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Abstract
Large-scale data storage systems rely on magnetic

tape cartridges to store millions of data objects. As
these tapes age, the resident data objects become in-
valid; consequently, less and less of the tape potential
capacity is e�ectively utilized. To address this prob-
lem, data storage systems have a facility, called \re-
cycle" in this paper, that transfers valid data objects
from sparsely populated tapes onto new tapes, thus
creating empty tapes for reuse. A high performance
recycle process is needed to keep the number of tape
cartridges to a minimum, and to maintain a continu-
ous supply of empty tapes for storing newly created
data objects. The performance of such processes is not
easy to determine, and depends strongly on the data
stored on the tapes, the speed and characteristics of
the computer on which recycle is executed, and the
nature of the algorithms themselves. This paper doc-
uments an extensive e�ort to evaluate a proposed re-
cycle algorithm, using �eld workload data, laboratory
measurements, and modeling. The results of the study
were used to improve the recycle process, and were
later veri�ed through �eld trials. In addition yielding
the results themselves, the e�ort illustrated that mod-
eling and measurement, in an industrial setting, can
indeed be used successfully in the design process.

1 Introduction
While system-level model-based performance eval-

uation is an active research area at many universities,
its use in industry is not as widespread. In many cases,
large-scale systems are designed in an ad-hoc manner,
with validation (or disappointment regarding) system
performance coming only after an implementation is

made. This is particularly true in the area of soft-
ware development, where algorithms are often devised
and implemented without a clear understanding of
how they will impact the performance of the system
in which they are embedded. Extensive measurement
and testing is often done after an implementation is
complete, but is then too late to avoid design mistakes
that lead to poor performance. This does not need to
be the case. Modern modeling tools and techniques,
coupled with measurements done on similar software,
can yield accurate performance predictions that can
be used in the design process.

We illustrate the e�ective industrial use of model-
ing, coupled with measurement, by reporting on the
study of an algorithm to manage a large tape archive.
The system (both hardware and software) consid-
ered was responsible for the \recycle" operation in
the IBM's Data Facility Storage Management Subsys-
tem Hierarchical Storage Manager (hereinafter called
HSM). Recycle is the process of moving valid data ob-
jects from partially-�lled tapes (called volumes) in a
data archive to output volumes and releasing the pre-
viously partially �lled volumes, now empty volumes,
to a pool of scratch volumes for subsequent reuse. The
recycle process prevents the unbounded growth in the
number of volumes in the archive, many of which may
be nearly empty, and contributes to the e�cient uti-
lization of the potential archive capacity.

The activity reported herein was completed over
a six-month period at IBM and at the University of
Arizona. During this time, a \project team" at IBM,
whose task was to revise the algorithms used in the
recycle operation, interacted with a \modeling and



measurement team," composed of IBM employees and
University of Arizona researchers. The task of the
modeling and measurement team was to build accu-
rate models of both existing and proposed recycle al-
gorithms, and to aid in the development of more e�-
cient recycle algorithms. The modeling team built two
models: one of the existing recycle algorithm, and one
that contained many proposed changes. We obtained
parameter values for these models from actual trace
data collected in the laboratory, and from existing re-
cycle customer sites while executing the existing recy-
cle algorithm, and also from a careful study of several
real-life workloads (tape archives) from customer sites.

Comparing the results of both models under the
same workloads gave the project team a quantitative
measure of changes of performance obtained by re-
designing the system. Such measures could only come
from modeling, because the proposed modi�cations
had not yet been implemented. These results helped
to guide the development e�ort of the project team
by focusing its attention on items that would have the
largest gain in performance. Furthermore, we vali-
dated the results of the model by �eld measurements
on the revised recycle software.

We expressed the existing and proposed recycle
algorithms as composed stochastic activity networks
(SANs) [1], and solved using the terminating simula-
tor in the UltraSAN [2] modeling environment. For
more detailed discussion of SANs and UltraSAN see
[1, 2, 3]. The results are signi�cant because they show
that modeling, coupled with measurement, can be ef-
fectively used in the industrial software design pro-
cess to predict the performance of alternative algo-
rithms and software implementations. Furthermore,
they show that SANs are indeed a reasonable method
to express speci�c software algorithms, and UltraSAN
can be used to e�ciently solve large, industrial, mod-
els.

The remainder of the paper is organized as follows:
Section 2 provides an overview of the existing system
and the proposed modi�cations, Section 3 discusses
the measurement activity that provided guidance to
build the models, Section 4 discusses the models, to
help the reader understand how complex software can
be represented as SANs, Section 5 discusses the results
obtained from the models, and concluding remarks are
presented in Section 6.

2 Background and Problem De�nition
HSM provides facilities for managing data sets

(�les) on storage devices. HSM also migrates primary
data between storage devices (o�-loads of infrequently
accessed data sets to slower media) and creates backup
copies of unmigrated primary data (creates redundant
copies of data sets without moving the primary data
sets). The HSM storage administrator controls the mi-
grate and the backup processes to achieve the migrate
and backup rates required by the user's installation

(customer site).
Over time, these backup and migrate actions re-

sult in storing large amounts of data on magnetic tape
cartridges (called volumes). As volumes age, the res-
ident data sets (also called \objects") slowly become
invalid for the following reasons: 1) when data sets
change frequently, they cause multiple versions of the
same data set to be backed up. When the number of
copies (versions) exceed some de�ned limit, the oldest
copy becomes invalid, 2) when the primary data set no
longer exists, the backup versions become invalid, 3)
when a migrated data set is recalled to primary stor-
age from a tape volume, the data set on the volume
becomes invalid, and 4) when the age of a data set
exceeds some prede�ned value, the data set becomes
invalid.

Because of these invalidations, tape volumes (which
may each contain tens to thousands of data sets) con-
tain increasingly large amounts of invalid data. Con-
sequently, the potential capacity of tape volumes in
an archive is less utilized. To address this ine�ciency,
HSM has an operation called \recycle." The recycle
operation selects valid data sets on sparsely populated
volumes to be transferred onto another volume, thus
aggregating valid data sets from many volumes onto a
single volume. Recycle then frees the newly emptied
volumes for reuse. For example, if 100 volumes with
an average of 10% valid data are recycled, the process
recovers these 100 volumes at the expense of 10 new
full volumes, or a net tape gain of 90 volumes.

The original implementation of recycle has been
distributed widely with thousands of customer instal-
lations. Recently, it became more common and nec-
essary for customers to run their operations around
the clock, leaving little idle capacity for needed, but
time-consuming, operations such as recycle. To make
this possible, the recycle project team within IBM
was asked to propose modi�cations to the recycle al-
gorithm to increase its e�ciency (increasing the rate
of tape gain during the execution of recycle) and, in
turn, to reduce the number of tapes necessary to store
a given amount of valid data.

In particular, the following changes were proposed
to the existing Recycle algorithm:

Multi-tasking The original recycle implementation
uses a single task to transfer valid data sets from a
single input volume to a single output volume. The
project team proposed that multiple, but independent,
input-output pairs be supported. The intent was to
obtain an increase by a factor equal to the increased
number of input-output pairs.

List Building and Sorting The original recycle
implementation processes the meta-data catalog in a
speci�c collating order. Each new invocation of re-
cycle starts the new recycle search at the beginning



of this collating order. In particular, volumes are se-
lected by searching the catalog, looking for volumes
that meet the recycle criteria (the fraction of valid
data on the volume is less than some value). When a
volume that meets the recycle criteria is encountered,
the search operation is suspended and the volume is
immediately recycled. After the volume is processed,
the search is resumed. Often, customers terminate
the recycle process before all the volumes that meet
the recycle criteria are processed, for example, when
a given number of empty tapes are produced. This
selection and processing algorithm causes the follow-
ing: 1) many empty or nearly empty volumes not to
be reclaimed (because of early termination) and, 2)
volumes with a higher percent valid to be processed
before volumes with a lower percent valid.

Such behavior does not provide the greatest rate
of tape gain over a �xed execution period. The
project team thus proposed that the catalog records be
searched at the beginning of the recycle operation, and
volumes that meet the recycle criteria be processed in
increasing order of percent valid data. Such an im-
plementation should produce the maximum tape gain
rate over any period of execution of the recycle pro-
cess, if the overhead incurred in processing the list
were small relative to the time to recycle volumes.

Immediate Queue If the overhead in building the
sorted list is not small, processing of volumes can be
delayed signi�cantly, which can cause a customer to
perceive an ine�ciency in the recycle operation. Be-
cause the overhead was unknown (prior to the mod-
eling project), the project team proposed maintaining
a second queue, which was not sorted in increasing
percent valid order, but met the recycle criteria. The
project team proposed an algorithm that can place
certain volumes on the second queue depending on
their percent valid and the current length of queue.
The volumes on the second queue can then be recy-
cled while the list is being built and sorted, avoiding
the delay in the start of processing.

Input Drive Allocation The project team also
recommended changing the way input drives were al-
located in recycle. In particular, the original imple-
mentation requested a tape drive allocation for each
input volume processed, and released the allocation
following the recycle of the volume. The repeated al-
locations were made to allow competition for the tape
drive resources and to avoid blocking other activities
while the operator retrieved the next volume. With
the advent of automatic tape libraries (hence reduc-
ing the time necessary to change tapes), it was deemed
appropriate to consider retaining the input drive allo-
cation over multiple input tapes.

Multiple Read/Write Bu�ers The original im-
plementation uses a single �xed size memory block to
bu�er data from the input tape to the output tape.
This implementation required that tape reads and
writes be done in a sequential fashion, with a write
to the bu�er beginning only after the previous read
completed. It was hypothesized that this serialization
contributed signi�cantly to the ine�ciency of the orig-
inal implementation. Consequently, the project team
proposed that multiple read/write bu�ers be used, in
a manner that allowed parallel reads and writes to oc-
cur.

Connected Set Processing Finally, the project
team recommended changing the way volumes were
selected for processing, considering the basic unit of
selection as a \connected set," rather than an individ-
ual volume. Connected sets are formed when a sin-
gle data set spans more than one volume. To achieve
maximum fullness on each migrate or backup volume,
a new data set is started on a volume if the expected
remaining capacity of the volume is more than some
value. If the started data set is not completely writ-
ten when a maximum allowed capacity is reached, the
output volume is demounted and a new empty volume
is mounted in the target drive. The suspended data
set is continued on the new volume, which causes a
single data set to span two volumes (or more, for very
large data sets).

The data set that exists on more than a single vol-
ume is called a spanned data set. The volume set (of
size one or more) with no spanned �rst (valid) data
set, no spanned last (valid) data set, and with zero
or more (valid) spanned data sets form a single con-
nected set. Note that a connected set can be of size
one. The original implementation based recycle selec-
tion upon an individual volume's percent valid calcu-
lation. When a selected recycle volume had one or
more spanned data sets, the volumes that contained
part of the spanned data sets were mounted and the
partial data set was recovered. The other data sets on
these incidentally selected volumes were not recycled
unless the volume was selected upon its own merits
later in the recycle sequence. The new method pro-
posed was to consider each connected set as a single
unit for recycle and the total connected percent valid
value to be the criterion for selection.

It was thought that these changes to Recycle would
increase its performance, but it was not clear the
extent to which the performance would improve, or
which of the proposed design changes would have the
most signi�cant impact. To investigate these options,
we built a detailed model of the recycle operation,
using real customer workload data (measured in the
�eld), and software execution time measurements, col-
lected in the laboratory and at real customer sites. We
describe these workload and software measurements in



the next section.

3 Source of Data and Workload
When evaluating real systems, either existing or to

be implemented, determination of reasonable values
for model parameters is generally the most di�cult
and time-consuming activity in the modeling process.
Whereas a model of an academic nature may allow
simplifying assumptions and a restricted focus, real
systems tend to have less than ideal implementations
and to require models that can address a broad spec-
trum of questions. It is thus important to ensure that
these real-life imperfections, perturbations, and broad
scopes are addressed in their models.

With an accurate understanding of the system to be
modeled, it is reasonably straightforward to construct
models that represent all of the necessary system steps
in the proper sequence, and to make all of the correct
choices for the algorithms being modeled. To also pro-
vide accurate and meaningful results, the model must
be as follows: 1) constructed with the correct activity
times (service, delay, wait, and so on) for all of the
resources implemented in the model, and 2) exercised
with a meaningful workload.

The modeling and measurement team developed a
basic understanding of the existing system and the
intended enhancements through extensive discussions
with the project team. Though these discussions were
informative and important, much more detailed and
more precise timing information than was known by
the developers was required to build accurate models.
This detailed information was obtained from three pri-
mary sources: 1) trace data from existing user instal-
lations, 2) trace data from special test cases run in
IBM's performance measurement laboratory, and 3)
Control Data Set (CDS) information from four exist-
ing customer installations (a customer's CDS informa-
tion speci�es, precisely, the type of information stored
on his tape archive).

The data that was collected was extensive, and
space does not permit a detailed accounting of all mea-
surements and analyses in this paper. Instead, we will
try to highlight the types of information that went into
the developed model to give the reader an indication
of type, and level of detail, of information that was
included.

The actual sequence of software events encountered
during the execution of the recycle algorithm was de-
termined by analyzing trace data from an existing user
installation. This analysis produced both an under-
standing as to which steps in the sequence were sig-
ni�cant and, in many cases, the actual timing infor-
mation that was used in the model. The key sequence
and timing information included: 1) volume selection
sequence and times, 2) valid data set search, selec-
tion, and processing sequence and times, and 3) tape
activity (waits, mounts, demounts) times.

One important issue that we needed to address was
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Figure 1: Tape locate time as a function of invalid
blocks skipped

the timing associated with the physical movement of
tape within a volume. Though the user installation
trace data allowed us to determine tape motion de-
lays encountered while moving over invalid data sets,
we had no way of determining how much media (that
is, data blocks) was skipped. To determine these skip
times to locate to the next valid data set, we con-
ducted laboratory measurements, using the original
recycle implementation, that allowed us to measure
the locate time as a function of the number of invalid
blocks skipped. The derived relationship, shown in
Figure 1, has three distinct regions of operation: 1)
The initial region, which is dominated by the tape
repositioning time, has little to do with the number
of blocks being skipped; 2) The middle region, where
the locate time actually decreases for a period of time
as a result of reduced tape repositioning; 3) The �nal
region, which has a linearly increasing time to locate
to the next valid data set.

The tests of recycle conducted in the laboratory
also helped to re�ne some of the numbers that we had
previously obtained from the user installation trace
data, for example, the precise read/write bu�er tim-
ings and a more precise split of what was CPU utiliza-
tion time and IO or disk access time, for many of the
CDS access steps.

To assure the validity and acceptance of the model
results, we developed a realistic workload for the
models from the user installations archive meta-data
records. These records were in the CDSs. We had
access to these single point-in-time CDSs from four
user installations. The CDSs contain a complete set
of records relating to the state of all currently valid
tape data sets. These records contain data set names,
dates, sizes, location, and so on. The CDS informa-
tion was received in its raw, unprocessed form and
custom data reduction programs were written to ex-
tract the information deemed to be interesting. We
were able to determine a number of important distri-
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Figure 2: Percent valid distribution for volumes

butions for both migrate and backup type data sets.
In particular, we derived the following: 1) fraction of
volumes containing particular amounts of valid data
(10 percent resolution), 2) distribution of number of
connected sets by percent valid bin, 3) distribution
of number of volumes per connected set by percent
valid bin, 4) probability of 0, 1, and 2 spanned data
sets (per volume) by percent valid bin, 5) distribution
of non-spanned data set size by percent valid bin, 6)
distribution of spanned data set size by percent valid
bin. All conditional distributions (conditioned upon
the percent valid values) were determined for each 10
percent bin of the percent valid distributions. In ad-
dition to the distributions above, we determined the
fraction of volumes that are empty among all volumes
in the record.

Figures 2, 3 and 4, are examples of the type of
information that we extracted from the customer in-
stallation CDSs (these are from an installation that
we chose to use as a workload). Figure 2 shows the
distribution of migrate volumes by percent valid bins.

Figure 3 shows the distribution of migrate con-
nected sets by percent valid bins. As was typical in all
of the installations, the ratio of volumes to connected
sets was closest to 1 at low percent valid and grew
progressively larger as percent valid became larger.
The conditional connected set size distributions were
determined, by percent valid bin, and utilized in the
model. For all volumes and connected sets, the ratio
was 2959/1566 or 1.9 for this installation.

Figure 4 shows the size (number of volumes per con-
nected set) distribution for the connected sets. Most
connected sets are small in size, 1 or 2 volumes, but
there are some of size 10, 15, and 20 volumes. These
larger connected sets are always the newest connected
sets where the data sets have not started to become
invalid, very close to 100% valid.

The data capture phase consumed from 40% to 50%
of the total work of the modeling and measurement
team. In retrospect, the substantial time spent on
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Figure 5: Composed model for Stage 1 recycle opera-
tion

measurement and data analysis paid o�, because it
made the construction of models much easier. This
activity extracted data from a number of di�erent
sources, with customer installation supplied data and
local laboratory measurement data being the most sig-
ni�cant source of data. In the next section, we discuss
the models, and how they use the data discussed we
presented.

4 SAN Models for Existing and Pro-

posed Recycle Algorithms
We built two SAN models, one for the original al-

gorithm and one for the proposed modi�cation. We
maintained as much commonality between the two
models as possible, introducing di�erences only as nec-
essary to implement the proposed changes in the al-
gorithms. Because of space limitations, we are unable
to discuss in detail both of the models. Instead, we
describe the structure of the SAN model of the pro-
posed algorithm, and, in some detail, a small part of
the model of the proposed algorithm that implements
the list building operation. In this way, we hope you
will gain an appreciation of the complexity of the mod-
els, and how we integrated the algorithms and mea-
sured workload data into the SAN models. For a more
detailed description of both SAN models, see [4].

Figure 5 shows the \composed model" for the pro-
posed recycle algorithm. A composed model [5] is built
from several SAN submodels using \replicate" and
\join" operations. These operations permit the con-
struction of hierarchical (or composed) models from
existing SAN models. The replicate operation repli-
cates a subnet a certain number of times. The repli-
cate operation thus allows the construction of com-
posed models that consist of several identical compo-
nent subnets. The combination of several di�erent
subnets is accomplished using the join operation. The
join operation produces a composed model that is a
combination of the individual subnets.

Each subnet in the composed model in Figure 5
represents some of the processing steps in the pro-
posed recycle algorithm. For example, the subnet la-

beled buildList represents the process of searching
through the meta-data records and determining which
connected sets meet the recycle criterion. The subnet
labeled acceptSet determines whether the selected
connected set for recycle should be inserted into the
immediate queue, to be recycled immediately, or in-
serted into the defered queue, to be recycled after the
completion of the list building and sorting process.
Sorting the list is represented by the subnet Sort.

The subnets representing a single task are joined
together using node Join2. These joined subnets are
then replicated a number of times (equal the number
of tasks in the system), using node Rep2, to represent
the multi-tasking scenario. The multiple read/write
bu�ers for each task are represented by the two sub-
nets bu�er and io, and the two nodes Join1 and
Rep1. The number of times Rep1 is replicated re-
ects the number of read/write bu�ers available to
each task to transfer the data blocks. Finally, the
node Join3 joins all the subnets needed to build the
recycle model for the proposed algorithm.

Each leaf in the composed model is a stochastic ac-
tivity network (SAN) [1]. Figure 6 shows an exam-
ple SAN from the composed model shown in Figure 5.
Stochastic activity networks are a stochastic extension
to Petri nets. Structurally, they consist of activities,
places, input gates, and output gates. Activities (start-
Sel and contBuild in Figure 6) represent activities of
the modeled system whose durations impact the abil-
ity of the system to perform. Places (selNext and exit1
in Figure 6) are used to represent the \state" of a sys-
tem and may contain tokens. Cases associated with
activities (represented as small circles on one side of an
activity, repeat in Figure 6) permit the realization of
uncertainty with probabilistic choices concerning what
happens when an activity completes. Input gates and
output gates permit exibility in de�ning enabling and
completion rules. In this model, we use places, along
with input and output gates, to control the process-
ing ow of the recycle operation. We use activities
without cases to represent the various timings in the
recycle process and we use activities with cases to rep-
resent the various distributions (described in the pre-
vious section) that de�ne the model workload.

To illustrate the use of SANs to build the recycle
model, we describe in some detail the structure and
the function of the subnet labeled buildList shown in
Figure 6. Speci�cally, for each connected set, we must
probabilistically determine a percent valid value from
the density function shown in Figure 3. This determi-
nation can be accomplished by using a single activity
with a number of cases equal to the number of possi-
ble percent valid values a connected set can have. If
the percent valid values must be speci�ed to within
one percent resolution, an activity with 100 cases is
needed. On the other hand, if the percent valid reso-
lution is required to within 0.1 percent then an activity
with 1000 cases (or some combination of several activ-
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Figure 6: SAN Model: buildList

ities each with many cases) is required. This approach
is impractical, especially if some exibility is needed
to decide at what resolution of the percent valid val-
ues to run the model. A more practical approach is
to use conditional distribution for each percent valid
value. We use the conditional distribution to compute
the probability that a connected set have a percent
valid value equals x, assuming that the percent valid
value for that connected set is greater than or equal
to x.

We modeled the percent valid value selection pro-
cess using a single activity with two cases (activity
repeat in Figure 6). Each time this activity is enabled,
we compute the probability distribution function of
the density function shown in Figure 3. Then two
probabilities for the two cases associated with this ac-
tivity. Let the variable called accept prob be the
probability value associated with case 1, and the vari-
able called reject prob be the probability value asso-
ciated with case 2. If the model is to run with percent
valid resolution equals 0.1 percent, there are 1001 dif-
ferent percent valid values (ranges from 0.0 percent
to 100.0 percent) that a connected set can have. The
place percValid contains a number of tokens that rep-
resents one of the 1001 possible values. For example,
if the number of tokens equals 125, the percent valid
value represented is 12.5 percent. The number of to-
kens in this place are set to zero before a percent valid
value is selected for a connected set using output gate
og22 in Figure 6.

The computed PDF, conditioned on the number of
tokens in place percValid, uses the following proce-
dure to compute accept prob and reject prob val-
ues. The variable num tokens represents the number
of tokens in place percValid. If num tokens equals
zero, then accept prob is set to the value of the
PDF at zero, and the reject prob is set to 1.0 - ac-

cept prob. If num tokens is not zero but less than
1000, the two variables upper and lower are assigned
the values num tokens + 0.5, and num tokens -
0.5, respectively. Also, the value of the PDF at the
point lower is PDF lower and the value of the PDF
at point upper is PDF upper, and variable to-
tal prob is 1.0 - PDF lower. Then, accept prob is
set to (PDF upper - PDF lower)/total prob, and
the reject prob is set to 1.0 - accept prob. Finally,
if number of tokens in place percValid equals 1000,
then accept prob is set 1.0 and reject prob is set
to 0.0. Thus, conditioned on the number of tokens
in place percValid, the PDF is used to determine the
probability of accepting or rejecting that percent valid
value for the connected set.

When activity repeat completes, either case 1 or
case 2 is chosen. If case 1 is chosen, a token is added
to place exit1. In this case, the connected set is as-
signed the percent valid value represented by the num-
ber of tokens in place percValid. If case 2 is chosen,
then that percent valid value is rejected. In this case
a token is added to place percValid and place selPer-
cValid. Hence, the process of accepting or rejecting
the next possible percent valid value is repeated. This
approach gives greater exibility in running the model
at any speci�ed resolution for percent valid.

Moreover, we use the activity numVols, and the
cases associated with this activity to represent the con-
ditional distributions (conditional upon the percent
valid values) of the number of volumes in a connected
set. The unconditional distribution of the number of
volumes in a connected set by percent valid bins is
shown in Figure 4. From this distribution, the pos-
sible number of volumes in a connected set can vary
from one to twenty. Hence, an activity with 20 cases
can be used to model 20 di�erent possibilities.

In some activities, the time to do an operation is not
a single value but rather a function of some value. For
example, the time required to locate the next valid
data set to be transferred from the input tape is a
function of the number of invalid blocks that must be
skipped to move to the next valid data set. This locate
function is shown in Figure 1. In this case, the activ-
ity completion time in the SAN model must be rep-
resentative of such functions. The function specifying
the activity completion time of the locate operation is
shown, in Table 1, example of the possible complexity
of such functions.

When completed, the model of the proposed recy-
cle algorithm consisted of 16 subnets, 162 input and
output gates, 177 places and 77 activities. The timing
information and the workload were then inserted into
the models, and the models were simulated using the
terminating simulator in UltraSAN. Con�dence inter-
vals are generated by the simulator, and replications
are done until a desired level of con�dence is reached.



Table 1: Activity time distributions for SAN select

Act. Dist. Parameter values
skip det.

value /� skip time is based on number
of blocks �/

if (blkstoskip == 0)
return(0.0);

if (blkstoskip < 37)
return(0.9007615);

if (blkstoskip < 236)
return( 1.029212 � 0.003453
� blkstoskip);

else
return(�0.239565 + 0.001940
� blkstoskip);

5 Results
We present results here for a single workload for a

single, sample migrate account, although many work-
loads were studied in the course of our work. The
number of migrate volumes managed was 6000. To il-
lustrate the type of output available, we examine two
parameters of interest in this section. Subsection A,
titled Net Tape Gain, contains results on the rate
at which tape volumes are recovered. Subsection B,
titled Multiple Bu�ers, discusses the e�ect of mul-
tiple bu�ers on the Net Tape Gain.

5.1 Net Tape Gain

The measure of most interest to the development
team and the user community is at what rate are tapes
released for reuse, or in other terms, the number of
tapes freed for new use in some period of time.

The performance variable net tape gain (NTG), is
the number of tapes released during the recycle pro-
cess. If we let empties represent the empty candi-
date volumes, freed the number of non-empty candi-
date volumes and filled the number of output tapes
used to hold all of the valid data in the non-empty
candidate volumes, then NTG = freed + empties -
filled.

Net Tape Gain: Stage 0 Figure 7 gives the cumu-
lative NTG (in volumes) as a function of recycle time
(in hours) for �ve di�erent preset threshold values for
Stage 0.

The curves in Figure 7 illustrate the following:
First, the net tape gain for a given threshold value
increases linearly with recycle time until all the 6000
input tapes have been processed, after which it at-
tens out because there are no additional tapes to re-
cycle. For example, the curve for 30 percent threshold
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Figure 7: Net Tape Gain (Stage 0)
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Figure 8: Net Tape Gain (Stage 1)

rises linearly for apprximately seven hours, which rep-
resents the time to scan the 6000 input volumes and to
recycle those cartridges with less than or equal to 30
percent valid data. Each plateau implies that the 6000
volumes were scanned and there are no more tapes to
be reclaimed. Second, the number of tapes reclaimed
per hour is inversely proportional to the threshold
value because larger threshold values have a greater
amount of valid data to be transferred. This implies
that a greater amount of time needs to be spent in
the data transfer phase, which reects in a smaller
number of tapes released per hour. Third, the recycle
time increases with the threshold value, with this time
varying from three and a half hours to nine hours for
threshold values of 10 percent through 40 percent. Be-
cause the viewing window was restricted to 10 hours,
we can not determine the completion time for the 50
percent curve.

Net Tape Gain: Stage 1 The set of curves in Fig-
ure 8 give NTG as a function of time for Stage 1.
Again, the time to recycle the 6000 volumes increases



as the percentage of threshold value increases, and the
plateauing of the NTGs occur upon completion of the
recycle process.

An important di�erence between Stages 0 and 1
is in the rate of NTG for di�erent threshold values.
While the rate of NTG di�ered between the various
threshold values in Stage 0, Stage 1 exhibits little dif-
ference as the threshold value changes. This is due
to the sorting process used in Stage 1, which always
places the same volumes in the same order regardless
of the threshold. The only e�ect the larger threshold
values have is that they allow the recycle process to
process further into the sorted list.

Thus, these curves are approximately the same and
are within their simulation con�dence intervals except
for their completion points. For example, after the
�rst 3 hours of recycle for the migrate account stud-
ied, the NTG in Figure 8 begins to atten out for the
10 percent threshold value (indicating its completion).
The curves for higher threshold values remain clus-
tered until the curve for 20 percent threshold breaks
away around the four and a half hour time period
(marking its completion). This process continues until
the maximum threshold is reached.

Comparisons between Stages 0 and 1 Figures
9 and 10 illustrate how the two recycle approaches
compare. Because Stage 1 allows for the presence of
multiple tasks and Stage 0 does not, Figure 9 compares
both stages with 1 task, while Figure 10 compares
Stage 0 with 1 task and Stage 1 with multiple tasks
for a �xed threshold. We chose a threshold value of 50
percent for Stage 1 because it was consistent with the
largest Stage 0 threshold and would provide the best
comparison over the total threshold range.

Comparing the curves in Figure 9, we see that Stage
1 outperforms Stage 0, with the NTG of the former be-
ing higher than that of the latter for the same migrate
account studied. The performance di�erence tends to
become enhanced with increasing threshold values.

Figure 10 compares the NTG for Stages 0 and 1,
with Stage 1 having multiple tasks. This �gure shows
the very signi�cant gain obtained by increasing the
number of tasks. Also note that the time to obtain a
given level of NTG varies linearly across the number
of tasks. For example, the time taken to recover 200
net tapes in Stage 1 is approximately six, three and
two hours with one, two, and three tasks, respectively.

5.2 Multiple Bu�ers

We show the net tape gain as a function of the
number of bu�ers allocated to a single task in Figure
11. In this study, the recycle threshold is set to 50
percent. the number of volumes is set to 6000, and a
single task processes tapes. During the �rst few hours
(� four hours), the processed connected sets have a
very low percentage of valid blocks. If a connected set
has a very small percentage of valid blocks, the amount
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Figure 9: Net Tape Gain (Stages 0 and 1 with single
task)
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Figure 10: Net Tape Gain (Stages 0 and 1, 50% thresh-
old, with multiple tasks)
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Figure 11: Changing number of bu�ers

of time spent in moving valid data from the source
volume to the target volume is very small compared
to total processing time for that connected set. Most
of the total processing time is spent verifying whether
a data set is valid or not, mounting new volumes into
the input drive, locating to the next valid data set, and
rewinding volumes. Therefore, changing the number
of bu�ers from 1 to 2 to 4 has a very small impact on
the net tape gain.

However, if the connected sets have a large per-
centage of valid blocks, the number of bu�ers used
has some e�ect on net tape gain. The reading and
writing of bu�ers are independent operations because
they operate on independent drives. Therefore, in-
creasing number of the bu�ers from 1 to 2 increases
the net tape gain slightly because while one bu�er is
being read from the input drive, another bu�er can be
written to the output drive.

But, the increase in net tape gain is small because,
regardless of what percentage of valid blocks a con-
nected set has, the data movement time is still small
compared to other processing times per input volume.
Furthermore, the change in net tape gain when the
number of bu�ers is increased from 2 to 4 is much
smaller than in the case when the number of bu�ers
is changed from 1 to 2. This minimal improvement is
due to very little use of any serial resource.

To summarize, the multiple bu�er concept has a
small and variable impact on the recycle process. The
greater the amount of valid data on the volume, the
greater the enhancement. As the tape technology den-
sity increases, the usefulness of multiple bu�ers should
increase.

The retention of the input drive allocation did not
prove to be a signi�cant enhancement in these models
because we did not model contention for the drives
from other applications. In a real environment with
moderate to heavy drive utilizations, this approach
may have noticeable performance gains for the recycle
process.

Observations of system resources, such as CPUs
and ATL Picker, utilization showed that there are pe-
riods during the recycle process when the host CPU,
the serial IO, and the ATL picker utilizations peak
to appreciable levels. These system resources may not
be available at such levels and the recycle process may
be adversely a�ected. The use of these resources has
a linear increase as a function of the number of tasks
in the system. The peak CPU utilization, serial I/O
utilization, and picker utilization per input task are
2.7 percent, 3.1 percent, and 9 percent, respectively.

6 Conclusion
The results presented here served two purposes.

First, they provided useful (and sometimes surprising)
information to the project team. This information was
used, wherever possible, in the current new release of
recycle, and will be used in future releases. Second,
the results illustrated that modeling and measurement
can be used, very successfully, in an industrial setting.
This realization is important, since modeling had not
been used extensively in the past, due to uncertainty
of its bene�ts for such software systems. Stochastic
activity networks were shown to be an appropriate
representation for the types of systems we are inter-
ested in, and made it easy to integrate measurement
information collected in the �eld and laboratory. In
addition, the work provided the necessary evidence of
the utility of our approach, and resulted in the initia-
tion of several new modeling projects, using stochastic
activity networks and UltraSAN.
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