) + 1;

Gb MARK(muz_buf-2) = MARK(muz_buf2) + 1;

Ge MARK(muz buf-1') = MARK(muzbuf.1') + 1;

Gd MARK(muz_buf-2") = MARK(muz buf 2') + 1;

Ge MARK(muz bufl.1") = 2;

Gf MARK(muz_bufl2") = 2;
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Table 4.20: Activity Parameters for Demux of 8 x 8 Network with Mux and Demux

Activity | Rate Probability

case 1 | case 2 [ case 3 ] case 4
advl.3 inst 1 - - -
adv2_3 inst 1 - - -
advl 4 inst 1 - - -
adv2 4 inst 1 - - -

Ademuz_1 | inst 0.25 0.25 0.25 0.25
Ademux 2 | inst 0.5 0.5 - -
Ademuz_3 | inst 1 - - -
Ademuz 4 | inst 1 - - .

Figure 4.17 and Figure 4.18 show two SAN models for multiplexers. One of them, in
Figure 4.17, consisting of two queues of five buffers each is the detailed drawing for part
Mux in Figure 4.12. The SAN of queue is the same as input queue at each input port. It
has five places representing five buffers. These are muz_buf-I ... muz_buf-10. Activities
Amuz_l ... Amuz.10 are instantaneous activities signify the advance of the packets in
queue. The input gates Gmuz_1 ... Gmuz_10 are the gates for checking whether the next
buffer in queue is free and, if free, to enable the activities and move the tokens forward.
in_buf_5 and in_buf_6 are the output buffers of the multiplexers also serve as input buffers
for the 4 X 4 switch (part C in Figure 4.12). Mux’ in the 8 X 8 SAN is the same as Mux.

The second multiplexer model is shown in Figure 4.18. It is the detailed drawing
for part M and M’ in Figure 4.12. The SAN model has only two places, representing
two single-buffers in multiplexer. Gout! and Gout2 are the input gates associated with
instantaneous activities pk_ezit! and pk_exit2. pk-exit! and pk_ezit2 represent the events

packets exiting the system. When completed, gate functions in Gout! and Gout2 subtract
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mux_bufl_1

mux_bufl_2

Figure 4.17: SAN representation for 1st Mux in Modified 8 x 8 switch with Mux and

Demux

one token each from the internal counter packet_in_system. The input gates output_I,

output_2, output.1’and output-2’ along with their associated activities pk_exit3, pk_exit,

pk_exits and pk_ezit6 in Figure 4.12 also signify the exit of packets. Tables 4.21 and 4.22

show the input gate and activity parameters for the muxltiplexers.

4.2 Performance Variables

We are interested in three performance variables. They are ”ezpected throughput of the

system?”, ”

, "rejection probability” and the "expected system time delay” for a successfully de-

livered packet. For those models with back—pressure algorithm, the expected throughput

of the system is the arrival rate minus the ezpected total rate of rejection. The expected

total rate of rejection can be obtained by the performance parameter packet.loss_prob in

METASAN experiment file. Using Little’s result, the total time delay can be calculated

from the parameter number_packet_in_system following the formula:
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Figure 4.18: SAN representation for 2nd Mux in Modified 8 x 8 switch with Mux and

Demux

Table 4.21: Input Gate Parameters for Mux’s of 8 x 8 Switch with Mux and Demux

| Gate | Enabling Predicate | Function |

Gmuz.1l | MARK(muz_bufl_1) > 0 and | MARK(muzbuf2.1)= MARK(muz-bufl.1),
MARK(muz-buf2.1) == MARK(muz.bufl.1)=0;

Gmuz.2 | MARK(muz_buf2_1) > 0 and | MARK(muz-buf3.-1)= MARK(muz_buf2_.1),
MARK(muz_buf3.1) == MARK(muz_buf2.1)=0;

Gmuz.3 | MARK(muz_buf3_1) > 0 and | MARK(muz bufd.1)= MARK(muz_buf3_1);
MARK(muz_bufd l) == MARK(muz_buf3.1)=0;

Gmuz 4 | MARK(muz_buf4.1) > 0 and | MARK(muz_buf5.1)= MARK(muz_buf4.1),
MARK(muz_buf5_1) == 0 MARK(muz_buf4._1)=0;

Gmuzd | MARK(muz_buf5.1) > 0 and | MARK(in-buf_5)= MARK(muz_bu f5.1);
MARK(in-buf.5) == MARK(muz. buf5.1)=0;

Gmuz 6 | MARK(muz_buf12) > 0 and | MARK(muz_buf2.2)= MARK(muz_buf1_2);
MARK(muz_buf2.2) == 0 MARK(muz buf1.2)=0;

Gmuz.7T | MARK(muz_buf2.2) > 0 and | MARK(muz_buf3_2)= MARK(muz_buf2.2);
MARK(muz-buf3-2) == 0 MARK(muz_buf2.2)=0;

Gmuz 8 | MARK(muz_buf3.2) > 0 and | MARK(muz. buf4.2)= MARK(muz-buf3.2);
MARK(muz_buf4.2) == MARK(muz buf3.2)=0;

Gmuz9 | MARK(muz_buf4.2) > 0 and | MARK(muz_buf5.2)= MARK(muz.buf4.2);
MARK(muz buf5.2) == 0 MARK(muz_buf4.2)=0;

Gmuz.10 | MARK(muz_buf5.2) > 0 and | MARK(in_buf_6)= MARK(muz_buf5-2);
MARK(in_buf_6) == MARK (muz_buf5_2)=0;

Goutl MARK(muz_buf_1) > 0 MARK(muz-buf.1) =0

Gout2 MARK(muz_buf-2) >0 - MARK(muz buf2) =0
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Table 4.22: Activity Parameters for Mux’s of 8 X 8 network with Mux and Demux

Activity | Rate | Probability |
Amuz_1l | inst 1
Amuz_2 | inst
Amuz3 | inst
Amuz 4 | inst
Amuz_ 5 | inst
Amuz_6 | inst
Amuz_7 | inst
Amuz 8 | inst
Amuz 9 | inst
Amuz_10 | inst
pk_exitl | inst
pk_exit2 | inst

IR I I e

E[# in system] =X TT

TT = — E[# in system)]

>l

where:

E[# in system]= expected number of packets in system.

A= average arrival rate.

TT= ezxpected time delay.

For those models with the reject-retransmission algorithm, the performance variables
can be derived from the rate of departure from the switch and the ezpected number of
packets in system. Figure 4.19 shows a sketch of the system. Assume that a system has
a rate of arrival A\. The system consists of a finite queue and a service unit. When the

queue is full, the incoming customers are rejected by the system. The rate of rejection is



78

SERVICE UNIT -

System Boundary

Figure 4.19: Reject-Retransmission System Diagram

Ag. The service unit provides service to the customers in the queue. A customer can leave
the system with completion of service or without. The rate of departure with completion
of service is A”, while the rate of departure without completion of service is A’. Customers
failed to complete the service are immediately fed back to the system and start over. The
rate of feedback is equal to A’. However, a fed-back customer can be rejected due to queue
full. We denote the rate of feedback rejection A. The variables we need are: the ezpecied
throughput of the system (\”), expected rate of rejection (Mg + Al;) and the ezpected time
delay for a serviced customer (TT). We denote A, to be the actual arrival rate seen by
the system. Since the number in the system is at all times finite, the total rate of arrival

equal to the total rate of departure, i.e.,
Aa =N+ N

Given a customer in the system, the probability for it to successfully be routed to its

destination is:

—ﬁ— A”
P T VX




79

Thus the probability a customer in the system does not successfully reach his destination
on a single try is (1 — ps). The expected number of attempts that a customer which
eventually receives service makes before receiving successful service is:
w .
E[N]=3 i (1=ps) "ps
i=1
Then, by Little’s result, the expected time in the switch on a single attempt is

_ E[# in system]
= "

E[T]

and the expected system time delay for a serviced customer is:

TT = E[N]E[T] = El# i”ASyStem] iz (1—ps)i~tp,

1=1
The term 352, 7 (1 — ps)'~!p, has an analytical solution of p%. Thus the expected system

time delay for a serviced customer becomes:

E[# in system)]
Aa Ps

TT =

In specific, we will use the variables packet loss probability, number packet in system,

and actual arrival rate to calculate the expected time delay.

4.3 Assumed Workload

Most of the studies on banyan networks assumed uniform workload to the system. In
real application, this is rarely the case. Thus a switch must be able to handle non-uniform
traffic at all time. Not only the arrival rate to different inputs can be different, but also

the routing probably to each output may not be the same. Therefore, three types of
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workload are studied in our models. The first type is the uniform workload. Assuming
same arrival rate for all incoming packets at different input ports. This uniform traffic load
has been the assumption of several studies on banyan network [2, 10, 24, 25]. However, the
assumption of uniform load does not usually reflect the realistic traffic situation in the real
system. In the real system, a switch has to accommodate a wide range of bandwidths. In
specific, the traffic flow from the network side is not the same as it from the local side. A
switch should be capable of handling these different workloads. Hence the traffic pattern
of non-uniform distribution need to be addressed. Two modes of non-uniform traffic are

considered:

a) Type A: uniform total traffic to each input port but there are different distribution

for different destinations.

b) Type B: non-uniform traffic to each input port as well as different distribution for

different destinations.

We will do this in the next chapter, where we present the results of evaluation studies

based on thesis models.
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CHAPTER 5

RESULTS AND DISCUSSION

Three SAN models based on the three designs of the Multistage Interconnection Net-
work were constructed in the previous chapter. Each SAN model was augmented to
represent two different algorithms for handling the blocked packets. As mentioned in
previous chapter, they are back-pressure (B-P) and reject algorithm. In the second algo-
rithm, the blocked packet is dropped. For a fair comparison, we will consider that each
packet is retransmitted by upper layer protocol, as would be the case of the reliable data
transfer. We call this algorithm reject-retransmission (R-R). Each SAN model assumed
in this way was evaluated under three different types of workload, as described below.
As the result, a total of eighteen sets of simulation experiments are conducted. Table 5.1
lists all the combinations of simulation runs. We will discuss the simulation results by

comparing them from different designs for the same type of workload.

5.1 Uniform Workload, Uniform Routing Probability

In the first group of experiments, the performance of each switch design was studied
under uniform workload and uniform routing probability. With the arrival rate set to

one packet per unit time at each input port and equal probability of routing each packet



Table 5.1: Simulation Experiment Sets
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Uniform Workload, | Uniform Workload, Non-uniform Workload,
Uniform Routing Non-uniform Routing | Non-uniform Routing
Probability Probability Probability
Baseline | Back-Pressure X X X
Reject-Retransmission | X X X
Mux— Back-Pressure X X X
Demux Reject-Retransmission | X X X
Modified | Back-Pressure X X X
Delta Reject-Retransmission | X X X
Table 5.2: Packet Loss Probability
Uniform Workload, Uniform Routing Prob.
arr/proc 0.1 [ 0.2 [ 0.3 | 0.4 | 0.5
Baseline B-P [ .00087 =+ .00015 | .0194£.0017 1144 .010 | 256 £ .023 | .386 £ .030
R-R | .0007 £ .007 .003 £ .008 .025 £ .009 | .090 4+ .008 | .203 & .007
Network with | B-P | .00034 & .00006 | .0057 4 .00034 | .068 & .005 | .216 4+ .017 | .353 & .024
Muxé&Demux | R-R | .0008 4= .007 .002 £ .007 0124 .007 | .038£.007 | .140 £ .005
Modified B-P | .00067 4 .00006 | .01004 .0009 | .0514.004 | .1364 .011 | .239 £ .019
Delta R-R | .007 4 .008 002 + .009 0264 .009 | .103+ .008 | .227 £ .007

to a given output port, we observed the behavior of three designs of switch using the

two algorithms handling the blocked packets. The packet loss probability and expected

delays for a serviced packet obtained for various scenarios are given in Table 5.2 and

Table 5.3, respectively. All values reported in this section are at 95% level of confidence.

Figure 5.1 gives the packet loss probability of switch models under the back-pressure

algorithm. Figure 5.2 shows the ezpected time delay of these switch models. Both figures

show the simulation results as the processing time of switch element is varied from 0.1 to

0.5 time unit, while the arrival rate is held constant at 1.
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Figure 5.1: Packet Loss Probability of Switch Models at Uniform Workload, Uniform
Routing Probability (Back-Pressure)
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Figure 5.2: Expected Time Delay of Switch Models at Uniform Workload, Uniform Rout-
ing Probability (Back-Pressure)



Table 5.3: Expected Packet Time Delay

85

Uniform Workload, Uniform Routing Prob.

arr/proc 0.1 [ 0.2 [0.3 | 0.4 [ 0.5
Baseline B-P | 350+ .001 904 £ .007 1.860 4 .023 | 3.157 4+ .039 | 4.487+ .054

R-R | .331 &£ .027 772 4 .060 1.4124 .134 | 2.242 £ .152 | 3.266 £ .151
Network with | B-P | .319 £ .001 .938 4 .006 3.192 4 .041 | 5.5610£.059 | 7.579% .114
Mux&Demux | R-R | .299 4 .144 .695 4 .038 1.2944.085 | 2.416 £.162 | 4.126 &+ .221
Modified B-P | .23104 4 .00005 | .5627 £.0039 | 1.074+ .011 | 1.7756+.019 | 2.616 & .042
Delta R-R | 454+ .042 1.032+ .077 | 1.8154+.133 | 2.854£.176 | 4.179+£ .018

It can be seen that the packet loss probability for all three models is relatively small
(< 0.02) when the processing rate is 5-10 times faster than the arrival rate. The packet
loss probability starts to increase when the ratio of arrival rate and processing rate passes
0.20. The rates of increase (slopes of the curves) are similar for modles of basic banyan
and Mux-Demux. However, the model for Modified 8 x 8 delta network has the smallest
slope for its curve and the lowest packet loss probability of all. The basic banyan 8 X 8
network, with three-stage switching elements and single path, has the highest packet loss
probability. As processing rate slows down to 0.7 of the arrival rate, the simulation of
model shows that basic banyan 8 X 8 network reaches a packet loss probability of 0.55.

The expected packet time delay of each switch design is plotted in Figure 5.2. We
note that the model for modified 8 x 8 delta network has the shortest expected packet
time delay and the model for basic banyan 8 X 8 network has the longest delayat all
utilizations. This is probably due to the multiple path characteristic of modified 8 x 8
delta network, by which more packets can be routed and thus reduce the waiting time in

queue. The blocked packet handling algorithm also affect the results. In the simulation
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runs with back-pressure algorithm, the packets are held in the previous switching element
until current switching element is free. This would cause time delay of a packet to occur
within the switch (in the buffers of the switching element) rather than in the input queues.

Figure 5.3 and Figure 5.4 are the packet loss probability and expected time delay
of three switch models with reject-retransmission algorithm. In Figure 5.3, 8 X 8 net-
work with multiplexer and demultiplexer performs the best of the three at the high
arrival [processing ratio (> 0.30). When the ratio is lower than 0.30, the model of
the design with modified 8 x 8 delta network seems to perform the best. It is interesting
to note, however, that packet loss probability of the model for modified 8 x 8 delta network
becomes the highest of the three models once the arrival/processing ratio reaches about
0.35 and stays as the highest afterward. It will reject 22.6% of the incoming packets at
the input queue as arrival/processing ratio equal to 0.5.

As shown in Figure 5.4, model for modified 8 x 8 delta network maintains the highest
expected packet time delay at all simulation experiments with reject-retransmission algo-
rithm as well as uniform workload and routing probability. While expected packet time
delay of the model for 8 x 8 network with multiplexer starts with the lowest of all at the
low arrival/processing ratio, but increases to more than it is in the basic banyan 8 x 8
model after the ratio raises beyond 0.35. It is noted that both the packet loss probability
and expected packet time delay of the model for modified 8 x 8 delta network are the
highest of the three models at most of the time regardless of its multiple path in the

design.
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5.2 Uniform Workload, Non-uniform Routing Probability

The second group of simulation experiments are shown in Tables 5.4 and 5.5. Simu-
lations were run by varying the arrival rate/processing rate ratio from 0.1 to 0.5 under
uniform workload, non-uniform routing probability conditions. The arrival rate is kept at
one packet per time unit; while the processing rate of the switching elements are changed
from 10 to 2 packets per time unit. The routing probability to each of the local output
ports is 0.2 and the routing probability to each of the network port is 0.05 for each incom-
ing packet. All simulation results listed in this section are within 95% confidence interval.
Figure 5.5 and Figure 5.6 depict the packet loss probability and expected packet time
delay of three models with back-pressure algorithm. In Figure 5.5, we see that the packet
loss probability of the model for network with multiplexer and demultiplexer smallest of
the three at the low arrival/processing ratios (< 0.20). The packet loss probability of the
modified 8 x 8 delta network shows medium loss of three at the small ratio and increases
more slowly than that of the 8 x 8 network with mutiplexer and demultiplexer beyond
0.25 utilization and becomes the lowest of the three. The basic banyan network has the
highest loss probability in all the simulation runs under this back-pressure algorithm and
workload. 53% of the packets are rejected at arrival/processing ratio of 0.5 for the basic
banyan network.

The expected time delay of packets in model for modified 8 x 8 delta network is the
lowest among three models, as shown in Figure 5.6. Both the 8 x 8 Mux-Demux and
basic banyan network have expected time delays very close when arrival rate/processing

rate < 0.2. The expected time delay of the basic banyan network then increases rapidly
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Uniform Workload, Non-uniform Routing Prob.

arr/proc 0.1 [ 0.2 | 0.3 [ 0.4 1 0.5
Baseline B-P | .0016 £ .00008 | .055 % .0026 .246 £+ .011 426 £+ .018 5314 .023

R-R | .001 4 .002 .003 +£-002 663 £ .029 224 4+ .020 .366 % .020
Network with | B-P | .00345 4 .00001 | .006 £ .000648 | .1278 4 .0037 | .2838 £ .0081 | .406 - .012
Mux&Demux | R-R | .006 £ .003 .006 % .003 0199 £ .003 | .063 % .028 188 +.012
Modified B-P | .00094 £ .00004 | .0183 4 .0008 | .098 & .004 236 4 .011 .369 & .017
Delta R-R | .006 £+ .003 .002 £ .003 .088 + .021 272 4 .021 406 £+ .016

Table 5.5: Expected Packet Time Delay
Uniform Workload, Non-uniform Routing Prob.

arr/proc 0.1 1 0.2 [ 0.3 | 0.4 [ 0.5
Baseline B-P | .378 £ .0006 | 1.204+.008 | 2.808 £.020 | 4.651+.033 | 6.237+£.030

R-R | .349+ .011 .889+.045 | 1.882+£.092 | 2.278+.121 | 4.653 4 .161
Network with | B-P | .3308 & .0004 | 1.274 £ .016 | 4.0404+ .018 | 6.362+ .030 | 8.613 & .045
Mux&Demux | R-R | .3124 .013 7454+ .039 | 1.474+.075 | 3.0644 .174 | 5.0924 .197
Modified B-P | 2416+ .0003 | .648 4+ .002 | 1.392+.0088 | 2.436+ .021 | 3.620 .029
Delta R-R | 476 £ .021 1.184 £ .057 | 2.468 4 .105 | 4.2204 .095 | 5.739 & .089

and becomes the largest of the three models. Overall, the modified 8 x 8 delta network
performs the best under this workload scenario and contention resolution mechanism.
The results of simulation runs of three models with reject-retransmission algorithm
at uniform workload and non-uniform routing probability are plotted in Figure 5.7 and
Figure 5.8. In this case, the 8 x 8 network with multiplexer and demultiplexer has the
lowest packet loss probability under most workload. The model for modified 8 x 8 delta
network has the highest loss probability. The packet loss probability is 0.40 in the modified
8 x 8 delta network at arrival/processing ratio of 0.5. The curve of model for the 8 X 8

network with multiplexer and demultiplexer in Figure 5.8 shows the lowest expected time
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Non-uniform Workload, Non-uniform Routing Prob.

arr/proc 0.1 [ 0.2 [ 0.3 | 0.4 | 0.5
Baseline | B-P | .01487+ .00024 | .2263 &+ .0014 | .4085 % .0027 | .5094 £ .0042 | .5768 &+ .0061

R-R | .007 +.002 .018 +.008 109+ .024 .256 £ .021 380 £.017
8§x8 B-P | .00357 4 .00033 | .0562 4 .0049 | .1957 & .0013 | .3796 £ .0079 | .503 £+ .014
w/ Mux | R-R | .0044.002 .017 +.007 .052 + .023 140 + .020 254 £ .021
Modified | B-P | .00556 & .00021 | .0971 4 .0015 | .2720 £ .0023 | .3990 & .0034 | .4803 £ .0046
Delta R-R | .003+.003 .017 4 .003 125+ .022 287 +.020 413 £ .017

delay until the utilization reaches about 0.45. After this point, the basic banyan network
shows a lesser delay. Under all utilizations, the modified 8 x 8 delta network has the

highest time delay.

5.3 Non-uniform Workload, Non-uniform Routing Probability

Table 5.6 and Table 5.7 are the packet loss probability and expected time delay of
models under non-uniform workload and non-uniform routing probability. All simulation
results reported in this section are at 90% level of confidence. Arrival is modeled as a
Poisson process, where the arrival rate at each input port on the local side (a total of 4
ports) is 1.6 packets per unit time. The rate is 0.4 packet per unit time at input port
on the network side. A total rate of 8 packets per unit time to the system. This is the
same as the previous two groups. The processing rate for the switch varies from 10 to 2
packets per unit time.

A comparison of three models with back-pressure algorithm is shown in Figure 5.9

and Figure 5.10. As can be seen in Figure 5.9, the packet loss probability of model for
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Non-uniform Workload, Non-uniform Routing Prob.
arr/proc 0.1 | 0.2 [ 0.3 [ 0.4 | 0.5
Baseline | B-P | .4562+ .0009 | 1.633+.005 | 2.837+.017 | 3.9704 .045 | 5.204 4 .010
R-R | .3624.015 937+ .044 | 1.858 +.080 | 3.028 & .121 | 4.294 £ .153
8x8 B-P | .336 4 .002 987+ .025 | 2.735+.020 | 6.820 £ .167 | 10.130 £ .377
w/ Mux | R-R | .300£.010 699 £.029 | 1.2984.053 | 2.2344-.045 | 3.618 & .149
Modified | B-P | .2701 4 .0008 | .8644-.004 | 1.716 +.008 | 2.538 &+ .019 | 3.307 4 .038
Delta R-R | 4794 .024 1.200 £ .068 | 2.390+.085 | 3.854 4 .099 | 5.360+ .104

the basic banyan network is the highest of the three. It rejects 57% of the incoming
packets when arrival rate/processing rate equals to 0.5. The 8 x 8 network with mul-
tiplexer and demultiplexer has the lowest packet loss until the arrival/process reaches
0.45. Figure 5.10 is very interesting. It shows the expect time delay for these models
using the back-pressure algorithm. The 8 x 8 network with multiplexer and demultiplexer
has the fastest time delay increase. At low utilization, the expected delay is very good,
only slightly longer than the time delay in model for modified 8 x 8 delta network. But
at 0.2 utilization it soars up. The expected packet time delay is 10.13 unit time at 0.5
utilization. The modified 8 X 8 delta network maintains the lowest packet time delay from
0.1 to 0.5 utilization.

Figure 5.11 is the packet loss probability of three switches with reject-retransmission
algorithm, for non-uniform arrival rates and routing probabilities. Figure 5.12 is the ex-
pected packet time delay of these models. At low utilizations, the packet loss probabilities

of three designs are very close (about 0.017). However, as utilization (arrival/processing

ratio) increases, the three models display different loss probabilities. 8 x 8 network with
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mutiplexer and demultiplexer holds the lowest loss probability and modified delta network
has the highest — 41% of the packets are lost at the input queues at 0.5 utilization.
Figure 5.12 shows the expected packet time delay of models with reject-retransmission
algorithm under non-uniform workload and routing probabilities. Modified delta network
displays the longest delay of the three when switch utilization is between 0.1 and 0.5.
The model for network with multiplexer and demultiplexer shows the lowest delay at
all utilizations. The expected time needed for packet to propagate through the system

increases in basic banyan model maintains the medium of the three designs.

5.4 Discussion

Observing the curves for the three designs under different workloads and routing prob-
abilities, we can know the behavior of these switches in general. The design with multi-
plexer and demultiplexer performs the best overall using reject-retransmission algorithm.
It is especially good in handling the non-uniform workload and routing probabilities. The
modified delta network, in contrast, performs the best overall when back-pressure algo-
rithm is used. Under uniform workload and routing probability, it handles particularly
well. The design with multiplexer and demultiplexer, probably due to its non-symmetric
layout, always shows a sharp increase on the characteristic curve after a certain point is

reached.
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CHAPTER 6

CONCLUSION

When constructing a communication network, it is vital to choose a switching tech-
nique which is suitable for the application. Packet switching, which acquires and releases
the bandwidth as needed, is a more flexible way to utilize the resources. However, some
problems such as congestion and long delay required attention. This prompted the de-
velopment of a switch which makes use of hardware implementation of basic switching
and protocol functions, known as “fast packet switching”. A class of fast packet switches
is based on the design using multi-stage interconnection networks. Banyan networks are
the generic name for these multi-stage interconnection networks.

We examined three types of switching fabric based on banyan networks.
1. an 8 X 8 modified delta network.
2. an 8 X 8 switch with 4 X 4 banyan networks, multiplexers and demultiplexers.

3. an 8 X 8 baseline banyan network.

Two contention resolution algorithms were investigated associating with these fab-
rics, namely back-pressure and reject. The switch are modeled using stochastic activity
networks. Simulations were adopted to obtain the performance variables.

Among the three designs, the one with multiplexer and demultiplexer performs the

best overall using reject algorithm. It is especially good in handling the non-uniform
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workload and routing probabilities. Whereas the modified delta network performs the
best overall when back-pressure algorithm is used. Under uniform workload and routing
probability, it handles particularly well.

For the future work, it will be interesting to investigate the performance of different
sizes of switch network under different workloads. Finding out the congestion points
(bottleneck) in the switches is another direction of research for a better understanding of

these designs.



104

REFERENCES

[1] K. E. Batcher, “Sorting networks and their applications,” Proceeding of the Spring
Joint Computer Conference, AFIPS Press, pp. 307-314, 1968.

«"[2] D. Dias and J. Jump, “Analysis and simulation of buffered delta network,” IEEE
Transactions on Computers, vol. ¢-30, no. 4, pp. 273-282, April 1981.

[3] D. Dias and J. Jump, “Packet switching interconnection networks for modular sys-
tems,” IEEE Computer, vol. 14, no. 12, pp. 43-53, December 1981.

(4] D. Dias and M. Kumar, “Packet switching in n log n multistage networks,” Proc.
GLOBECOM’84, Atlanta, GA, pp. 43-53, December 1984.

" [5] T. Feng, “A survey of interconnection networks,” IEEE Computer, vol. 14, no. 12,
pp- 12-27, December 1981.

[6] L. Goke and G. Lipovski, “Banyan networks for partitioning multiprocessor systems,”
in Proceeding of 1st Annual International Symposium of Computer Architecture, pp.
21-28. International Symposium of Computer Architecture, December 1973.

(7} L. R. Goke and G. J. Lipovski, “Banyan networks for partitioning multiprocessor
systems,” Proceeding of 1st Annual Symposium on Computer Architecture, pp. 21-
28, 1973.

[8] A. Huang and S. Knauer, “Starlite: A wideband digital switch,” in Proceeding of
1984 GLOBECOMM. GLOBECOMM, 1984.

[9] J. Hui and E. Arthurs, “A broadband packet switch for integrated transport,” IEEE
Journal on Selected Areas in Communications, vol. SAC-5, no. 8, pp. 1264-1273,
October 1987.

[10] Y. Jenq, “Performance analysis of a packet switch based on single-buffered banyan
network,” IEEFE Journal on Selected Areas in Communications, vol. SAC-1, no. 6,
pp. 1014-1021, December 1983.



105

[11] H. Kim and A. Leon-Garcia, “Performance of buffered baynan networks under
nonuniform traffic patterns,” IEEFE INFOCOM’88 New Orleans, pp. 344-353, March
1988.

" [12] C. Kruskal and M. Snir, “The performance of multistage interconnection networks for
multiprocessors,” IEFE Transactions on Computers, vol. ¢c-32, no. 12, pp. 1091-1098,
December 1983.

[13] J. J. Kulzer and W. A. Montgomery, “Statistical switching architectures for future
services,” Proceeding of 155’84, pp. 1-6, 1984.

[14] M. Kumar and J. Jump, “Performance of unbuffered shuffle-exchange networks,”
IEEFE Transaction on Computers, vol. ¢-35, no. 6, pp. 573-578, June 1986.

[15] Private discussions with Dr. M. Liu in Department of Electrical and Computer En-
gineering, University of Arizona, 1989-1990.

[16] J. C. McDonald, editor, Fundamentals of Digital Switching, Plenum Press, 1983.

[17] J. F. Meyer, “Performability modeling of distributed real-time systems,” in Mathe-
matical Computer Performance and Reliability, Amsterdam: North-Holland, 1984.

(18] J. F. Meyer, A. Movaghar, and W. H. Sanders, “Stochastic activity networks: struc-
ture, behavior, and application,” Proc. International Workshop on Timed Petri Nets
Torino, Italy, pp. 106-115, July 1985.

[19] S. E. Minzer, “Broadband ISDN and asynchronous transfer mode (ATM),” IFEE
Communications Magazine, pp. 17-24, September 1989.

[20] M. K. Molloy, “Performance analysis using stochastic petri nets,” IEEFE Transactions
on Computers, pp. 913-917, September 1982.

[21] A. Movaghar and J. F. Meyer, “Performability modeling stochastic activity net-
works,” IFEE 1984 Real-Time Symposium, Austin, Tezas, pp. 215-224, December
1984.

[22] P. Newman, “A broad-band packet switch for multi-service communications,” IEEE
INFOCOM’88, New Orleans, pp. 19— 28, March 1988.

[23] P. Newman, “A fast packet switch for the integrated services backbone network,”
IEEE Journal on Selected Areas in Communications, vol. 6, no. 9, pp. 1468-1479,
December 1988.



v [24]

[25]

[26]

[29]

[30]

[31]

[32]

106

J. Patel, “Performance of processor-memory interconnections for multiprocessors,”
IEEFE Transactions on Computers, vol. c-30, no. 10, pp. 771-780, October 1981.

J. H. Patel, “Processor-memory interconnections for multiprocessors,” Proceeding of
6th Annual Symposium on Computer Architecture, pp. 168-177, April 1979.

W. H. Sanders, “Construction and solution of performability models based on
stochastic activity networks,” Computing Research Laboratory Technical Report
CRL-TR-9-88, The University of Michigan, Ann Arbor, MI, August 1988.

W. H. Sanders and J. F. Meyer, “METASAN: A performability evaluation tool based
on stochastic activity networks,” in Proc. ACM-IEEE Comp. Soc. 1986 Fall Joint
Comp. Conf., Dallas, TX, November 1986.

W. Stallings, Data and Computer Communications, Macmillan Publishing Co., Inc.,
1986.

W. Stallings, ISDN an Introduction, Macmillan Publishing Co., Inc., 1989.

J. Turner, “Design of an integrated services packet network,” ACM, pp. 124-133,
1985.

H. Uematsu and R. Watanabe, “Architecture of a packet switch based on banyan
switching network with feedback loop,” IEEFE journal on Selected Areas in Commu-

nications, vol. 6, no. 9, pp. 1521-1527, December 1988.

L. Wu, “Mixing traffic in a buffered banyan network,” ACM, pp. 134-139, 1985.



