
From Simulation, vol. 62, number 2, February 1994, pp. 98{111.

IMPORTANCE SAMPLING SIMULATION IN UltraSAN �

W. Douglas Obal II and William H. Sanders
Department of Electrical and Computer Engineering

The University of Arizona
Tucson, AZ 85721 USA

(602) 621-6181

obal@ece.arizona.edu and whs@ece.arizona.edu

ABSTRACT

Traditional simulation techniques perform poorly when estimating performance measures
based on rare events. One solution to this problem is the use of importance sampling.
However, two problems that have limited the use of importance sampling are the lack
of a formal framework for specifying importance sampling strategies, and the fact that
in most cases the simulations must be hand-coded|a very time consuming process. This
paper presents a software tool that facilitates experimentation with importance sampling by
addressing these two problems. First, the tool is based on a exible framework for specifying
importance sampling simulations in terms of stochastic activity networks. Second, once
speci�ed, the importance sampling simulation program is automatically generated by the
tool, freeing the researcher to focus on the modeling problem. The e�ectiveness of the
software is demonstrated through the solution of a machine-repairman model with Weibull
distributed failure times and a delayed group repair policy. Orders of magnitude reduction
in the CPU time required to obtain a speci�ed relative accuracy were achieved.

Key Words: Discrete event simulation, Importance sampling, Rare event simulation,
Stochastic activity networks, Stochastic Petri nets.

�This work was supported in part by The University of Arizona Advanced Telecommunications Research

Project and the Digital Equipment Corporation Faculty Program: Incentives for Excellence.

I Introduction

Discrete event modeling and simulation plays an important role in the development of

many modern systems. In the design phase, model-based system evaluation has become a

popular alternative to the relatively costly and time consuming process of prototyping and

testing. When planning changes to an existing system, model-based evaluation can help

identify the most bene�cial modi�cations, and provide an early warning against changes

that may reduce performance. Moreover, model-based evaluation can usually be carried

out without a�ecting the operation of the system under study, whereas testing activities

often impact system performance by increasing response times or disrupting service.

Typically, a model of a discrete event system is created to solve for one or more per-

formance measures of interest. We use the term \performance measure" in a very broad

sense, meaning whatever metric the modeler feels is important. The performance measure

may be reliability, transactions per second, response time, availability, etc.

The characteristics of a model determine which solution methods may be employed

to obtain the desired performance measure. If the model satis�es the Markov property,

and the state space is not too large relative to available computing resources, analytical

techniques can be utilized. When model characteristics preclude an analytical solution,

discrete event simulation is an e�ective alternative. In many cases, simulation is more

exible than analytical techniques and less expensive than prototyping and testing.

The primary drawback of simulation is that it can take an unacceptably long time to

produce an accurate estimate of the performance measure. Often, the source of ine�ciency

in simulation is a performance measure based on a rare event. Such performance measures

are often required in system validation. For example, the speci�cation for a highly depend-

able system might require the unreliability of the system over some interval of time to be

less than 10�6. When estimating a performance measure based on a rare event, traditional

simulation is ine�cient because most of the e�ort is spent processing events that have little

or no impact on the performance measure. Intuitively, we want to make the interesting, or

important, events occur more often, so that we obtain a higher rate of relevant samples.

Importance sampling [1, 2] is one technique that can be used to increase the relative

frequency of rare events. Originally developed as a variance reduction technique for Monte

Carlo simulations [3], the crux of importance sampling is to alter the probability measure

governing events so that the sample variance is reduced. The resulting observations are

1

then weighted to compensate for the use of the alternative probability measure. For a rare

event simulation, this means causing the formerly rare event to occur more often, thereby

achieving a smaller variance in the weighted observations of the performance measure.

One obstacle to the e�ective application of importance sampling to discrete event sim-

ulations is the di�culty of deciding how to alter the probability measure. Calculating the

optimal change of probability measure is hard, since the calculation requires knowledge of

the quantity to be estimated. Researchers have, therefore, focused on �nding good heuris-

tics for particular types of models, such as models of dependable systems [4, 5] and certain

classes of queuing networks [6, 7]. For an alternative approach to the rare event problem,

see Van Moorsel, et al. [8].

Two problems hindering importance sampling researchers are that there is no simple

representation for importance sampling heuristics, and that there is no easy way to experi-

ment with new heuristics. To date, most researchers have hand-coded simulation programs

for each problem. The main bene�t of this approach is the high degree of exibility available

to the simulation programmer. On the other hand, it is very time consuming to program,

validate, debug, etc., for each new problem or importance sampling heuristic.

We have designed and implemented an importance sampling facility for the UltraSAN [9]

modeling package that addresses these problems. UltraSAN is a software tool for model-

based performance, dependability, and performability evaluation of systems. The tool

is based on stochastic activity networks (SANs) [10, 11], a stochastic extension to Petri

nets [12, 13]. The UltraSAN importance sampling simulation facility comprises two parts.

The �rst is a formal framework for specifying importance sampling heuristics in terms of

the random elements of SANs [14]. The second part of the facility is a simulation engine

that accepts the original SAN model and the importance sampling strategy as input, sim-

ulates the model under importance sampling, weights the observations to compensate for

the altered model, and yields an unbiased estimate of the performance measure.

The primary advantage of our approach is the level of automation made possible by

the use of SANs and a formal speci�cation framework for importance sampling. SANs

have very precise execution rules, allowing a single simulation engine to handle any given

SAN. By combining SANs with an equally precise speci�cation of an importance sampling

strategy, the facility produces a speci�cation of the overall simulation precise enough to

be automatically translated into a procedural programming language and compiled. Ultra-

SAN automatically generates an executable simulation by linking the model and importance

2

sampling heuristic speci�cation with the simulation engine. Thus, by using the UltraSAN

facility, the modeler is freed from the problem of designing, coding, validating, and debug-

ging the simulation program. Instead, he may focus on his model. Furthermore, changes

to the model or importance sampling heuristic are expedited, since the modeler does not

have to alter a program|he simply alters his description of the model or the importance

sampling strategy.

The remainder of this paper is organized as follows. First, the theory underlying the

importance sampling speci�cation framework and simulation engine is reviewed, and an

example SAN model is introduced. Next, the UltraSAN implementation of the framework

for importance sampling simulations is discussed. Finally, an example is used to demonstrate

the utility of the UltraSAN importance sampling facility.

II Theory

In this section, we give an overview of the framework for importance sampling presented

in [14].

A Introduction to Importance Sampling

As stated in the introduction, the main idea behind importance sampling is to alter

the probability measure on the set of outcomes to enhance the probability of rare, but

important, events. Consider a probability space (
;F ;P) and a random variable X de�ned

on the space. The power of importance sampling arises from the following transformation:

EP [X] =

Z

X dP =

Z

X
dP

dP 0
dP 0 = EP 0 [XL];

where P 0 is an alternative probability measure on (
;F) and L = dP=dP 0 is the likelihood

ratio. This transformation suggests that an estimate of EP [X] can be calculated by sampling

XL under P 0 and forming the sample mean.

In a discrete event simulation, the performance measure is usually speci�ed as a function

of the sample path. We use the term \sample path" to refer to the sequence of events that

occur as the simulation program executes. So, an event is rare if the sample paths in which

it occurs are rare. Therefore, to increase the relative frequency of a rare event in a discrete

event simulation, one must increase the probability of the set of sample paths in which it

occurs.

3

However, the probability measure on the set of possible sample paths for a given discrete

event simulation is usually not available in closed form. Instead, it is induced by the random

elements built into the model. Therefore, to alter the probability measure on the set of

sample paths one alters the random elements of the model. The random elements of SAN

models are the probabilistic characteristics of SAN components, which are discussed in the

next subsection.

B Stochastic Activity Networks

In the UltraSAN modeling package, models are speci�ed as stochastic activity networks

(SANs) [10, 11]. Since we wish to induce alternative probability measures by manipulating

the random elements of models, a brief description of SANs is required.

A SAN is composed of places, activities, and gates. Places, as in Petri nets, hold tokens.

The modeler is free to interpret numbers of tokens in places any way he wishes. The number

of tokens in a place is called the marking of the place. A vector containing the marking of

each place in a SAN is called the marking of the SAN.

Activities are the random elements in SANs. There are two types of activities. Timed

activities represent system delays relevant to the performance measure of interest, while

instantaneous activities are used for delays that have little or no impact on the performance

measure. The delay associated with a timed activity is called the activity time and is

described by a probability distribution function called the activity time distribution function.

Gates connect places and activities. There are two types of gates. Input gates have one

or more input places and are connected to a single activity. Output gates are connected

to a single activity, and have one or more output places. Input gates have a predicate and

a function. Output gates have only a function. A predicate is a Boolean function of the

marking of the places connected to the gate. When an input gate predicate is true, the gate

holds. An activity is enabled when all of its input gates hold.

When an activity becomes enabled, it is activated. The time at which an activity is

activated is called the activation time of the activity, and the marking in which the activity

is activated is called the activation marking of the activity. At activation time, the activity

time is sampled from the activity time distribution, which may depend on the activation

marking. The completion time of the activity is calculated by adding the activity time to

the activation time. The modeler has the option of specifying a reactivation function. For

a given activity and activation marking, this function returns a set of markings that, if

4

reached before completion, causes the activity to be aborted and immediately activated in

the new marking. By default, the set of reactivation markings is empty for all activation

markings. If the marking of the SAN changes such that one or more of the input gates

connected to the activity no longer hold, the activity becomes disabled and is aborted. If

the activity remains enabled until the completion time is reached, the activity completes.

Cases represent uncertainty about what happens when an activity completes. Each

activity has a case distribution, a discrete probability distribution over the cases of the

activity that may depend on the marking in which the activity completes.

Once an activity completes and a case is chosen, the new marking is determined by the

input gates connected to the activity and the output gates connected to the chosen case.

Input gate functions are executed �rst, followed by output gate functions. The functions

map from the markings of the connected places into the set of all possible markings for the

connected places.

To help clarify the de�nitions of SAN components, the following subsection presents a

SAN model of a machine-repairman system.

C Example SAN Model

Figure 1 shows a SAN model of a machine-repairman system. The system is composed

of two types of components. There are two components of type-one, and four components of

type-two. The components are represented in the SAN by places \comp 1 1," \comp 1 2,"

\comp 2 1," etc. A token in one of these places indicates that the component is working.

Each component fails independently of the others, and the failure times of components of

the same type are identically distributed.

The failure times of the components are modeled by separate timed activities \fail 1 1,"

\fail 2 1," etc. As shown in Table 1, the activities corresponding to the same type of

component have the same activity time distributions. The failure times of the components

have Weibull distributions with shape parameter � and scale parameters �1 for type-one

and �2 for type-two components. For this example, � = 1, �1 = 100, and �2 = 50. Later,

we will vary �.

When a failure activity completes, the token is removed from its input place and de-

posited in \failed 1" or \failed 2," based on the type of the component.

Repair begins only after two components of the same type have failed. Places \failed 1"

and \failed 2" are used to maintain a count of failed components of each type. The predicate

5

Figure 1: Machine-Repairman Model with Delayed Repair Policy

6

Table 1: Activity Time Distributions

Activity Distribution

fail 1 1 Weibull(�,�1)

fail 1 2 Weibull(�,�1)

fail 2 1 Weibull(�,�2)

fail 2 2 Weibull(�,�2)

fail 2 3 Weibull(�,�2)

fail 2 4 Weibull(�,�2)

install 1 exponential(3600:0)

install 2 exponential(3600:0)
remove hyperexponential(1:0,0:5,0:9)

of input gate \policy," shown in Table 2, enables timed activity \remove" only if \failed 1"

or \failed 2" contains at least two tokens. Repair of type-one components has preemptive

priority over repair of type-two components. This requirement is met by introducing a

reactivation predicate for the \remove" activity. As shown in Table 3, the \remove" activity

is reactivated (aborted and restarted) if it is activated in a marking with less than two type-

one components failed, and the SAN reaches a marking in which two type-one components

are failed before \remove" completes.

Repair consists of two stages. First, the failed components group must be removed and

repaired or replaced. Then, the component group is reinstalled. The two-phase nature

of the repair is modeled by two activities in series. Timed activity \remove" models the

time to remove and repair a component group. As shown in Table 1, \remove" has a hy-

perexponential activity time. With probability 0:9, the removal time will be exponentially

distributed with rate parameter 1, but with probability 0:1, the removal time will be expo-

nentially distributed with rate parameter 0:5. Timed activities \install 1" and \install 2"

model the time it takes to install components of type-one and type-two, respectively. Both

are exponentially distributed with rate parameter 3600, the assumption being that most of

the remove/repair time is spent on repair, so that the installation of the repaired component

group is almost negligible.

When repair of a component type is complete, all components of that type are as good

as new. Since the function of input gate \policy" (see Table 2) clears the component

places upon completion of timed activity \remove," when the install activity completes and

replaces the tokens, the failure activities are activated with new activity time distributions.

7

Table 2: Input Gate Predicates and Functions

Gate Enabling Predicate Function

policy (MARK(failed 1) < 2 && MARK(failed 2) >= 2) jj if (MARK(failed 1) == 2) f
(MARK(failed 1) == 2 && MARK(failed 2) < 4) MARK(failed 1) = 0;

MARK(comp 1 1) = 0;
MARK(comp 1 2) = 0;
MARK(type 1) = 1; g

else f
MARK(failed 2) = 0;
MARK(comp 2 1) = 0;
MARK(comp 2 2) = 0;
MARK(comp 2 3) = 0;
MARK(comp 2 4) = 0;
MARK(type 2) = 1; g

Table 3: Activation and Reactivation Predicates

Activity Activation Reactivation

remove MARK(failed 1) < 2 MARK(failed 1) == 2

8

Thus, the components are as good as new.

When all components fail, the system fails, and all repair activity halts. The predicate

of input gate \policy" (Table 2) ensures that the \remove" activity becomes disabled when

the marking of the SAN is such that the marking of place \failed 1" is two and the marking

of place \failed 2" is four. A SAN marking such as this, in which no activities are enabled,

is called an absorbing marking.

D Performance Measures

Performance measures for SANs are speci�ed using the concept of reward variables [15],

extended to SANs [10, 16]. A reward variable is de�ned by a reward structure and a variable

type. The reward structure associates rate rewards with SAN markings, and impulse rewards

with activity completions. The instantaneous reward associated with a given SAN marking

is the sum of the rate rewards associated with the marking and the impulse reward of the

last activity that completed.

The variable type determines how the performance measure is calculated from the reward

structure. Three variable types are instant-of-time, interval-of-time, and time-averaged-

interval-of-time. An instant-of-time variable is assigned the instantaneous reward associated

with the SAN marking at a speci�ed time. Interval-of-time variables accumulate the reward

earned over an interval of speci�ed length, beginning at a speci�ed time. Time-averaged-

interval-of-time variables give the reward accumulated over an interval, divided by the length

of the interval.

As an example, consider estimating the unreliability of the machine-repairman model.

The unreliability is the probability that the system fails during some interval of time. Since

the system failed state is an absorbing marking, we can �nd the probability that the system

fails in an interval, given it was functioning at the beginning of the interval, by examining

the state of the system at the end of the interval. If we assign a rate reward of one to the

failed marking, and zero to all other markings, we can obtain the unreliability of the system

as the expected value of an instant-of-time variable evaluated at the end of the interval.

E Framework for Importance Sampling

The application of importance sampling to a SAN simulation requires the ability to alter

the probability measure governing the space of possible sample paths of the SAN. Since the

9

measure is induced by the de�nitions of the activities in the SAN, the most natural approach

to specifying an alternative measure for a SAN is through modi�cations to the activities in

the SAN. The governed SAN [14] provides a versatile mechanism for de�ning the alternative

probability measure on the sample path space of a SAN.

A governed SAN consists of a pairing of a SAN with an importance sampling governor.

The importance sampling governor, or \governor," is similar to a �nite state machine. Each

state of the governor is an alternative de�nition of the activities in the SAN, corresponding

to a particular bias of the probability measure on the space of sample paths of the SAN.

The governor changes state based on the evolution of a sample path. Given the current

governor state, and a new marking of the SAN, the governor state transition function

determines whether a governor state change should occur.

To demonstrate the utility of the importance sampling governor, we present the de-

scription of an importance sampling strategy for the machine-repairman SAN discussed in

Subsection C, using a recently developed heuristic for dependable systems with delayed

group repair [17]. The heuristic, called modi�ed failure biasing (MFB), is derived from the

failure biasing technique invented by Lewis and B�ohm [18]. MFB was designed for regen-

erative simulation [19], where the observation period is the time between successive visits

to a speci�ed regenerative state. In terminating simulation, the observation period is spec-

i�ed in terms of the simulation clock. In [14] we found that in terminating simulation, the

performance of the heuristic could be improved by augmenting MFB with an approximate

forcing technique [5]. Since the time horizons under consideration are small, it is unlikely

that the system will reach a state where repair is initiated before the time horizon. By

decreasing the mean time to failure of components in the biased model, the probability that

the system reaches a state where repair activity is initiated is increased. Thus, the system

is forced out of the initial set of states and into the set of important states.

Figure 2 shows the state diagram for a governor implementing MFB augmented by ap-

proximate forcing. Table 4 contains the state de�nitions, while the governor state transition

function is shown in Table 5.

F Simulating Governed SANs

Once a governed SAN has been constructed, it must be simulated to obtain the desired

performance measure. SAN simulation is carried out at the network level [10, 20]. In

this subsection, we give a brief description of the simulation of a governed SAN, using the

10

Delta Failure
Biasing

Normal Failure
Biasing

p1

p2

p3

p4

p5

p6

Unbiased

p7

p8

Forcing
Approximate

Figure 2: Governor for Modi�ed Failure Biasing with Approximate Forcing

Table 4: State Speci�cation for Governor for MFB with Approximate Forcing

State Bias

Component Distribution Parameters

approximate type-one Weibull � = 1:0; �1 = 25
forcing type-two Weibull � = 1:0; �2 = 12:5

delta type-one Weibull � = 1:0; �1 = 10:0
type-two Weibull � = 1:0; �2 = 5:0

normal type-one Weibull � = 1:0; �1 = 2:0
type-two Weibull � = 1:0; �2 = 1:0

unbiased unbiased

Table 5: State Transition Function for Governor for MFB with Approximate Forcing

Current Next

State Arc Predicate State

approximate p1 (MARK(failed 1) == 1 && MARK(failed 2) == 2) jj delta
forcing (MARK(failed 1) == 2 && MARK(failed 2) == 1)

p2 (MARK(failed 1) == 0 && MARK(failed 2) == 2) jj normal
(MARK(failed 1) == 2 && MARK(failed 2) == 0)

delta p4 MARK(failed 1) <= 1 && MARK(failed 2) <= 1 unbiased
p3 (MARK(failed 1) == 2 && MARK(failed 2) == 2) jj normal

(MARK(failed 1) == 1 && MARK(failed 2) == 3)

normal p6 MARK(failed 1) <= 1 && MARK(failed 2) <= 1 unbiased
p5 (MARK(failed 1) == 1 && MARK(failed 2) == 2) jj delta

(MARK(failed 1) == 2 && MARK(failed 2) == 1)

unbiased p8 (MARK(failed 1) == 1 && MARK(failed 2) == 2) jj delta
(MARK(failed 1) == 2 && MARK(failed 2) == 1)

p7 (MARK(failed 1) == 0 && MARK(failed 2) == 2) jj normal
(MARK(failed 1) == 2 && MARK(failed 2) == 0)

11

machine-repairman model in Figure 1 to help clarify the main points.

Starting in the initial marking, enabled activities are activated. The initial marking of

the machine-repairman model consists of a single token in each of the component places

\comp 1 1," \comp 1 2," \comp 2 1," etc. Therefore, each of the corresponding failure

activities is enabled in the initial marking. Upon activation, an activity time is sampled ac-

cording to the activity time distribution function assigned to the activity by the importance

sampling governor, and the calculated completion time is placed on the future events list.

For the machine-repairman model, the future events list will be initialized with completion

times for each of the failure activities. The activity with the earliest completion time is iden-

ti�ed, and a case is chosen according to the case distribution for that activity in the current

marking. Then the functions of each input gate connected to the activity are executed,

followed by the functions of output gates connected to the chosen case, to determine the

next marking. If the next marking has instantaneous activities enabled, they are completed

immediately, cases are chosen, and gate functions are executed until a marking is reached

in which there are no instantaneous activities enabled. The new marking is referred to as

the next stable marking. There are no instantaneous activities in the machine-repairman

model, so all of the markings are stable.

When the next stable marking is reached, the likelihood ratio is updated, and the

governor state transition function is executed to determine whether the governor should

change state. Hence, for the machine-repairman model with the governor in Figure 2,

the governor will evaluate the transition function associated with initial governor state

\approximate forcing," shown in Table 5. If one of the predicates is true, the governor

will transition to the corresponding next state. Input gates connected to each activity

are checked to see which activities become disabled, which activities remain enabled, and

which activities are newly enabled. Disabled activities are aborted; their completion times

are removed from the future events list. Activities that remain enabled are checked to see if

they must be reactivated in the new marking. Activities must be reactivated if the governor

has changed to a state that assigns a new activity time distribution function to the activity,

or if a reactivation predicate holds. If reactivation is called for, the activity is aborted (the

old completion time is removed from the future events list), and a new completion time

is calculated based on a new sample from the activity time distribution speci�ed by the

governor for the activity in the new marking. Newly enabled activities are activated, and

their completion times are added to the future events list. After determining the status of

12

the activities in the SAN, the activity with the earliest completion time is identi�ed, and

the process repeats.

As suggested in Subsection A, when simulating under an altered probability measure,

one must compensate by weighting the resulting observations by the likelihood ratio. Oth-

erwise, the estimator will be biased. Therefore, when simulating a governed SAN, one

must calculate the ratio of the likelihood of the sample path under the probability mea-

sure induced by the original de�nition of the SAN to the likelihood of the path under the

probability measure induced by the modi�cations imposed by the governor. A technique

for iteratively updating the likelihood ratio upon each state transition was developed by

Nicola, et al. [5] and adapted to governed SANs in [14]. The gist of the method is to focus

on the likelihood that a particular activity completes to cause the next marking change,

given the history of the sample path, and then to calculate the conditional probability that

a particular next stable marking is reached, given that the transition was caused by that

activity.

III Implementation in UltraSAN

The last section described the theory underlying the importance sampling facility in

UltraSAN. In this section, the implementation of the theory and its incorporation into the

UltraSAN modeling tool is presented. We begin with an overview of the tool.

A UltraSAN

UltraSAN [9] is a software tool for model-based evaluation of discrete event systems

represented as stochastic activity networks. It runs on the UNIX operating system under

the X Window System, and is currently available for the Convex, DECstation, IBM RS6000

and Sun/4 architectures. The e�ectiveness of the tool has been demonstrated through its

use in several model-based evaluation studies, e. g., [21, 22, 23].

Figure 3 shows the organization of the tool. Models are speci�ed through a graphical

interface that runs on the X Window System. The three main components of the user-

interface (SAN editor, composed model editor, and performability variable editor) appear

at the top of Figure 3. The SAN editor allows one to specify SANs by simply drawing the

SAN. Figure 1 is a screen dump showing the machine-repairman model as it appears in the

SAN editor. Auxiliary editors are provided for de�ning each SAN component. For example,

13

Steady State
Simulator

Terminating
Simulator

Model Description

Composed
Model
Editor

Composed Model
Description

Performability
Variable

Editor

Variable
Description

Performability

SAN
Editor

SAN
Description

SAN
Description. . . .SAN

Description

Reduced
Base Model
Constructor

Reduced Base
 Model

. . . .

Iterative
Steady State

Solver

Transient
Instant−of−Time

Solver

Transient
Interval−of−Time

Solver

Direct
Steady State

Solver

Importance Sampling
Governor

Editor

Description

IS Governor

IS Terminating
Simulator

Deterministic

Steady State
Solver

Iterative

Figure 3: Organization of UltraSAN

14

an activity editor is used to select the activity time distribution function, its parameters,

and its reactivation function. The composed model editor can be used to combine individual

SANs into a hierarchical composed model using replicate and join operations [24]. Finally, the

performability variable editor is used to specify reward variables for the desired performance

measures.

The primary function of the user-interface modules is to generate a C language descrip-

tion of the model from its graphical speci�cation. The generated C code description of the

model is automatically compiled and linked with other libraries to produce the reduced base

model construction program and the simulation programs.

The reduced base model construction program generates a stochastic process description

of the model that is amenable to solution by standard analytical methods for continuous

time discrete state space Markov processes. The generated stochastic process serves as input

to the analytical solvers available in UltraSAN [9, 25, 26, 27]. Note that the model must

satisfy the Markov property to be analytically tractable. SAN models satisfy the Markov

property if all activity time distributions are exponential, and activities are reactivated

often enough so that their rates depend only on the current marking [24].

Two di�erent traditional simulation programs may be generated. The steady state sim-

ulator uses an iterative batch means [28] technique after a speci�ed initial transient period

to estimate the steady-state expected value and variance of instant-of-time reward variables.

The terminating simulator uses the method of independent replications to estimate the ex-

pected value and variance of all three reward variable types described in section II.D for

a speci�c time or time interval. Both simulators are designed to estimate reward variables

to within a user-speci�ed relative accuracy at a user-speci�ed con�dence level. Moreover,

both simulators are designed to take advantage of symmetries in the composed model to

increase the e�ciency of the simulation [20].

B Importance Sampling Facility

The importance sampling framework detailed in [14] has been implemented and incorpo-

rated into the UltraSAN modeling package. Consistent with the rest of the package, the

importance sampling facility has an X Window System-based user-interface that generates

C code describing the importance sampling governor. This code is automatically compiled

and linked with other UltraSAN libraries to produce an importance sampling simulation

15

Figure 4: Importance Sampling Governor Editor

Figure 5: Governor State Editor

16

Figure 6: Activity Bias Editor

Figure 7: Governor State Transition Function Editor

17

program.

The user-interface to the UltraSAN importance sampling facility has three main compo-

nents. The �rst component, shown in Figure 4, is the importance sampling governor editor.

With this editor, the user can add, edit, or delete states from the importance sampling

governor, and edit the governor state transition function. In Figure 4, the four states of the

governor for the machine-repairman model are listed.

Recall that each governor state may contain new de�nitions of the timed activities in

each SAN in the composed model. We refer to a new de�nition of an activity as a bias on

that activity. The governor state editor, shown in Figure 5, allows the user to scroll through

the list of SANs in the composed model, using the Prev. and Next Submodel buttons. For

each SAN, the editor displays a list of the timed activities in the SAN. In Figure 5, state

\normal" of the governor for the machine-repairman example is shown. One may choose to

edit or remove a bias from any timed activity in the model. The activity bias editor, shown

in Figure 6, allows the user to rede�ne the activity time distribution and case distribution.

The example activity shown in Figure 6 is \fail 1 1" from the machine-repairman example.

\Fail 1 1" has only one case, so the case distribution portion of the editor is not displayed.

Figure 7 shows the importance sampling governor state transition function editor. The

transition function editor is used to specify when the governor should change state. The

state transition function for the governor is de�ned state by state. For each governor state,

one speci�es arcs to other governor states. Associated with each transition arc is a predicate

that de�nes conditions under which the transition will be taken. The predicate for the arc

is de�ned in terms of predicates on the SANs in the composed model. The example in

Figure 7 shows the predicate for the arc from governor state \normal" to governor state

\delta."

When the user has �nished specifying the governor, the user-interface converts his de-

scription to a series of C functions and header �les and compiles them into a library. The

importance sampling simulation program is generated by linking the library describing the

governor, the library containing code for the importance sampling simulation engine, and a

short C program that handles initializations and makes the initial call into the simulation

code.

18

Table 6: Importance Sampling Strategies for the Machine-Repairman Model

Name Heuristic State � �1 �2

IS-1 MFB normal 1 2 1
delta 1 30 15

IS-2 MFB normal 1 2 1
delta 1 10 5

IS-3 MFB normal 1 2 1
delta 1 4 2

IS-4 MFB + approx. forcing force 1 25 12.5
delta 1 10 5
normal 1 2 1

IV Results

The results obtained from the machine-repairman model are presented in this section.

First, MFB is applied and tuned to achieve good performance. Then, approximate forcing

is applied to further improve the performance. Finally, the shape parameter of the failure

distributions is modi�ed so that the model cannot be solved analytically, and the developed

importance strategy is applied.

Table 6 shows four importance sampling strategies for the machine-repairman model.

The �rst three are straightforward MFB, with di�erent levels of bias. Plain MFB is tanta-

mount to specifying the approximate forcing state of the governor in Figure 2 as unbiased.

These strategies are used to demonstrate the e�ects of tuning the bias to improve the

performance of a heuristic for a given model. The fourth strategy augments MFB with

approximate forcing.

Table 7 shows the results obtained for the unreliability of the machine-repairman system

during the interval [0; 10]. All results are at a 95% con�dence level, and the con�dence

interval is reported as the point estimate and the estimated relative error. One can see

from Table 7 that all of the applied strategies reduced by orders of magnitude the CPU

time required to achieve the desired accuracy. The second strategy, IS-2, outperformed

the other MFB candidates. Thus, IS-2 was chosen as the strategy to use in conjunction

with approximate forcing, forming IS-4. The results for IS-4 in Table 7 show a signi�cant

improvement over IS-2.

19

Table 7: Unreliability in [0; 10] of Machine-Repairman System

Strategy Traditional IS-1 IS-2 IS-3 IS-4

Point Estimate 3:3� 10�7 3:8� 10�7 3:4 � 10�7 3:8 � 10�7 3:5 � 10�7

Relative Error 10% 10% 10% 10% 10%

Replications 1,184,152,657 4,593,933 574,091 2,162,765 39,870

CPU Time (sec.) 740,699 4,871 610 2,320 128

Table 8: Results for Modi�ed Machine-Repairman Model

Strategy Traditional IS-4

Point Estimate 1:5 � 10�5 1:7 � 10�5

Relative Error 10% 10%

Replications 26,524,623 152,730

CPU Time (sec.) 30,344 521

Table 8 shows results of applying MFB augmented by approximate forcing to a version of

the machine-repairman model with components whose failure times are Weibull distributed

with shape parameter � = 2. In order to obtain traditional simulation results in a reasonable

period of time, we altered the scale parameters as well. In the modi�ed model, type-one

components have scale parameter �1 = 30; type-two components have scale parameter

�2 = 15. The IS-4 strategy is shown in Table 8 to be e�ective despite these signi�cant

changes to the failure distributions of components of the model.

V Conclusions

Traditional simulation techniques perform poorly when the desired performance measure

is based on a rare event. One solution to the ine�ciency inherent in the rare event problem

is the use of importance sampling. Research on importance sampling has shown promise

in several areas, but researchers were hindered by two problems. Namely, there was no

convenient framework for formally representing importance sampling strategies, and most

studies were done via hand-coded simulations.

We have presented a tool that facilitates experiments with importance sampling by

addressing these problems. The tool is based on a framework for specifying importance

20

sampling simulations in terms of stochastic activity networks, and has been implemented

within the context of UltraSAN , a software tool for model-based evaluation of systems

represented as stochastic activity networks. When the UltraSAN importance sampling

facility is used to specify an importance sampling strategy for a stochastic activity network,

the tool automatically generates the importance sampling simulation program. Thus, no

programming is required of the user.

To demonstrate the e�ectiveness of the tool, an example model of a machine-repairman

system with a delayed group repair policy was introduced and solved. Using the UltraSAN

importance sampling facility, we obtained several orders of magnitude reduction in the CPU

time required to attain a speci�ed relative accuracy. Furthermore, the developed importance

sampling strategy proved e�ective even after signi�cant changes to component failure time

distributions.

Acknowledgments

The authors would like to thank the past and present members of the University of

Arizona Performability Modeling Research Lab for their contributions to the development

of UltraSAN . Without the tool as a starting point, the implementation of these ideas would

have been much more di�cult.

21

REFERENCES

[1] J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, Methuen & Co., Ltd.,
London, 1964.

[2] H. Kahn and M. Marshal, \Methods of reducing sample size in Monte Carlo compu-
tations," Journal of the Operations Research Society of America, vol. 1, pp. 263{278,
November 1953.

[3] H. Kahn, \Random sampling (Monte Carlo) techniques in neutron attenuation prob-
lems," Nucleonics, vol. 6, pp. 27{33,36,60{65, May 1950.

[4] A. Goyal, P. Shahabuddin, P. Heidelberger, V. F. Nicola, and P. W. Glynn, \A uni-
�ed framework for simulating Markovian models of highly dependable systems," IEEE
Transactions on Computers, vol. 41, no. 1, pp. 36{51, January 1992.

[5] V. F. Nicola, M. K. Nakayama, P. Heidelberger, and A. Goyal, \Fast simulation of de-
pendability models with general failure, repair and maintenance processes," in Proceed-
ings of the Twentieth Annual International Symposium on Fault-Tolerant Computing,
pp. 491{498, Newcastle upon Tyne, United Kingdom, June 1990.

[6] S. Parekh and J. Walrand, \A quick simulation method for excessive backlogs in net-
works of queues," IEEE Transactions on Automatic Control, vol. 34, no. 1, , January
1989.

[7] J. Walrand, \Quick simulation of queueing networks: An introduction," in Computer

Performance and Reliability, G. Iazeolla, P. J. Courtois, and O. J. Boxma, editors, pp.
275{286, North Holland, 1987.

[8] A. P. A. van Moorsel, B. R. Haverkort, and I. G. Niemegeers, \Fault injection simu-
lation: A variance reduction technique for systems with rare events," in Second Inter-

national Working Conference on Dependable Computing for Critical Applications, pp.
57{64, Tucson, Arizona, February 1991.

[9] J. Couvillion, R. Freire, R. Johnson, W. D. Obal II, M. A. Qureshi, M. Rai, W. H.
Sanders, and J. Tvedt, \Performability modeling with UltraSAN," IEEE Software, vol.
8, no. 5, pp. 69{80, September 1991.

[10] W. H. Sanders, Construction and Solution of Performability Models Based on Stochas-

tic Activity Networks, PhD thesis, University of Michigan, 1988.

[11] J. F. Meyer, A. Movaghar, and W. H. Sanders, \Stochastic activity networks: Struc-
ture, behavior, and application," in Proceedings of International Workshop on Timed

Petri Nets, pp. 106{115, Torino, Italy, July 1985.

[12] M. K. Molloy, \Performance analysis using stochastic Petri nets," IEEE Transactions

on Computers, vol. C-31, pp. 913{917, September 1982.

[13] S. Natkin, Reseaux de Petri Stochastiques, PhD thesis, CNAM-PARIS, June 1980.

22

[14] W. D. Obal II and W. H. Sanders, \A framework for importance sampling based on
stochastic activity networks," Technical Report PMRL 93-8, The University of Arizona,
April 1993.

[15] R. A. Howard, Dynamic Probabilistic Systems. Vol II: Semi-Markov and Decision Pro-

cesses, Wiley, New York, 1971.

[16] W. H. Sanders and J. F. Meyer, \A uni�ed approach for specifying measures of per-
formance, dependability, and performability," in Dependable Computing for Critical

Applications, Vol 4: of Dependable Computing and Fault-Tolerant Systems, A. Avizie-
nis and J. C. Laprie, editors, pp. 215{238, Springer Verlag, Vienna, 1991.

[17] S. Juneja and P. Shahabuddin, \Fast simulation of Markovian reliability/availability
models with general repair policies," in Proceedings of the Twenty-Second Annual

International Symposium on Fault-Tolerant Computing, pp. 150{159, Boston, Mas-
sachusetts, July 1992.

[18] E. E. Lewis and F. B�ohm, \Monte Carlo simulation of Markov unreliability models,"
Nuclear Engineering and Design, vol. 77, pp. 49{62, January 1984.

[19] M. A. Crane and A. J. Lemoine, An Introduction to the Regenerative Method for

Simulation Analysis, volume 4 of Lecture Notes in Control and Information Sciences,
Springer-Verlag, New York, 1977.

[20] W. H. Sanders and R. S. Freire, \E�cient simulation of hierarchical stochastic activity
network models," Discrete Event Dynamic Systems: Theory and Applications, vol. 3,
no. 2/3, pp. 271{300, July 1993.

[21] B. D. McLeod and W. H. Sanders, \Performance evaluation of N-processor time warp
using stochastic activity networks," Technical Report PMRL 93-7, The University of
Arizona, March 1993.

[22] W. H. Sanders, L. A. Kant, and A. Kudrimoti, \A modular method for evaluating
the performance of picture archiving and communication systems," Journal of Digital

Imaging, vol. 6, no. 3, pp. 172{193, August 1993.

[23] W. H. Sanders and L. M. Malhis, \Dependability evaluation using composed SAN-
based reward models," Journal of Parallel and Distributed Computing, vol. 15, pp.
238{254, July 1992.

[24] W. H. Sanders and J. F. Meyer, \Reduced base model construction methods for stochas-
tic activity networks," IEEE Journal on Selected Areas in Communications, vol. 9, pp.
25{36, January 1991.

[25] M. A. Qureshi and W. H. Sanders, \Reward model solution methods with impulse
and rate rewards: An algorithm and numerical results," Accepted for publication in
Performance Evaluation.

[26] B. P. Shah, Analytic Solution of Stochastic Activity Networks with Exponential and

Deterministic Activities, Master's thesis, The University of Arizona, 1993.

23

[27] J. E. Tvedt, Matrix Representations and Analytical Solution Methods for Stochastic

Activity Networks, Master's thesis, The University of Arizona, 1990.

[28] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, McGraw-Hill, New
York, 1982.

24

