EVALUATION OF AN ADAPTIVE CHECKPOINTING SCHEME

FOR MULTIPROCESSOR SYSTEMS

by

Fransiskus Krisnadi Widjanarko

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

WITH A MAJOR IN ELECTRICAL ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

1995

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for an advanced
degree at The University of Arizona and is deposited in the University Library to be made

available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission, provided that
accurate acknowledgment of source is made. Requests for permission for extended quotation
from or reproduction of this manuscript in whole or in part may be granted by the head of
the major department or the Dean of the Graduate College when in his or her judgment
the proposed use of the material is in the interests of scholarship. In all other instances,

however, permission must be obtained from the author.

SIGNED:

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown helow:

William H. Sanders Date
Associate Professor of

Electrical and Computer Engineering

ACKNOWLEDGMENT

This thesis work has taught me to be persistent in achieving my goal and to persevere
in going through every uncomfortable situation. There are numerous people I would like to
thank for their support in this endeavor. 1 would like to thank my advisor, Dr. William H.
Sanders, for his guidance and advice, and also for giving me the opportunity to be part of
the UltraSAN development team. I also want to thank my thesis committee, Dr. Pamela
Delaney and Dr. Fredrick J. Hill, for reviewing my thesis, and to the whole PMRL crew
for their friendly support.

I would like to give my special thanks to my parents and brothers for their support and
encouragement since my first day in Tucson. Being far away from home for many years has
made me realize how important my family is to me.

Finally , I would like to thank my friends from the Indonesian Christian Fellowship in
Tucson, especially Mr. and Mrs. Erwin Sucipto and Ferdinand M. Pardede, for being my
family during my study years at the University of Arizona. I really cherish our friendship

and thank God for giving me friends like them all.

To my parents.

&4

TABLE OF CONTENTS

ABSTRACT

1. INTRODUCTION o e

2. SYSTEM DESCRIPTION o ..

2.1. SYSTEM CONFIGURATION

2.2. FAULT ENVIRONMENT DESCRIPTION

3. THE ADAPTIVE CHECKPOINTING ALGORITHM

4. SAN MODELS e

4.1. MULTIPROCESSOR MODEL

4.2. ADAPTIVE MODEL o o

4.3. FIXED MODEL 0o

4.4. PERFORMANCE VARIABLES

5. RESULTS e

5.1. RESULTS OF THE MULTIPROCESSOR MODEL

5.2. RESULTS OF THE ADAPTIVE AND FIXED MODEL

6. CONCLUSIONS e e

6

Appendix A. DERIVATIONS OF THE FIRST, SECOND AND THIRD

MOMENT . . . e 79
Appendix B. TRICKS IN UltraSAN IMPLEMENTATIONS 81
B.1. ACCESSING SIMULATION TIME 81
B.2. INTERNAL GLOBAL VARIABLES DEFINITIONS 82
Appendix C. PROJECT DOCUMENTATIONS 83
C.1. DOCUMENTATION OF THE MULTIPROCESSOR MODEL 83
C.2. DOCUMENTATION OF THE ADAPTIVE MODEL 89
C.3. DOCUMENTATION OF THE FIXED MODEL 107

REFERENCES 123

ABSTRACT

Many checkpointing schemes have been proposed for multiprocessor systems. Both syn-

on the fault environment and cost associated with state savings, rollback, and synchroniza-
tion. The common goal of these schemes is to optimize the forward progress of the system.
In this thesis, we propose a new asynchronous scheme, called adaptive checkpointing, for
a multiprocessor system executing an application in a fault environment whose fault rate
changes with time. The adaptive checkpointing scheme adapts its rate of checkpointing
depending on the past fault arrival pattern. Basically, the scheme tries to always optimize
the forward progress, by always using what it perceives as the optimum checkpoint rate as
the frequency of fault arrival changes.

Finding the optimum checkpoint rate of an uncoordinated multiprocessor system with a
fixed fault rate is, by itself, a hard problem and has no closed-form solution. In this thesis
we construct a stochastic activity network (SAN) model to find the optimwm checkpoint
rate for varying values of fault rate. In addition to finding the optimum checkpoint rates,
this model opens a doorway for evaluation of the adaptive checkpointing scheme, since this
scheme requires the knowledge of optimum checkpoint rates. In order to evaluate the new
scheme, another SAN model is built. UltraSAN, a stochastic activity network modeling
package, is used to build and to solve both models.

Comparing the forward progress of a system with an adaptive checkpointing scheme and

that of a system with the traditional fixed checkpointing scheme shows that the adaptive

9

checkpoint scheme performs better than the fixed scheme in all cases. The degree of su-
periority depends on the nature of the fault arrival process, the number of stable storages
available to the algorithm, and the frequency of interactions between the processors in the
system. TFurther study showed that the adaptive scheme is good for a system witlll a small

number of stable storages and a high message transmission rate.

10

CHAPTER 1

INTRODUCTION

Many checkpointing schemes have been proposed for multiprocessor systems. A common
goal in such schemes is to maximize the rate of forward progress that a process achieves
or, in other words, maximize the fraction of time the system is in normal state and not
performing checkpointing operations or re-doing computations due to rollbacks induced by
faults. Maximizing the forward progress rate is equivalent to minimizing the execution time
of a program. In evaluating a checkpointing scheme, it is important to determine how often
the system should checkpoint in order to achieve the maximum forward progress rate. If
checkpointing is done too often, it will reduce the forward progress rate due to the costs
incurred in periodically saving the process state to stable storage. On the other hand, if
checkpointing is not done often enough, it will take longer to recover from a faulty state.
The optimal checkpointing rate is very difficult to determine, in general, and depends on
many characteristics of the system, workload, and fault environment considered.

In spite of these difficulties, a significant amount of work has been done to determ-
ine the performance of various checkpointing schemes and, more specifically, the optimal
checkpointing rate. Work was first done in the context of single processor systems. In
this context, Young [1] first studied the optimum checkpoint interval assuming a fixed
checkpointing interval and the assumption that faults do not occur during checkpointing
or recovery. This work was extended by Brock [2] to model faults that occur during re-

covery, but not during checkpoint. Later, Chandy [3] and Chandy et al. [4] relaxed both

11

assumptions, allowing faults to occur during both checkpointing and recovery. In paral-
lel, Gelenbe [5] considered an exponentially distributed checkpoint interval and, in 1979,
proved that the optimum checkpoint interval (in this case) is the one that is exponentially
distributed.

More recent work has considered checkpointing communicating processes executing on
multiprocessors. Broadly speaking, schemes for checkpointing communicating processes
on multiple processor systems can be coordinated, where checkpoints are coordinated to
insure that a fault on one processor does not cause a rollback of another processor (rollback
propagation) to occur, or uncoordinated, where checkpointing is done asynchronously, but
can cause rollback propagation. The general approach, among these two, that performs best
depends on the application, architecture of the system, and fault environment. Practical
cases do exist where each approach appears to be best, and hence both are interesting
from a modeling point of view. When uncoordinated checkpointing is used, determining
the optimal checkpointing rate is complicated due to the fact that data dependencies may
exist between the processes, and a fault on one processor may cause a rollback of another
processor. However, the uncoordinated approach does not suffer from: 1) the overhead
cost of sending communication messages between processors for each checkpoint, and 2)
the synchronization delay during normal operations, as in the coordinated approach.

Less work has been done to evaluate uncoordinated schemes, due to the difficulty of
accounting for rollback propagation in the model. This approach of rollback scheme has
been studied by Shin and Lee [24], where they concluded that the approach provides fast

recovery; hence, it might be used for real-time applications. In their model, fault arrival is

12

modeled as a simple exponential distribution, and the rate of checkpointing is not optim-
ized. Later, Vaidya [32] reduced the overhead cost incurred in performing uncoordinated
checkpoints. He proposed a recovery scheme called the Two-Level Recovery Scheme. In
this scheme, the recovery process consists of two components. The first component, which
uses volatile storages to save the checkpoints, is designed to recover from common cases of
system failure. The second component, which uses stable storages to save the checkpoints,
is designed to recover from uncommon cases of system failure. Because the checkpointing
cost of the first component is “cheaper” than that of the second one (since accessing the
volatile storages is “cheaper” than accessing the stable storages) the checkpoint rate of the
first component is set higher than that of the second component. This recovery scheme,
however, does not consider the optimization of the two checkpoint rates.

The work to date is limited in several respects. TFirst, no result exists for the optimal
checkpointing rate for multiple processor systems with asynchronous checkpointing, even for
a Poisson fault arrival process. Second, the fault environment considered has been limited
to Pofsson arrival scheme with a fixed arrival rate. Results for the optimal checkpointing
interval are important, since they would tell a user precisely how often checkpoint needs
to be inserted, for a given fault environment, application, and system. Furthermore, more
general fault environments should be considered since many recent studies have shown that
the Poisson assumption is not valid in many cases. In particular, Iyer and Hsueh [26]
observe several error states, each characterized by its waiting time, in their analysis of fault
environments. Their examination of the mean and standard deviation of the waiting times
indicate that not all waiting times are exponentials. They have also observed the occurrence

of bursts of faults during which the system goes into an error-recovery cycle. Other empirical

13

studies have shown that the fault model is more complex than the exponential model [16,
26, 27]. Specifically, the influence of a system’s workload has been shown to affect fault
arrival [27, 30].

This thesis addresses both of these limitations of previous models and introduces a
new checkpointing scheme which adapts to a changing fault environment. Specifically,
by representing the fault environment, application, checkpointing scheme, and system as
a stochastic activity network (SAN), we obtain a solution for the optimal checkpointing
rate for a two-processor system with uncoordinated checkpointing and Poisson fault-arrival
process. This checkpointing scheme is a new scheme and is a significant contribution of the
thesis.

Furthermore, we consider a more realistic (and more complicated) fault environment,
where the fault rate observed by the system changes over time, depending on the state of
an associated two-state Markov process, which we call a “Markov-modulated fault model.”
This fault model can correctly represent the occurrence of burst of faults, as observed in [26].
Since the fault rate changes over time, a checkpointing scheme with a fixed checkpoint rate,
as proposed in the earlier works, will not work well in optimizing forward progress of the
system. In this thesis, an adaptive checkpointing scheme is proposed to work with the fault
model. The scheme adapts its rate of checkpointing depending on the observed fault rate,
trying to determine the rate at which faults are currently occurring, and then checkpoint
at the optimal rate for the current fault arrival rate.

To evaluate the new scheme and the traditional fixed checkpointing scheme, we build
two more SAN models. These models enables us to evaluate and compare the performance

of the adaptive checkpointing algorithm to that of the fixed checkpointing algorithm for

14

the new fault model. The resulting forward progress shows that the adaptive checkpointing
scheme is better than the fixed checkpointing scheme.

In summary, the goals of this thesis are as follow:

1. The development of a SAN model to represent a multiprocessor system with an un-

coordinated checkpointing scheme and to find optimum checkpoint rates.

2. The development and evaluation of a new adaptive checkpointing scheme to work

with a fault environment that can vary with time.

3. An illustration of the usefulness of the UltraSAN tool in modeling multiprocessor

systems and fault environments.

The remainder of the thesis is organized as follows. Chapter 2 describes the multipro-
cessor fault-tolerant system to be evaluated. First, it describes the hardware configuration
of the system, and then describes the fault environment. Chapter 3 explains the adaptive
checkpointing algorithm in detail. The chapter describes in detail the four execution steps
of the algorithm. The first three sections of Chapter 4 describe the three SAN models used
in the thesis. We shall refer to the first, second and third SAN model as the multiprocessor
model (SAN model to calculate the optimum checkpoint interval), the adaptive model (SAN
model to evaluate the performance of the adaptive checkpointing scheme), and the fized
model (SAN model to evaluate the performance of the fixed checkpointing scheme), respect-
ively. The last section of this chapter, Section 4.4, describes the definition of performance
measures in terms of the SAN models.

Chapter 5 presents numerical results from the SAN models. The chapter is divided into

two sections which present the resulting optimum checkpoint rates of the multiprocessor

Chapter 6 summarizes the results and suggests some areas of future research.

15

Finally,

16

CHAPTER 2

SYSTEM DESCRIPTION

This chapter describes the multiprocessor system and the fault environment that are
evaluated in this thesis. The first section of this chapter, system configuration, presents the
hardware configuration of the system to be evaluated. The Markov-modulated fault model

is presented in the second section.

2.1 SYSTEM CONFIGURATION

As outlined in the introduction, we consider a two-processor system with uncoordinated
checkpointing. We assume that each processor has a fixed and finite amount of stable
storage that can be used to hold checkpointed information. We express the size of each

stable store in terms of the number of checkpoints that can be held. Note that this is an

Processor 1 Processor 2
S8 SS 88 SS SSs SS
1 2 T N 1 2 T N
I Interconnection Network
s S8 = Stable Storage
cm M2 CMn CM = Common Memory

Figure 2.1: Organization of FFault-Tolerant Multiprocessor System

uncommon, but realistic assumption, since stable storage will be finite in any implementa-
tion. The two processors communicate to one another by exchanging messages via common
memmories. Figure 2.1 shows the organization of the system.

Given this processor configuration, we assume a single long-running application that is
partitioned into two communicating processes running on the two processors. Each process
is further partitioned into small tasks. IFach task computes for an exponentially distrib-
uted amount of time, then sends a message to the other processor with probability P,
and checkpoints with probability P.pipeine. We consider the cases where the checkpoint
probability is fixed, and where it adapts, depending on the past fault inter-arrival times
that the process has observed. Note that if a message is sent and a checkpoint is done,
then the checkpoint follows the message. If a checkpoint (state saving) is done, it takes an
exponentially distributed amount of time with rate Agate_saving. Message transmission is
assumed to be asynchronous; hence, from the point of view of the sending process, it takes
a negligible amount of time. This cycle is then repeated, with the process entering another
compute phase, followed by a possible message transmission and checkpoint.

Faults are assumed to be equally likely to occur in each processor, and occur according to
the fault model described in the next section. When a fault occurs, the process immediately
ceases execution and begins recovery. Recovery consists of rolling back to the most recent
checkpoint and determining whether a message has been sent to the companion processor.
If it has, then the companion processor must also roll back, since that message could
have been based on corrupted data. In rolling back, the companion processor may, in
turn, induce further roll backs in the original processor, if additional messages have been

exchanged between them. In an iterative manner, the two processors determine how far

18

C1(88;) Cy,(88,) Fault detected
proct 'S Py IV

X

C22 (3822)

Figure 2.2: Checkpointing and interactions between two processors

they must roll back, and then resume execution from that point. Since each processor has
a finite amount of stable storage, a rollback propagation may cause a processor to exhaust
all of its available checkpoints (domino effect). In this case, we assume that there is a
large cost associated with recovery, taking an exponentially distributed time with fixed
rate Apesiare- Lhis time can be thought of as the time to perform an alternative, but costly,
state restoration method.

Figure 2.2 shows an example of rollback propagation. The lines represent process exe-
cution and the arrows represent the interactions between the two processors ([and Ia).
The dots (C11,Cha, ..., Cay, Cas, . . .) represent checkpoint locations in the process line. Each
checkpoint is associated with a stable storage (55). Once Iy is executed, procl records the
interaction in its stable storage, in this case it is 557;. When a fault is detected by proci,
it rolls its process back to its most recent checkpoint, which is ;5. The rollback algorithm
looks at 551, and finds out that procl has interacted with proc2. proc2 is, therefore, rolled
back to C'5; because of the possibility of message [, being corrupted by the fault. The
final checkpoints selected to recover from the error in this situation are C'j5 for proci and

(91 for procl.

19

2.2 FAULT ENVIRONMENT DESCRIPTION

Faults in a computer system can be permanent, intermittent or transient. A permanent
(hard) fault is a fault whose presence is not related to pointwise conditions of the system,
either internal or external [31]. It is continuous and stable. An intermittent fault is a fault
that is only occasionally present due to an unstable hardware condition. A transient (soft)
fault is a fault resulting from a temporary environment (external) condition. Some examples
of outside disturbances that might produce a transient fault are power jitter, ionization
due to cosmic rays, electro-magnetic interference, and alpha particles from the packaging
materials [18]. Of the three kinds of faults described above, transient faults have received
the most attention from researchers. The reason is because the system that is inflicted by a
transient fault cannot be repaired, since the hardware is physically undamaged. The other
types of faults, which are due to underlying physical conditions, are potentially detectable
by testing, and therefore repairable. A transient fault, on the other hand, might occur even
in the absence of physical defects or unstable hardware. In this thesis we will only consider
transient faults.

Two fault environment models are considered. In the first, transient faults occur as
a Poisson process, with a fixed rate A;jeq. This is the typical fault assumption with
modeling systems such as this and is valid for certain applications. However, as argued
in the introduction, empirical evidence suggests that fault rates change with time, either
in bursts, or according to modes [26]. The multi-mode nature of these faults many be
due to several different factors. For example, they may be due to changes in the physical

environment of a computing platform, e.g., a flight control computer on a plane or spacecraft

20

flying through areas with varying electromagnetic disturbance. Another cause may be a
changing total workload on the system. Empirical results [17] suggest that transient faults
occur at a higher rate when the workload is higher. To accurately model time varying fault
rates, we consider a “Markov-modulated fault process,” where faults occur according to a
Poisson process, whose rate depends on the state of an associated two-state continuous-time
Markov process. More precisely, we assume that faults occur with rate A, for the first fault
mode and Ay for the second fault mode. The rate of change between fault modes is likewise
expressed by two parameters, p; for the rate from fault mode 1 and 2 and g, for the rate
from fault mode 2 to 1.

The next chapter describes the adaptive checkpointing algorithm that is designed to

work well in the above fault environment.

21

CHAPTER 3

THE ADAPTIVE CHECKPOINTING ALGORITHM

This chapter presents the adaptive checkpointing algorithm. As mentioned earlier, the
main idea of the adaptive algorithm is to study the behavior of the fault environment and
to adapt its checkpointing rate such that as the fault rate changes, the optimum checkpoint-
ing rate according to the optimum checkpointing rate table is always used. The optimum
checkpoint rate table is a table which contains the optimum checkpoint rates of some spe-
cific fault rates. The construction of this table from the multiprocessor model is explained
in the next chapter. Because we are assuming a two-mode fault model, the tasks of the
adaptive checkpointing algorithm are, specifically, 1) to estimate the two fault rates of the
two fault modes, 2) to adapt its checkpointing rate as the fault model alternates between
the two fault modes.

There are four steps involved in the execution of the adaptive checkpointing algorithm

in order to carry out those tasks. Below are those four steps:
1. Store the past history of fault inter-arrival time.
2. Estimate the two fault rates given the information from step 1.
3. Predict the current fault mode of the system.

4. Set the checkpointing rate of the system to the optimum value depending on the

current estimated fault rate for the predicted fault mode.

22

Step 1 and Step 2 of the algorithm are executed every time a fault is detected. This is to
make sure that the estimated fault rates are updated when a new fault inter-arrival time
is observed. Step 3 and Step 4 of the algorithm are executed periodically. The frequency
of executing Step 3 and Step 4 determines how often the checkpoint rates of the processors
are updated. The goal is to make the processors always use the optimum checkpoint rate
as the fault rate changes. Iach of these steps is explained in detail in the remainder of
this chapter. A complete pseudocode consisting of all four steps is given at the end of this
chapter.

Step 1: Storing the past history of fault inter-arrival time. A simple way to
record the history of fault arrivals is by having a long array of floating point numbers and
storing the fault inter-arrival times in the array. The fault inter-arrival time is the time
interval between two consecutive occurrences of a fault, except for the first occurrence of
the fault, which is the time interval between the system start time and the first occurrence
of the fault. A problem with this implementation is that the amount of memory we need in
order to store the information is large. Further, the memory requirements increase as more
faults are detected. A better way of recording the history of fault arrival is by encoding
the information and updating the code(s) as occurrences of faults are detected.

It is important to recall that the purpose of storing this information is to be able to
estimate the parameters of the two-fault mode model (i.e. the two fault rates). In this
algorithm we use four variables, namely n, 7, i, mMa, to encode the past history of fault
inter-arrival time. Let X be a random variable that represents the inter-arrival time of a

fault. The following three equations, therefore, represent estimators of the first, second and

third moment of the random variable X

Tyt a+ -+,

My =

n

"2 .2 .2
:Z’I‘J‘_‘,Z‘E_I—'”—I_:Ln.

My =

n

.3 3 .3
:L1+$2+"'+:Z’77,

Mg =

where 2y, 24, -+, ¢, are the 1°¢, 279 sy

of fault occurrences. In an iterative way, the above equations can be represented as:

o n
my =

n -+ 1

o n
Mg = -
n+1

o n
Mg = _
n+ 1
I
n

n th

n

X My + X &

n+1

X 1My 2
me +]

% 1
Ma + n 4 1

=n+1,

23

fault inter-arrival time, and n is the number

(3.1)

(3.2)

(3.3)

(3.4)

7
where 2 is the latest fault inter-arrival time, m,; and m; (i = 1, 2, 3) are the new value and

. 1
the old value of the three moment estimators, and n and n are the new and old values of

the number of faults detected. The four variables (n, niy, 74, ms) are initially set to zero.

The equations 3.1 - 3.4 are then executed every time a fault is detected. As shown in the

following section, these four variables can be used to estimate the two fault rates of the

fault model.

Step 2: Estimating the two fault rates. Estimating the parameters of a Markov-

modulated model has been studied by several researchers. Some of the estimation methods

24

are: Bayesian estimators [34, 35), mazimum likelihood estimation [36], and method of mo-
ments [19]. We use the method of moments for the adaptive algorithm because it is simple
and straight forward. This section explains the method of moments for estimating the two

fault rates. Let the density function of X be:

f@)y=plie ¥ 4 (L—=p)Ayere®, (3.5)

where p is the mixture portion of the two fault modes, A; e"*1 ¢ is the representation of an
exponentially distributed time interval between fault arrivals with rate A; (i = 1 and 2), and
2 represents the fault inter-arrival time. This equation is not the correct representation of
the Markov-modulated fault model since the two fault modes are represented as a constant
p instead of as a two-state continuous-time Markov process. However, it is an acceptable
representation in estimating the two fault rates (A; and A,).

Let my, m, and my denote the first, second and third moment of the random variable

X. We can, therefore, derive the following equations:

P j\l; +(1-p) :\% =m (3.6)
P /\12 +(1-p) vein %mq (3.7)
1 ‘ 1 o a

Iz ~/—\~1—§ +(1-p) —/\? =M (3.8)

The complete derivations of the three equations above are given in Appendix A. By ma-

nipulating equation 3.6 we have

1
my = :
p=E T 1 (3.9)
A A

Substituting this expression for p in 3.7 and 3.8 leads to the following two equations:

1,1 1 1 1 :
(m; — j\;)(x + A—z) = 5 — W (3.10)
1 1 1 1 o1
(77?1“/\—2)()\—12+/_1E+ /\QZ)_ 67713 03 (311)
Equation 3.10 may be solved for A; (i = 1 or 2), the solution being
1
(3.12)

my — o5,

Ai = 1 1
57712 — My PV

When A; from 3.12 is substituted in 3.11 and the result simplified, the equation for A; is

(3.13)

] 1
6(2m,* — 7712)/\ 5+ 2(mgs — 377117712)\— + 3ms? — 2myms = 0
i &

1

3 and Ai Below is the final form of A

The two roots of this quadratic equation are
and A, as the function of my, m4y and ms
(3.14)

2dmimy, — 12m.

A =
! —2ms + 6mymy + D

2dmymy — 12m4 (3.15)

A,) = 5
S —2ma +6mymy — D

where D is

D = VAms? + 72mq3 — 72mymams — 108m,2my? + 96msm,3

26

term | meaning

X Random variable represents fault inter-arrival time

x A time interval between two consecutive fault arrivals
A Rate of fault arrivals in fault mode 1

Aa Rate of fault arrivals in fault mode 2

Table 3.1: Definition of terms

Recall from the description of Step 1 that we record the estimator of the first, second and
third moment of the random variable that represents the inter-arrival time of a fault. We
can, therefore, use the equations 3.14 and 3.15 and the recorded three moment estimators
(1M1, Ma, Mg) from Step 1 to estimate A\; and Ay. We refer to the estimated value of A; and
Ay as PstimatedLambdal and EstimatedLambda2, respectively. The reason why we need to
use the three moments is because we have three unknown parameters to solve in equation
3.5, namely Ay, Ay, and p.

Step 3: Predicting the current fault mode of the system. Once A, and A,
are calculated, the next step is to decide the current fault mode of the system. For the
sake of explaining the algorithm, the conventions in Table 3 are used throughout this
subsection. The task of the fault mode estimation algorithm is to decide whether this
sample is generated from the first fault mode or the second fault mode. Given a value
of @ and the estimated values of A\; and Ay we predict the fault mode that most likely
generates the inter-arrival 2. Conditioning on the fault arrival mode the fault inter-arrival

distributions are as follows:
P{X > C, | in fault mode 1} = e~ <»

P{X > C, |in fault mode 2} = e™ 7,

27

where C), (the cluster point) is a constant.

If we let C), = M, then the equations become:

P{X > C, | in fault mode 1} = ¢TI

P{X > C, | in fault mode 2} = PRk

If A; is much larger than Ay, then P{X > (), | in fault mode 1} is much smaller compared

to P{X > C, | in fault mode 2}. For example, let A; = 0.05 and A, = 0.001, then

P{X > C, | in fault mode 1} = e~ 3 zvom

Il
o°
o
DO
o
(&)1
X
—
a
—
[N

P{X > C, | in fault mode2} = e 3300
= 0.6005

Because the probability that X > C), given that the system is in fault mode 1 is very small,
we predict that = is from the second fault mode whenever @ > ,. The value of the cluster
point (C,) need not necessarily be set to i’\l—fgl& In this thesis U’\l—fgl& is used because
the fault inter-arrival times, conditioned on the fault mode, are exponentially distributed;
thus, the expected values are E[X;] = 1/A; and E[X,] = 1/, respectively.

The following rule is used to decide if the system has switched from one fault mode to
the other with the assumption that Ay > Ay, If the system is in the first fault mode and the
time elapsed since the last detected fault (time_elapsed) is greater than the cluster point,
then it is assumed that the system fault mode has changed to the second fault mode. If the
system is in the second fault mode and the last inter-arrival time of fault (last_fault_interval)

is less than the cluster point, then it is assumed that the system fault mode has changed

28

ClusterPoint = (1/EstimatedLambdal + 1/EstimatedLambda2) / 2

if (EstimatedLambdal > EstimatedLambda2) {
if (EstimatedMode == 1 and time_elapsed > ClusterPoint) {
EstimatedMode = 2

else if (EstimatedMode == 2 and last_fault_interval < ClusterPoint) {
EstimatedMode = 1

else {
if (EstimatedMode == 2 and time_elapsed > ClusterPoint) {
EstimatedMode = 1

else if (EstimatedMode == 1 and last_fault_interval < ClusterPoint) {
EstimatedMode = 2

}
}

Figure 3.1: The pseudocode of fault mode estimation rule

to the first fault mode. For the case where A; < Ay, the rule does not change except each
“first fault mode” term becomes “second fault mode” and vice versa. Iligure 3.1 shows the
pseudocode of the rule. We shall refer to this rule as fault mode estimation rule.

Step 4: Setting the checkpointing rate to the optimum value. Once we have
estimated the two fault rates (Step 2) and determined the current fault mode (Step 3), we

can determine the current rate of fault arrival with the following equation:

EstimatedLambdal if EstimatedMode == 1
A= (3.16)

EstimatedLambda?2 otherwise,

where A denotes the estimated current fault rate. The next step for the algorithm is to get
the optimum checkpointing rate value from the optimum checkpointing rate table according
to the value of A.

Table 3.2 shows an example of an optimum checkpointing table. As mentioned earlier,
this table was constructed from the results of the multiprocessor model, which will be

described in the next chapter. The algorithm compares the value of A to the fault rate

29

Fault Rate | Opt. Chkpts. Rate
0.001 0.4
0.003 0.8
0.005 1.2
0.007 1.4
0.009 1.8
0.010 2.0
0.015 2.6
0.020 3.0
0.025 3.2
0.030 3.4
0.035 3.6

Table 3.2: An example of an optimum checkpoint rate table

values in the left column of the table starting from the first row. If the fault rate value
from the table is smaller than A, then the algorithm looks at the next fault rate value in
the next row and does the same comparison. The algorithm keeps on going down the row
until it hits the row in which the fault rate is greater than A, or it hits the last row of the
table. In both cases the algorithm uses the checkpointing rate value from the right column
of the table associated with the last row that it hits.

In summary, Table 3.3 shows the variables used in the adaptive checkpointing algorithm
and their meaning, and Figure 3.2 shows the pseudocode of the algorithm which includes

the four steps explained in this chapter.

Initialization
EstimatedLambdal = 0.0 n =0
EstimatedLambda2 = 0.0 mi=m2=m3 =00
EstimatedMode =1 OptChkpointRate = 0.0
ClusterPoint = 0.0

OptTable_faultrates{41]

= {0.001, 0.002, ..., 0.040}
OptTable_chkptsrate[41}] = {0.0

40, 0.060, ..., 0.350}

Adaptive_Checkpointing_Algorithm () {
if (fault is detected) {

last_fault_interval = the last interarrival time of fault
m1 = (n/(n+1) *m1) + (1/(n+1) * last_fault_interval)
m2 = (n/(N+1) * m2) + (1/(n+1) * last_fault_interval"2)
m3 = (n/(n+1) * m3) + (1/(n+1) * last_fault_intervalr3)
n =n+1

EstimatedlLambdal = estimate lambdai by m1, m2 and m3
EstimatedLambda2 = estimate lambda2 by m1, m2 and m3

}
if (time to adapt) {

ClusterPoint = (1/EstimatedLambdat + 1/EstimatedLambda2) / 2

if (EstimatedLambdat > EstimatedLambda2) {
if (EstimatedMode == 1 and time_elapsed > ClusterPoint) {
EstimatedMode = 2

else if (EstimatedMode == 2 and last_fault_interval < ClusterPoint) {
EstimatedMode = 1
}
}
else {

if (EstimatedMode == 2 and time_elapsed > ClusterPoint) {
EstimatedMode = 1

}
else if (EstimatedMode == 1 and last_fault_interval < ClusterPoint) {
EstimatedMode = 2

}

if (EstimatedMode == 1)
Icurren’[_lambda = EstimatedLambda1
else
current_lambda = EstimatedL.ambda2
for (row = 1 to 40) {
if (current_lambda < OptTable_faultrates{row])
exit the for loop

}
OptChkpointRate = OptTable_chkptsrate[row}]

Figure 3.2: The pseudocode of the adaptive checkpointing algorithm

step 1

step 2

step 3

step 4

30

Variable name

Meaning

Used in Step

EstimatedLambdal Estimated value of Ay 2& 3
EstimatedLambda2 Estimated value of A, 2& 3
EstimatedMode Estimated value of the current fault mode 3
ClusterPoint Separator value of sample from the 2 fault modes 3
n Fault counter 1& 2
My, My, M3 The first, second and third moment estimators 1& 2
OptChkpointRate The estimated value of the opt. checkpointing rate | 4
OptTable_faultrates | The opt. checkpoint rate table; 4

the “Fault Rate” column

The opt. checkpoint rate table; 4

OptTable_chkptsrate

the “Opt. Chkpts. Rate” column

Table 3.3: Variables in the adaptive checkpointing algorithm

31

CHAPTER 4

SAN MODELS

This chapter presents the stochastic activity network (SAN) model of the system de-
scribed in the previous chapters. Stochastic activity networks [28, 29] are stochastic ex-
tensions to Petri Nets that can be used to obtain both analytical and simulation results
concerning the performance of many systems. Figure 4.1 shows an example of a SAN
model. SANs consist of five types of components: timed activities (ovals), instantaneous
activities (vertical lines), places (circles), input gates (triangles with their point connected
to an activity), and output gates (triangles with their backside connected to an activity).
The execution of SANs is discussed in detail in [28]. Figure 4.1 and all other model figures
were generated using UltraSAN [14, 15], a stochastic activity network modeling package.

There are three models presented in this section. The first one, called the multiprocessor
model, is a basic model of a two-processor system with a fixed checkpoint interval and a
single-mode fault model. This model will be used to calculate the optimum checkpoint in-
terval for different (fixed) fault arrival rates. The multiprocessor model is used to construct
the optimum checkpoint rate table. The second model, called the adaptive model, is a model
of a two-processor system implementing the adaptive checkpointing scheme described in the
previous chapter, with the “Markov-modulated fault model” as its fault environment. The
adaptive model is used to evaluate the performance of the adaptive checkpointing scheme
under the two-mode fault model. The last model is called the fized model. 1t is very similar

to the adaptive model, except that it implements the fixed checkpointing scheme instead of

<

stop_proci

AN

‘ Se <3
mesg_event

O
P A 4
processort } \ start_rolfpack
t13 0“\‘ esg roliba
D > chkpts1 chid_event rb|_point
b -
—e faur2 N
p chkpts2 start_testhrt
tart
processor2 res
123
‘ chk2_event
stop_pLc2 J

StateSaveUnits

Figure 4.1: SAN-based model of the multiprocessor model

the adaptive checkpointing scheme. In the fixed model, the checkpoint model part of the
adaptive model is replaced with a single global variable whose value is fixed. The global
checkpoint rate value is used for both fault modes.

The following UltraSAN terms will be used to describe the models:

¢ MARK - a macro definition to represent the marking of a given place. For example,

“MARK(rb_point)” represents the marking of the place ro_point.

¢ GLOBAL.S - a macro definition to represent a global variable of type short integer

whose value can be either varied or fixed.

o GLOBAL.D - a macro definition to represent a global variable of type double floating

point whose value can be either varied or fixed.

4.1 MULTIPROCESSOR MODEL

34

IFigure 4.1 shows the multiprocessor model. As mentioned earlier, we consider a system
with two communicating processes running on the two processors. FEach process is parti-
tioned into small tasks, each of which computes for an exponentially distributed amount of
time. In the model, the two processors are represented by two activities called processorl
and processor2. The time of completion of the processor activities represents the execution
time of a task. We will use this time as the “basic unit” of the execution of the other pro-
cesses, such as state saving process and restart process, and we will refer to the rate of the
processing activities as the processing unit (A,.,.). Each activity is associated with two pos-
sible events that might occur during the task execution. The two events are 1) checkpoint
insertion with probability P.pppeint, and 2) message transmission with probability Peq,.
Since the two events are independent of one another, we have four possible cases that
might happen during the task execution. Table 4.1 shows the four possible combinations of
events and their probability of occurrence in terms of P.pjpoins and Py These four events
are represented by the four cases associated with the processor! and processor? activities.
Notice that P.pipoine and P,y determine the checkpoint rate and the interaction/message
rate, which can be calculated as Popipoint X Aproc and Py X Aproc, respectively. This is
true because the two activities (processor! and processor?) are exponentially distributed
with rate equal to A, ... The total message rate for the multiprocessor system becomes the
number of processors (2) x the message rate of each processor. We shall use the checkpoint
rate and message rate, instead of the respective probabilities, when reporting results.

In order to signal the occurrence of each event from the two processors, three places
(mesg, chkptsl and chkpts?) are connected to the cases of each processor activity. When

one of these four events happens, a token is placed in the appropriate place. Placing a

Possible events Probabilily

A mesg. transmission w/o any checkpoint insertion Priesg X (1 = Pepipoint)

A mesg. transmission and follow w/ a checkpoint insertion | Ppesg X Pehkpoint

A checkpoint insertion w/o any mesg. transmission (1 = Presg) X Ponkpoint
Neither mesg. transmission nor checkpoint insertion (1 = Presg) X (1 = Pepkpoint)

Table 4.1: Possible events on each processor

token in the place mesg means a message has been sent either by processorl or processor2.
Placing a token in the place chkpts!/chkpts2 means a checkpoint is to be inserted by pro-
cessorl/processor2. The places mesg, chkpts! and chkpts? are each connected to an activity
via an arc. The activities (mesg-event, chki_event, and chkZ-event) represent the cost of
(time associated with) executing each event. A bar representing activity mesg-event means
the activity is an instantaneous activity, which means no delay is associated with the event.
This activity can be easily changed to timed activity if we assumed some cost associated
with sending a message, which is what we might want to do if we are modeling distrib-
uted systems where sending a message might take a significant time. As mentioned earlier,
message transmission is assumed to be asynchronous; hence, from the point of view of the
sending processor, it takes a negligible amount of time. The instantaneous activity is, there-
fore, used to represent this costless message transmission. The checkpoint, on the other
hand, is represented by a timed activity. The rate of chkl_event and chk2_event activities
(Astate_saving) represents the cost of doing checkpoint/state saving. We shall use the terms
checkpoint and state saving interchangeably to represent the process of checkpointing for
the rest of this thesis.

As each processor interacts with the other processor and checkpoints are inserted, it is

important to keep track of these events chronologically for the purpose of doing rollback

36

recovery in case a fault is detected. The job of keeping track of all these events is handled
by output gates: set_mesq, set_chkl, and set_chk2, and by places: codel, code? and lastchk.
To keep track these chronological events in the SAN model, we need a way of encoding
and decoding these events into an integer code whose value can be stored as a marking of
a place. The encoding method is explained below; and the decoding method is explained
later in this section. We use two codes to record these events.

The values of the codes are recorded as the marking of the places codel and code. Each
message that comes after a checkpoint by the processor! is recorded in the code of the
place codel; and each message that comes after a checkpoint by the processor? is recorded
in the code of the place code2. Any messages that occur prior to the first checkpoint are
110f recorded because they do not have any effect on the rollback process. The marking of

the place lastchk tells whether the last checkpoint comes from the processori or processor2.

A code, which is calculated with the formula below, is associated with each message.

code! ,, = (chkpts®™ +1) x (55 + 2)61"“)“',

mesg
where:
o i=1or2
e 5SS = number of stable storages in each processor.
e code’ = the code of a message that comes after a checkpoint by processor i.

mesyg

o chkpts’ = the number of checkpoints that has been inserted by processor i prior to

current message; and SS being its maximum number.

37

We shall refer to this code as the message code. Multiple messages that occur between
two checkpoints are considered as one message. In other words, there is only one message
code associated with multiple messages that occur between two checkpoints. The sum of
code! .. ; for all messages that occur within the last $.5%2 (number of processor) checkpoints
is stored as the marking of the place code i, wherei = 1 or 2. The place code! stores the sum
of the message codes of the messages that come after a checkpoint of processori, and code?
stores those of the messages that come after a checkpoint of processor2. Any messages that
occur prior to the last 5.5 x 2 checkpoints are meaningless in determining how far a process

needs to be rolled back, and are, therefore, unrecorded by the code! and code2 places. The

complete formula for the marking of the place codel and code? is the following:

MARK (code 1) = Z cadefuesg = (chkpts®™ +1) x (S5 + 2)011']”'7”3'7

the last SSX2 chkpts.

where i = 1 or 2. Figure 4.2 shows an example of this message coding for a system with
two stable storages. Because the markings of the place codel and code2 are deﬁendent on
the occurrence of checkpoint insertion and message transmission events, their values are
updated every time one of those events occurs. The gate set_mesg updates their values
when a message transmission occurs. The gate set_chkl/set.chk2 update their values when
a checkpoint from processor!/processor? occurs. The number of stable storages, which is
assumed to be the same for both processors, is represented by the initial marking of the
place StateSaveUnits' .

The occurrences of fault in the system is represented by activity fault. The rate of

this activity determines the fault arrival rate of the system. When a fault occurs in the

system, it can come from either processor! or processor2. This possibility is represented

!State save unit is another term for stable storage

mesg. prior to this point
is no longer recorded

i .
! checkpoint #2 checkpoint #1
progt -+ Y : Py
A | |
|
MC IMC 3 MG?
|
proc2 e . X PO ' o
checkpoint #2 checkpoint #1

SS = # of stable storages per proc = 2
MC = message code

MC? =3x4 =12 1
MG —oxalg MARK(code1) = MC 3 =
MC? =2 x4 2 MARK(code2) = MC# MCi=

Figure 4.2: Calculations of MARK(codel) and MARK(code2) for SS = 2

by the two case probabilities associated with the activity fault. Since we are assuming an
equal probability for each processor to generate faults, the case probabilities are set to 0.5.
Upon the occurrence of a fault, activity processor!, processor2 and fault are temporarily
disabled until the recovery process is completed. The two processors are disabled because
no progress is made during the recovery process. The fault activity is disabled because
we assume no fault occurs during the recovery process. The output gate fault!, or fault2
depending on which processor the fault is generated from, calculates how far behind the
system has to be rolled back. Basically, fault!/fault? decodes the markings of places codel
and code2 and decides the consistent rollback point for the system to recover from the fault.

In order to explain the decoding of the marking of the place codel and code2, let us
consider the previous example of interactions between the two processors in Figure 4.2.
The markings of the places codel and code? are 8 and 14, respectively. We can decode

these markings to get the message codes with the following formula:

MC! = (MARK (code i) — MC* _)) mod (55 + 2)",

39

where

o M C'fz = the message code between the checkpoint #n and the checkpoint #(n — 1)
of processor ¢, where the checkpoint #1 is the last checkpoint, checkpoint #2 is the

one prior to the checkpoint #1, and so on.
o« MCY =0.
en=12,-.-,85

By decoding the marking of codel and code?2 with the above formula, we have the

following message codes:
¢ by decoding MARK(codel):
-~ MC} =(8-0)mod 4! =0
~ MCL = (8-0) mod 4° =
e by decoding MARK(code2):
— MC? = (14 - 0) mod 4* = 2
— MC% = (14-2) mod 4% = 12
These message codes are the same as the original message codes in Iigure 4.2.

Once we have these message codes, the next step is to decode these message codes and

determine the rollback point. Below is the formula to decode the message code:

L MO
"(SS 42

z e . N
where C' P}, is the checkpoint # to be used by processor 7 because of the rollback propaga-
. . . ; . o . K
tion caused by the message whose message code is M), and ¢ = 1if i = 2, otherwise %

= 2. By decoding the above message codes we have:

o CPy =0 /4% = 0 = processor 2 should be rolled back to the checkpoint #0 (no

rollback)

CPy =8 /4" = 2 = processor 2 should be rolled back to the checkpoint #2

CP? =2 /4% = 2 = processor 1 should be rolled back to the checkpoint #2

o CP2=12/4" =3 = processor 1 should be rolled back to the checkpoint #3

With the knowledge of the rollback propagation inflicted by each message we can de-
termine how far rollback is to be executed (rollback point). Let RB1 be the rollback point
of the processor! and RB2 be the rollback point of the processor2. If a fault is detected
on processori, then RB1 is initialized to 1, which means “rollback to the checkpoint #1,”
and RB2 is initialized to 0, which means “no rollback is needed.” If a fault is detected on
processor?, then RB1 is initialized to 0 and R B2 is initialized to 1. The initialization occurs
like this because if we assume no rollback propagation will occur, then only the processor
with the fault will be rolled back, and it is rolled back to the last checkpoint. The next
step after this initialization is to check if rollback propagation occurs, and to determine the
rollback point of both processors taking into acount the rollback propagation. Below are

the equations to update the values of RB1 and RB2 as rollback propagation is considered:
RB, = MAX(RB;,CP%p)

RBy = MAX(RBsy, CPky),

where

X fX>Y
MAX(X,Y) =
Y ifX <Y

C’P%B, (i = 1 or 2) is the rollback point of processor j (j = 2 ifi = 1; j = 1 otherwise)
inflicted by processor i because of the interaction of the two processors. If RB; is zero
then C’Pg equals to zero. The two rollback points (RB; and RB;) are iteratively updated
using the above equations as long as no “consistent rollback point” has been achieved. The
consistent rollback points, which are the final values of RB, and RB.,, are achieved if ,after
executing the equations above, the new values RB'1 and RBI2 are the same as their old
values. Once we have the consistent rollback points, the “farthest” value between RB,
and RB,, that is the MAX(RB,, RB,), is selected as the rollback point of the system.
The reason of selecting the larger value is to avoid having one processor doing forward
progress, while the other processor is doing recovery. Figure 4.3 shows the pseudocode of
the algorithm to determine the rollback point explained above and Figure 4.4 shows the
calculation of the rollback point of the previous example. There are two cases shown on the
example in Figure 4.4. In the first case, where the fault occurs on the first processor, the
final rollback point turns out to be the last checkpoint of processor 1. In the second case,
where the fault occurs on the second processor, the system is forced to restart to recover
from the fault because the final rollback point (3) turns out to be larger than the available
number of checkpoints (2).

Once a rollback point is determined, an appropriate number of tokens, representing how

far rollback has to be done (checkpoint #), is placed in the place rb_point. If the consistent

rollback point turns out to be larger than the available stable storages (as in the case 2 of

if (fault is on processor1) {

RB1 =1
RB2 =0
)
else
RB1=0
RB2 =1

}

while (RB points are not consistent) {
RB1' = MAX (RB1, CP k=2)
RB2’ = MAX (RB2, CP ks1)

}

RBpoint = MAX (RB1, RB2)

Figure 4.3: The pseudocode to determine the consistent rollback point

mesg. prior to this point
is no longer recorded

; ‘ Cyy Cyy casel
roct -+ - e ' ®
P A ° i

L Mch MC} Mc?

i ‘ | o
proc2 - ff',,,,,, -® ' ° case
Gy Cx

Case1 : fault on proct Case?2 : fault on proc 2

RB:=1 RB1=0

RB2=0 RB2 = 1

RBj = max(1,0P8) = max(1,0) = 1 RB1 = max(0,CP4) = max(0,2) = 2

RB2 = max(0,CPy) = max(0,0) =0 RB2 = max(1,CP2) = max(1,2) =2

Final RBpoint = max(RB},RB;) = 1 RBi= max(2,CP%) =max(2,3) =3
RB5 = max(2,CP3) = max(2,2) = 2
RBj = max(3,CP%) = max(3,0) = 3
RB2 = max(2,CP3) = max(2,2) = 2

Final RBpoint = max(RB1,RB;) = 3
= restart (3 > SS)

Figure 4.4: An example of rollback point calculations

the above example), the restart process is initiated; otherwise, reexecution of the process
starting from the selected rollback point (as in the case 1 of the above example) is initiated.
The restart process is represented by activity restart with rate \..;i00, while the roliback
recovery process is represented by activity rollback with rate M.opacr. Since the Aoppack

represents the time to re-execute the process starting from the calculated rollback point, its

1

The vollbach point” Thus, the “farther” the rollback point, the larger

value should be A pppoint X
it takes to recover from the error. Once the recovery process, either restart or rollback, is

done, activity processorl, processor? and fault are re-enabled, and the system goes back to

execution in the normal mode.

4.2 ADAPTIVE MODEL

The SAN model of a system with the adaptive checkpointing scheme is showed in Fig-
ure 4.5. The model is similar to the model described in the previous section. The only
differences are in the fault model and the checkpoint model. In this model, the fault model
is different because we are considering the “Markov-modulated fault process,” and the
checkpoint model is different because we are considering the adaptive checkpointing al-
gorithm. Figure 4.6 shows the fault model and the checkpoint model parts of the adaptive
SAN model.

Fault model: As mentioned earlier, we are assuming a two-mode fault model where
faults occur with rate Ay for the first fault mode and A, for the second fault mode, and the
rate of change between fault modes is likewise expressed by two parameters, ji; for the rate
from fault mode 1 to 2, and p, for the rate from fault mode 2 to 1. In the SAN model, the

two alternating fault modes are represented hy the place faultmode, the activity switchmode,

op_proct

P

pp_proc2

44

mesg_event

~

U

chk1_event

set_chk2

chk2_event StateSaveUnit:

enableAdapt bleAdapt q

adapttime

est_fmode

enable

setenable]

(

slart_recovery

set_rb2 start_restart

restart

I: doswitch
switchmode

faultmode

Figure 4.5: SAN representation of the multiprocessor system with adaptive checkpointing

enableAdapt I

CHECKPOINT MODEL

etenab!

hab[eAdapl
‘ Adapt 1

enable
setenable

1

fdetected F o

I
i
e e e 1 |
[
|
[

faultmode

doswitch

1
1
|
I
whichproc }
I
|
I
I
I
I

switchmode

FAULT MODEL

Figure 4.6: Fault model and checkpoint model parts of the adaptive model

if (MARK(faultmode) == 1)
return(GLOBAL_D(MU1));

else
return(GLOBAL_D(MU2));

Figure 4.7: The marking dependent rate of activity switchmode

and the output gate doswitch. The marking of the place faultmode, which alternates between
1 and 2, represents the current fault mode of the fault model. The initial marking of the
place can be set to either 1 or 2 without affecting the performance measures since we will
study the steady state behavior of the system. The activity switchmode represents the
rate of change between the two fault modes. When the system is in the fault mode 1
(MARK(faultmode) == 1), the activity represents the rate of change from fault mode 1 to
2 (p1). When the system is in the fault mode 2 (MARK(faultmode) == 2), the activity
represents the rate of change from fault mode 2 to 1 (p). Figure 4.7 shows the rate code
of the activity switchmode.

Let us assume the system is initially in fault mode 1. This initial state is represented
by setting the initial marking of place faultmode to 1 (MARK(faultmode) = 1). The rate
of the activity switchmode becomes u; because of this initial marking. Once the activity
switchmode is completed, the output gate doswitch changes the marking of place faultmode
from 1 to 2, and the rate of activity switchmode becomes piy to represent the rate of change
from fault mode 2 to 1. The next time activity switchmode is completed the state is
changed back to the initial state with the marking of faultmode equals to 1; and the process

is repeated.

46

if (MARK(faultmode) ==
return (GLOBAL_D(LAMBDAT1));

else
return(GLOBAL_D(LAMBDAZ2));

Figure 4.8: The marking dependent rate of activity fault

The activity fault represents the rate of fault arrival. In order to associate a different
rate of fault arrival for each fault modes, the rate of the activity fault is made dependent
on the marking of the place faultmode. When the marking of faultmode is 1, the rate of
activity fault equals A; which is the rate of fault arrival when the system is in fault mode
1. When the marking of faultmode is 2, the rate of activity fault equals Ay which is the rate
of fault arrival when the system is in fault mode 2. Figure 4.8 shows the rate code of the
activity fault.

Checkpoint model: Recall from the previous chapter that the adaptive checkpointing

algorithm consists of the four steps below:

o Stepl: Store the past history of fault inter-arrival time.

e Step2: Estimate the two fault rates.

o Stepd: Determine the fault mode the system is currently in.

e Step4: Set the checkpointing rate of the system to the optimum value depending on

the current estimated fault rate.

The first two steps (Step 1 and 2) are implemented inside the output gate fault_event

because, as mentioned earlier, they are executed every time a fault is detected. The last

double EstimatedLambdai = 0.0;
double EstimatedlLambda2 = 0.0;
double EstimatedP = 0.0;

double m1 = 0.0;

double m2 = 0.0;

double m3 = 0.0;

double n = 0.0;

int EstimatedMode = 0;
int AdaptNow = 0;

float aveCheckpoint = 0.0;

/
* The optimum checkpoint rate table for SS =2

/
float OptTable_faultrates [] = {0.005, 0.010, 0.015, 0.020, 0.025,
0.030, 0.035, 0.040, 0.045, 0.050};
float OptTable_chkptsrate [] = {0.09, 0.12, 0.14, 0.17

17, 0.20, 0.24,
0.28, 0.30, 0.32, 0.34};

/
* Variables to hold simulation times

timeValue currentData = 0.0;
timeValue enableTime = 0.0;
timeValue enableAdaptTime = 0.0;
timeValue elapsed_time = 0.0;
timeValue last_fault_interval = 0.0;

Figure 4.9: The file myglobal.h which contains global variable declarations

two steps (Step 3 and 4) are implemented inside the output gate adapttime because they
are executed periodically according to the rate of the activity adapt, that is Aygape.

All variables used in the adaptive algorithm as shown in Table 3.3 are declared globally
and initialized in a header file called myglobal.h. Figure 4.9 shows this header file. Once a
variable is declared in this header file, it becomes accessible from any gate and activity in
the model. A detailed explanation of how this global variables declaration works is given
in Appendix B.

Step 1: Storing the past history of fault inter-arrival time. As described in the
previous chapter, the past history of fault inter-arrival time is recorded in four variables,
namely n, my, mg, and ms. These four variables are declared and initialized to zeros in

myglobal.h header file. In order to calculate each inter-arrival time of a fault, the SAN

model needs to record two simulation time-stamps. These two time-stamps will be the
starting and ending time of the fault inter-arrival time. The time at which activity fault
is enabled is the first time-stamp, and the time of the occurrence of the last fault is the
second time-stamp. The time interval between the two time-stamps is regarded as the
interval of time bhetween two consecutive fault arrivals. It is important to note that the
two time-stamps are simulation time. They are not real time. This is the reason why we
use these two time-stamps to calculate each fault inter-arrival time. During the simulation,
after every occurrence of a fault, the recovery process, either the rollback recovery or the
restart recovery, is executed. If we use the occurrence of the previous fault as the first
time-stamp, we are including the recovery time in the calculation of the inter-arrival time
of a fault. This is certainly not correct. In order to exclude the recovery time, the model
regards the simulation time at which the activity fault is enabled as the first time-stamp.
I'igure 4.10 shows the two time-stamps on the simulation time line. The line represents
the simulation time line, and each dot represents the point in the simulation when a specific
event happe.ns. The events are described in the boxes below the dots. The thick line
represents the correct inter-arrival time of a fault in the simulation process. The task of
recording the first time-stamp is given to the input gate enablefault. The second time-stamp
is recorded by the output gate fauli_event. The UliraSAN trick to access these simulation
times is described in Appendix B. The time interval between the last two fault arrivals is
stored in the variable last_fault_interval which is declared in the header file myglobal.h.
Omnce we have the time interval between the last two fault arrivals, the first, second and
third moments (my, m,, and ms) and the fault counter (n) are updated using the equations

3.1 - 3.4. This step is executed every time a fault is detected.

49

) . . First Second
simulation time line timestamp timestamp
@ - [4 0
| < recovery time S :
H 1 i
i i
Y] Y
. th i ; {)
N fault is detected | Recovery proc. | L {N+T) th fault is detected
| & | i completes : &
Recovery proc. | . ; I Recovery proc,
is started | | Activity fault | is started
. e J \ is reenabled Jl !

Figure 4.10: The simulation time line between two consecutive fault arrivals

Step 2: Estimating the two fault rates. Equations 3.14 and 3.15 show how to
estimate the two fault rates (A & A;) from the three moments (my, ma, ms). The two
equations are implemented inside the fault_event gate and are executed every time a new
fault is detected. The calculations are executed after the three moments are updated to take
into account the last detected fault (Step 1). The estimated values of A; and A, are then
stored in the variables FstimatedLambdal and FEstimatedLambda2, which are declared in
myglobal.h header file. These global variables (EstimatedLambdal and Estimated Lambda?2)
will be used later in the execution of Step 3 and 4 of the algorithm.

Step 3: Determining the fault mode the system is currently in. Uunlike step
1 and 2, which are executed every time a fault is detected, step 3 and 4 of the adaptive
algorithm are executed periodically and are independent of the arrival of the fault event.
The rate of the activity adapt (Aggape) determines the frequency of executing these two
steps. In this model this rate is set equal to the processing rate (Asgapt = Aproc). Fach
time the activity adapt is completed, the function inside the output gate adapttime, which
consists of the fault mode estimation rule (Step 3) and the optimization of checkpoint rate

(Step 4), is executed. The function inside the gate adapttime is given in the Appendix C.

simulation time line

5 f ! 1
. — v ' v
UNMfaultis detected || Thefaultis || Activity adapr | Activity processor] | Activity adap |
‘5 & || recovered i is completed . iscompleted | is completed

ivity adapt U . ; :
T

= part of the simulation time which is included in the calculation
ofthe rime_elapsed after the N™M fault.

Figure 4.11: The simulation time line and parts of the time_elapsed

One variable that we need to execute the fault mode estimation rule is the time_elapsed,
that is the time that has elapsed since the last occurrence of fault. To calculate the
time_elpased from the simulation time line, we need to sum up the time intervals hetween
the time at which the activity adapt is enabled and the time at which the activity adapt is
completed since the last occurrence of a fault. Figure 4.11 shows the simulation time line
and some fractions of it that can be considered as the time_elapsed. The task of recording
the time at which the activity adapt is enabled is given to the gate enableAdapt, and the
task of recording the time at which the activity adapt is completed is given to the gate
adapttime. Once the current fault mode is estimated, the associated value of the mode (1
for fault mode 1 and 2 for fault mode 2) is placed as the marking of the place est_fmode.

Step 4: Setting the checkpointing rate of the system to its optimum value.
Once we have estimated the two fault rates (Step 2) and determined the current fault
mode (Step 3), we can determine the current fault rate (A) by using equation (3.16).
The next step of the algorithm is to get the optimum checkpoint rate value from the
optimum checkpoint rate table according to the value of A. The optimum checkpointing

rate table is declared as two arrays of floating points in the myglobal.h header file. The

51

first array, OptTable_faultrates[], contains a varying value of fault rates. The second array,
OptTable_chkptsrate[], is associated with the first array in the following way: its element in
each row is the optimum checkpointing rate value of the system whose current fault rate is
as shown in the first array in the same row. These two arrays are filled with the fault rates
and the optimum checkpoint rates, which are the results of the first model described in the
previous section of this chapter (multiprocessor model).

By comparing the fault rates in the optimum checkpoint rate table with the current fault
rate () as described earlier, we can determine the specific row of the table which contains
the optimum checkpoint rate of the current value of A. The index value of this row is then
recorded as the marking of the place est_frate. The processor activity then looks at this

place to get the index value and set the optimum checkpoint rate as its checkpoint rate.

4.3 FIXED MODEL

This model is very similar to the adaptive model described in the previous section. The
only difference in this model is in its checkpointing scheme. Instead of using the adaptive
checkpointing scheme this model determines its checkpoint rate by using the value of a
global variable called the “GLOBAL.D(chkpoint).” The value of this global variable is fixed
to a single checkpoint rate. With this model the performance of the system with this fixed
checkpointing scheme is evaluated. By varying the value of “GLOBAL_D(chkpoint)” we can
evaluate the performance of the system for different values of checkpoint rate. In the chapter
on results we compare the performance of the system with the fixed checkpointing scheme
with the performance of the system with the adaptive checkpointing scheme. Figure 4.12

shows the SAN model of the fixed model.

52

mesg_event

chki_event

set_chk2

chk2_event StateSavfitmits

tart_recovery

start_restart

set_rb2

[doswitch faultmode
switchmode

Figure 4.12: SAN-based model of the fixed model

Perf. Vars. Meaning: fraction of time UltraSAN syntaz

forward prog. | processorl in normal state MARXK(rb_point)==0 && MARK(chkptsi)==¢
state saving processorl doing chkpts. proc. | MARK(chkptsl) > 0

rollback sys. doing rollback recovery MARIK(rb_point) > 0 && MARK(rb_point) <
MARIK(StateSaveUnits)+1

MARIK(rb_point) == MARK(StateSaveUnits)+1

restart sys. doing restart recovery

4.4 PERFORMANCE VARIABLES

In order to evaluate how well the system performs, we need measures of system per-
formance. The measures that will be used in the models are shown in Table 4.4. The table
lists the name of each performance variable, its meaning, and the UltraSA N syntax for each
variable. Each variable represents the fraction of time the system is doing a specific process.

The UltraSAN representation for each variable is shown on the right most column.

53

Forward progress, which represents the fraction of time spent by the system performing
useful work, is the variable used to find the optimum checkpoint rate for different fault rates.
A checkpoint rate is said to be optimum if the resulting forward progress is maximum. State
saving is the overhead cost associated with doing checkpoint insertion. This cost, obviously,
increases as checkpoint rate increases. Rollback and restart represent recovery costs. These
costs should decrease as checkpoint rate increases.

One performance variable mentioned earlier that is not listed in Table 4.4 is the coverage
of rollback recovery, which is the probability of successful recovery without executing the
restart process. The coverage of rollback variable can be calculated by first calculating the

probability of restart when a recovery is attempted, which is derived as follow:

__the 4t of restarts altempted
the # of fault occurvences

Plrestart]

_ thetime spent in doing restart [the expected time of each restart
~ the time spent in normal state/the expected time of fault interarrival

1
Arestart

(1 = rollback — 7’esta7’t)/%

restart/

_ restart X Mestart
~ (1 — rollback — restart) x A’

where restart and rollback are the performance variables, and A, 10 and A are the rate

of activity restart and fault in the SAN model. The expected time of each restart process

L and %, respectively,

and the expected time between two occurrences of a fault are 5 — %,
restar

because both processes are exponentially distributed with their corresponding rates Avestart

54

and A. The coverage of rollback recovery, which is the probability of no restart during
recovery, can be calculated as 1.0 - P[restart].

In the second model, the fault model has two modes, each of which has its own fault
rate. To calculate the probability of restart of the second model, the following equation is

used:

restart X Apestart

Plrestart] =
[restart] (1~ rollback — restart) x ((A; x model) 4 (Ay x mode?2)),

where Ay and Ay are the fault rate of the first and second fault mode, and model and
mode2 are performance variables that represent the fraction of time the system is in the
first and second fault mode, respectively. The derivation of this equation is very similar to
the previous equation, except the inter-arrival fault rate (A) becomes the combination of
the two inter-arrival fault rates from the two fault modes, which is A; x model + Ay x mode2.

UltraSAN offers two methods to solve the performance variables. The first solution
is called analytical solution. This solution requires UltraSAN to generate a reduced base
model (Markov reward model)[29] which represents the behavior of the SAN model and
supports the specified performance variables. Because of this requirement an analytical
solution requires a lot of memory space. The advantage of this solution, however, is that
it gives an exact answer for each performance variable defined. Another solution is called
the simulation solution. This solution does not require a lot of memory. However, it gives
only an estimation of the performance variables instead of exact answers. FEach result from
the simulation solution is, therefore, associated with a confidence interval. The confidence
interval of all simulation runs in this thesis is set to 95%, which means for all simulation

runs we can say with 95% confidence that the answers are correct within the specified

(w2
(24

range. Solution by simulation also tends to take a longer time compared to that for the
analytical solution. In this work we use both the analytical and simulation solutions. The
analytical solution is used to solve the performance variables of the multiprocessor model,
except when the number of stable storages is greater than two, in which case the simulation
solution is used. The simulation solution is also used to solve the performance variables of

the adaptive model.

CHAPTER 5

RESULTS

This chapter presents the results that were obtained from the SAN models described in
the previous chapter. Theoretically, the models can be used to analyze the performance
of a two-processor system with any number of stable storages, but the state space and
execution time grow very rapidly as we increase the number of stable storages. The analysis
is therefore limited by the memory constraint of the computer used to do the evaluation.
As mentioned earlier, for the analytical solution of the multiprocessor model the number of
stable storages is limited to two. Solution by simulation is used for the model with stable
storages larger than two since the state space size increases rapidly when larger stable
storages are considered.

This chapter is divided into two sections. The first section presents the results of the
multiprocessor model, which gives the optimum checkpointing rates of the system for fixed
fault arrival rates. The section also discusses some system variables that affect the value
of the optimum checkpoint rate. The results of varying these variables are shown. The
resulting optimum checkpoint rates of this model are then used in the second model to
initialize the optimum checkpoint rate table, which is used in the execution of the adaptive
checkpointing algorithm.

The second section presents the forward progress and coverage of multistep rollback

measures of the system with fixed and adaptive checkpointing schemes. Comparison studies

|
-~

between the two schemes are given. The results in the second section are generated by the

UltraSA N simulation solution, called steady state simulator.

5.1 RESULTS OF THE MULTIPROCESSOR MODEL

This section presents the analytical and simulation results of the performance of the
two-processor system. The parameters for all sets of runs in this section, unless otherwise

stated, are as follows:
o Stable storage = 2.
¢ Processing rate (A,0.) = 10.
o Fault rate (A) = 0.001 - 0.030.
o Checkpoint rate (Acprpoin) = 0.2 - 2.0.
o Message transmission rate (Anes,) = 1.0 for each processor.

o Restart rate (Aessare) = 1/100 X Ay, (L. the cost of restart is 100 x processing

unit).

o State saving rate = 10 X A,.,. (i.e. the cost of checkpointing is 1/10 x processing

unit).

The processing rate of each processor is the same (A,,..). As mentioned earlier, this rate
(the processing unit) is the “basic unit” of the other rates.
As mentioned earlier, the optimum checkpoint rate exists because there are trade offs

concerning the checkpoint rates. The recovery cost decreases as checkpoint rate is increased,

0.0250 — -~ ~ -~ -~ ~- s 0.048 [~ - ‘
8 F l ; , ‘ CECTE
20.0225 ! A /s faullrale=0.001000- - - g 200441 -0 “
= ! ! o <>“ faullrate=0.003000 L2 . ‘ :
el g i i A 4 faultr 05000 g i : ¢
b 3 : ! N 0.040F - - - - - o A A TaUllrate=0.001000
= : ! K oromn X fauiltrale=0.007000 3 i :)
0. — e . RO ot g S s & - &y faultrate=0,003000
qx:) 0200 : z)tg x {aulllalefﬁ‘.DOSOOO : : g i M F faultialo=0,005000 |
& : | | | ; ' . S 0,036 f- - - K e Y faultialo=0,007000. - . -
© : | ; . ; . e ¥ ;. faultralo=0,009000
g 00175 - - - - e - . © Lo T : !
= ; ; ; © §0.032]- - s - s B
1o} i i : : =
. — — — R P R S i hol J
5 00150 X ‘ ‘ = 00281 - - 4
E 00125~ -~ - Ty R 0024 -~~~
: X o : ; -
N 3 ! ‘ |
0.0100 |- - . - iy ;. 0.020
g T 0.016 b .
X . - : - ; %
o) | . }
% Y7 R S S .
0.0050 [— -~ - P - - i i >
X * . 0.008} e g
X A 1 -
00025 = - + Y V7Y R S G g
¢ 7 ¢ & ¢ i
- /’\ " 4 e S R T s A i "i\ g
0.0000 — . . 0.000
0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 0.20 1.60 1.80 2.00

chkpoint rate

chkpoint rate

Figure 5.1: Graph of rollback costs (left) and restart costs (right)

(Stable storage = 2, Anesy = 1.0, Avesiare = 0.1)

while state saving cost increases as checkpoint rate is increased. Figure 5.1 shows the graphs

of the recovery costs as checkpoint rate is varied. The recovery costs consist of the rollback

cost and the restart cost. Each of these costs is shown as a separate graph in Figure 5.1.

Figure 5.2 shows the state saving cost as checkpoint rate is varied. As explained earlier,

these costs represent the fraction of time the system is doing the associated process. For

example, restart cost represents the fraction of time the system is doing restart process.

o 0.020 (-
g | J
< : : : ; : ,)
© 0018} - - . 5! faullrate=0.001000- - — - - i
g - /<>" faultrate=0/003000 * : ‘ : & !
il 4 faultiale=0.005000 ; ' : 2 :
< X X' faultrate=0.007000 ! §
O 0,076 1~ = = =773 faulliale=0 009000 ~ = < 7 h = o e = & S o
k= ! i ! ‘ i * '
i} i)
Y 2§ I U S
o ! k ' &
E : : ‘
B0012| e
< : i
2 s : B :
S o010l - - DI)

0.008f— - - =~~~ - - -

\ Coe : ; ; ‘ :
0.004)~ - - g oo .
i 1 | ['
0.002 k£ - ; S
0.000 l] | | |]] |]

020 040 060 080 100 120 140 160 1.80 2.00
chkpoint rate

Figure 5.2: Graph of state saving costs vs. checkpoint rate
(Stable storage = 2, Apesg = 1.0, Arestare = 0.1)

PR il i - ; -
© : i i :
; ; '
0 : H
© i
@ ;
o 0,99 A i @ | :
< ™ A § '
Q. ; e . :
D e e, :
g) Fel :
A i
5 0.98 ST g ;
2 & & ‘
+ e <
' 1
0.97 : S
A
. .
[l o il e - I
: i f
0.95 = -« = = b b A /) faukrale=0.081000- — — < - = - - B oo o o i
E ! & & faukale=0.003000 ¢ i :
+ e fauhrale=0.005000 i
X X faukrale=0.007000 i
4 : # faulrale=0.009000 :
004~ F e !
L R e e - AT !
I ;
0.02 |] | I I I I I |

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
chkpoint rate

Figure 5.3: Graph of forward progress vs. checkpoint rate
(Stable storage = 2, Amesg = 1.0, Apestare = 0.1)

60

The trade offs on varying the checkpoint rate described above imply the existence of
an optimum checkpoint rate, which is the checkpoint rate at which the system achieves
the most rapid forward progress. The graph of the forward progress as checkpoint rate is
varied is shown in Figure 5.3. The graph shows the curves of forward progress for different
fault rates. The optimum checkpoint rate for different fault rates is represented by the
top point of each curve. To the left of the highest point the curve goes down as it suffers
more and more restart cost. To the right of the highest point the curve goes down as it
suffers more and more state saving cost. Since the restart cost is much larger than the state
saving cost, the slope to the left of the highest point is steeper compared to the slope to its
right. Also notice that curves corresponding to the lower fault rates have steeper slopes.
This is because as the fault rate is reduced, the cost of state saving is increased as more
checkpoints are wasted.

Another interesting point from the forward progress graph above is the fact that the
optimum checkpoint rate, especially for larger fault rates, is close to the message rate
(optimum checkpoint rate of A = 0.007 is 1.5; the message transmission rate is A,eqq X 2
(# of processor) = 2.0). This is rather suspicious, because it means a checkpoint should
be inserted about every time a message is sent. Further study showed that this behavior
is caused by the low coverage of rollback recovery (i.e. high probability of restart) of the
system. The coverage of rollback recovery of the above set of runs is 0.5373. The probability
of restart should be kept low (less than 0.05 [24]). There are several reasons that might
cause a low coverage. The first reason is the small number of stable storages in the model.
In real systems the number of stable storages is very large, therefore the probability of

restart caused by the checkpoint being exhausted is very small. The second reason is that

61

there is no garbage collection implemented in our model. Wang et al. [33] proved that the
number of useful checkpoint is limited given that the garbage collection to discard garbage
checkpoints is implemented. Our model does not consider garbage collection but has a
limited number of stable storages.

To further study the relationship of the coverage of rollback recovery to the value of the
optimum checkpoint rate, we shall vary the system parameters that might affect its coverage
measure and analyze the resulting optimum checkpoint rates. Two system parameters that
have a direct effect on the measure of the coverage are: 1) the number of stable storages
in each processor, and 2) the frequency of message transmission (Anesq). The number
of stable storages obviously determines the probability of restart during recovery. The
more the stable storage the processor has, the more checkpoints it can hold, so it is less
likely that checkpoints are exhausted during the recovery process. The rate of message
transmission affects the coverage since each message transmission adds the possibility of
rollback propagation. When the rate of message transmission is high, the probability of
rollback propagation during the recovery process is increased, leading to an increase in the
probability of restart.

The forward progress graphs resulting from varying the two parameters are presented
below. We first study the system with varying number of stable storages, and then study
the system with varying message transmission rate. In both cases the resulting optimum
checkpoint rates are analyzed. After these studies, we also look at the effects of varying
restart cost and state saving cost on the optimum checkpoint rates.

Varying the number of stable storages: Figure 5.4 shows the graph of the cover-

age measure as the number of stable storages is varied. The calculation of the coverage

62

=
=]
o

coverage
o
o
Y

0.92
0.88
0.84
0.80
0.76
0.72
0.68
0.64‘
0.60

0.56

0.52
2.0

stable storages

Figure 5.4: Graph of coverage vs. stable storages

(/\mesg - 10* /\1'estart = 0].)

of rollback recovery is as explained in the previous chapter. This graph is the result of
the simulation solution except for the stable storage equals to two, which is calculated
analytically. The bar at each point, as discussed in the previous chapter, represents the
95% confidence interval. The largest number of stable storages in this run is 6 because
the simulation time becomes very long as we increase the number of the stable storages to
7. The graph shows that the coverage of rollback recovery increases very rapidly as the
number of stable storages increases.

To analyze the resulting optimum checkpoint rate as the number of stable storages is

varied, we compare the resulting forward progress graphs of system with 2 and 6 stable

63

o 0.980 — ® 0.97
> 8
2 2
£ 0975 o 0.96
o ' g
(=8 Q.
° © 0.95
@ 0.970 5]
z g
£ S
= 094
0.965
0.93
0.960
0.92
0.955
0.91
0.950}— /- = i ;"-,———--[\viaullrale‘so.ml)ooo - [, : '
& ——— ¢ faullrate=0.015000 f : 0.90F - - , - e £\ -latiltrate=0.010000
e - faullrate=0.020000 : i & wremeee & latiltrale£0.015000
X, s X faullrate=0.025000 i ‘ s +——4 faultrale=0.020000
S S T R § : X=X lauilrate=0.025000
0.945 H [‘ 3 0.894-/----- RS ; . e — e — = =
0.940 | i | | | a8 | | | i |
0.50 1.00 1.50 2.00 2.50 3.00 0.50 1.00 1.50 2.00 2.50 3.00
chkpoint rate chkpoint rate

Figure 5.5: Graph of forward progress of system

with 6 (left) and 2 (right) stable storages (Amesy = 1.0, Ayesare = 0.1)

storages. Figure 5.5 shows these two graphs. The graph on the left is the forward progress
graph of the system with 6 stable storages, and the one on the right is that of the system
with 2 stable storages. The forward progress graph of the system with 2 stable storages is
different than the one shown in Figure 5.3 because the fault rates are different. The graph
in Figure 5.3 varies the fault rates from 0.001 to 0.009, while the right graph in Figure 5.5
varies the fault rates from 0.010 to 0.025.

By comparing the two graphs in Figure 5.5 we observe the following:
1. Forward progress increases as more stable storage is added.

2. The optimal checkpoint rate decreases as stable storages increases.

64

o 0.994 V- - --- - Semamemn g 099 - - - . .-
© i ! § f f :
@ 0.992 ; I ! . 80992 - - 4 A . ,
1} i : ! [. ; i G i ;
<) : : : 810990 . i ! i A
5 0.990 st R i - § I | b A
° ¢ ¢ (o] i O O b i 4
B A . . . 50988 ST p
2 0.988 — 5 - 2 : & <
K i A] i
; : o L : . 0.986 |~ = 4
0.986— - - - O y ;
A - E N o, g ‘ : ; & . N
: : A ! i ¢ : 0984~~~ v - - % T
0.984 | -~ T . _ s e TS GRS H $ ¢ o Ed
T SR & % 7 VL ; : . . .
i ; i (AT . > ; 0.982 [~ — 7 -t - g :
[- X + ‘O . S B3
0.982 |=/— 4 -~ - 3 T I Sk L
- ix & $o KL o 0980~ o ¥ -
: ry i RS i o U i I
0.980 f ~ g =S . X, o ‘
i ' .;, : 0.978 |— i
0.978 | I J G : i i
S i ; : : 0976 |~ ¢ Sm e e — e el 2y BEdMSg=0.000000
R A\ sendmsg=0.000000 B -~ O sendmsg=0.020000
e O sendmsg=0.020000 S + sendmsg=0.040000 ;
0.976 | - 4 ‘Sefdriisg=0.040000 " 7 ~ 0.974 - <X 5endmsg=0.060000 — 1
i X sendmsg=0.060000 . ¥ sendmsg=0.0B0000
& : sendmsg=0.080000 i h ; (> sendmsg=0.100000
0974~ -~ = - - Oy © 5endmsg=0{00000 — — - = — =y - - oo e o 3 0972« e e
- : i i [i : ; t 5 ' i : i :
0.972 1 I I l | |] | | geml i r | | l I a |
0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
chkpoint rate chkpoint rate

Figure 5.6: Graphs of forward progress for varying message rate

SS = 2 (left) and SS = 3 (right) (A = 0.003, A\esare = 0.1)

The first observation is obvious and is clearly shown by the graph. For example, for fault
rate equals 0.010, the maximum forward progress of the system with 6 stable storages is
0.97754-0.0007 , and the maximum forward progress of the system with 2 stable storages is
0.9644. The second observation shows that the change in the number of stable storages does
affect the optimum checkpoint rate as discussed earlier. The optimum checkpoint rates of
the system with 6 stable storages are lower than those of the system with 2 stable storages.
For example, for fault rate equals 0.020, the optimum checkpoint rate of the system with
6 stable storages, as shown by the graph, is between 1.50 and 2.00, and that of the system

with 2 stable storages is 2.50.

Varying the message transmission rate: Figure 5.6 shows the forward progress
graphs for varying message rate. The graph on the left is for the system with 2 stable
storages and the one on the right is for the system with 3 stable storages. In both graphs
the message transmission rate is varied from 0.00 to 0.10. This range is not the probability
value of doing message transmission (Fp,.,,), it is the rate of message transmission, which

“no

is calculated as Ppesy X the processing unit (Ay...). A message rate of 0.00 means
message transmission has ever occurred.” Both graphs show that the optimum checkpoint
rates are increased as the message transmission rate is increased. This makes sense because
by increasing the message transmission rate, the probability of restart is increased, so
the forward progress is reduced. To keep the forward progress maximized the optimum
checkpoint rate should, therefore, be increased. In the left graph, where stable storage is
set to 2, however, the changes in the optimum checkpoint rate are unnoticeable for the
curves whose message rates are above 0.05. This is because the probability of restart is
getting so high that increasing the checkpoint rate does not make the forward progress any
better. By increasing the stable storage to three, as in the right graph, the probability of

restart is reduced and the optimum checkpoint rate keeps increases for all curves as message

rate increases.

66

o 0.986— -
[

s 0.984 —
W .

L pggaf— - At
o

5 0.980 - .~

° z
© 0.978 | -

st

0.976 | = e

LoAL

o072~ -4

0.970 =~ = = - - -

0.968 }— - - .

0966 — — ©= = = o e e . B I I
¥ % restant=0.050000 .
feslan=0.100000
rastart=0.150000
 reslan=0.200000

0.964}— ~ < ol

0.962}— ~ - 4~ - -

0.960 |

0.958 F- -~ -

2

0.956f— - T

0.954 | J | | |] | | |
020 040 060 080 100 120 140 160 180 2.00
chkpoint rate

Figure 5.7: Opt. checkpoint graph for varying restart costs (A = 0.003,A,,.5, = 1.0)

)
o
@
N
|
I
g
|
I
|
|

ol -
o] i |
© 0.984 |~ ~ - - 1 - L ey y - -
o : : ; : ..
19) ‘ ..
a '?' S . X %
v 0.982 : Bl i =T -y
Y : ' . i
g PRy ! +
(=] : i ' +
= 0.980 _ : - :
: , o 9
1 | i
0.978 . -
0.976 : - g —— - -
2 o SO
0972 - — = — — 2 A slalesaving=TE000000 1 — — — 4 - s o —Um = = e
[e] & statesaving=100.000000 i f |
B SRR -+ statesaving=125.000000 | L
' Ko X statesaving=150.000000 ! ' : .
0970 - - = - — - -+~ S ,,,,,,,A,,;,.", T
. ; ‘ : :] X)
“T0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

chkpoint rate

Figure 5.8: Opt. checkpoint graph for varying state saving costs (A = 0.003,Apesp = 1.0)

67

Varying the restart cost: Iven though the restart cost does not have any effect on
the probability of restart, it is interesting to study its effect on the optimum checkpoint
rates. Figure 5.7 shows the forward progress graph as the restart cost is varied. In this set
of runs the fault rate (A) is set to 0.003 and the restart rate is varied from 0.05 to 0.20,
which means varying restart costs from 200 to 50 times the processing unit (A, = 10). As
the restart cost is increased, the resulting forward progress is obviously decreased. Lower
forward progress is caused not only by higher restart cost but also by the additional state
saving required to maintain the optimum performance. As the cost of restart is increased,
the system tries harder to avoid restart by adding more checkpoints, and thus the optimum
checkpoint rate is increased.

Varying the state saving cost: Another variable affects the optimum checkpoint
rate is the cost of state saving. This is shown by Figure 5.8, on which state saving cost
is varied from ﬁ to ~7—Ig>< the processing unit time. As state saving cost is increased,
both the optimum checkpoint rate and the forward progress are decreased. The optimum
checkpoint rate is decreased because more overhead cost is obviously involved for each
checkpoint insertion. The forward progress is decreased mainly because the system suffers
more restart cost as checkpoint rate is decreased.

As the summary of this sectioﬁ, below are the conclusions of the studies we have done
in this section:

1. The optimum checkpoint rates of the multiprocessor system for fixed fault rates are

calculated. These rates are obtained by varying the system checkpoint rate and ana-

lyzing the resulting forward progress graphs. An example of the optimum checkpoint

68

Fault Rate | Opt. Chkpts. Rate
0.001 0.4
0.003 0.8
0.005 1.2
0.007 1.4
0.009 1.8

Table 5.1: The optimum checkpoint rate table of system with SS=2

rate table constructed from the resulting forward progress graph, in this case the

forward progress graph in Figure 5.3, is shown in Table 5.1.

2. The optimum checkpoint rates are sensitive to the following system parameters:

The number of stable storages in each processor: the optimum checkpoint rate

decreases as the number of stable storages increases.

The message transmission rate: the optimum checkpoint rate decreases as the

message transmission rate decreases.

The restart cost: the optimum checkpoint rate decreases as the restart cost

decreases.

The state saving cost: the optimum checkpoint rate decreases as the state saving

cost increases.

3. The optimum checkpoint rates are close to the message transmission rate because the
coverage of rollback recovery of the system is very low. The optimum checkpoint rate
decreases (i.e. moves away from the message transmission rate) as the coverage of
rollback recovery, which is sensitive to the number of stable storages and the message

transmission rate, is increased.

69

5.2 RESULTS OF THE ADAPTIVE AND FIXED MODEL

This section presents the comparisons between the adaptive and the fixed checkpointing
scheme. The first part of this section highlights the superiority of the adaptive checkpointing
scheme over the fixed checkpointing scheme. Later in the section some comparisons between
both schemes for different system parameter settings are discussed. Since the performance
(forward progress) of the fixed checkpointing scheme changes as the checkpoint rate is
varied, the comparisons throughout this section use the peak performance of the fixed
checkpointing scheme.

Unless otherwise stated, below are the parameter settings of the adaptive and fixed

model used in the sets of runs in this section:
e Stable storages = 2.
o Processing rate (A,,,.) = 10.
e Pault rates: Ay = 0.003 & A\, = 0.030.
o Checkpoint rate of the fixed scheme (Aipppoint) = 0.2 - 2.5.
o Message transmission rate (Anesy) = 0.5 for each processor.

o Restart rate (Aesiart) = 1/100 X Ay (i€, the cost of restart is 100 x processing

unit).

e State saving rate = 10 X Ay (le. the cost of checkpointing is 1/10 X processing

unit).

70

5
@
@
N
i
|
|
|
i
|
|
1
|

i3
©
x
N

|

|

|

|

forward progress rate
<)
©w
x
(=1
|

0978 |— — -

0.976 |—

0.974 |- - - /-~

0.972F — f - —1— - - - —l———AKed— - = - = o ey
: : adaptive

0.970 /- = = < = e =
|

0.968 L | | | l l] l
0.30 0.60 0.90 1.20 1.50 1.80 2.10 240
fixed chkpoint rate

Figure 5.9: Forward progress of Fixed and Adaptive scheme

(Amesy = 0.5, Ay = 0.003, Ay = 0.03, $S = 2)

As explained earlier, the processing unit represents the rate of processing a task. The

i —
the processing unit

expected time of processing a single task is, therefore, represented by

X L = 0.1. If we assume an “hour” to be our unit time, then the expected time to process
proc

a task is 0.1 hours (6 minutes, which is a typical time to process a task [27]). By using
the same derivation, we have the expected inter-arrival time of fault from the first fault
mode equals % = 5055 = 333 hours. This expected inter-arrival time of fault (333 hours)
is taken from an empirical study done by Siewiorek and Swarz [18]. In their study, the

distribution of transient faults is modeled as exponential distribution with rate ranging

from 0.0018 (mean = 556 hours) to 0.0065 (mean = 154 hours), and they measured the

71

average inter-arrival time to be about 350 hours. The data was collected for about 15000
hours (1.7 years). The second rate of fault inter-arrival in our model is set 10 times faster
than the first rate. Meyer and Wei [30] derived a formula for MTTF (Mean Time To
Failure) from system workload and showed that a system fault rate can easily get 10 times
faster as workload changes.

The forward progress of the adaptive and fixed model: Figure 5.9 shows the
performance (forward progress) of the system with the adaptive and fixed checkpointing
scheme. The curve shows the performance of fixed checkpointing schemes for different
checkpoint rates. It is clear from the graph that the adaptive checkpointing scheme out-
performs the best performance of the fixed checkpointing scheme. The forward progress of
the system with the adaptive scheme is 0.9823 £ 0.0003, and the highest forward progress
of the system with the fixed scheme is 0.9799 + 0.0004.

Another way to compare the performance between the two checkpointing schemes is by
comparing the number of stable storages needed for both systems to have equal forward
progress. Figure 5.10 shows the forward progress curves of the system with the fixed
checkpointing scheme with the number of stable storages equals to 2 and 3. The peak
forward progress of the curve with 3 stable storages is close to the forward progress of the
system with the adaptive checkpointing and 2 stable storages. This graph tells us that for
the system with the fixed checkpointing scheme to achieve equal forward progress as the
system with the adaptive checkpointing scheme, it needs to increase its number of stable
storages. This shows a significant advantage of an adaptive checkpointing scheme since

adding a unit of stable storage means adding more hardware cost to the system.

72

o

©

B
1

)
3
o

=)
©
N

forward progress rate

0.971

0.970

0.969

0.968 - ~ /- - S N 0500 S

O——0O fxedw ssu=3
; —— adaptive w/ ssu=2
0.967 [/~ — -~ - ! :
: ; : i ; I :
0.966 L { I i | L I f
0.60 0.60 1.00 1.20 1.40 1.60 1.0 2.00

fixed chkpoint rate

Figure 5.10: Forward progress of Fixed and Adaptive scheme

(Amesg = 0.5, Ay = 0.003, A, = 0.03)

Varying the message transmission rate: Figure 5.11 shows the graphs of the system
with the two checkpointing schemes with 0.5 message transmission rate (left graph) and
with 1.5 message transmission rate (right graph). The left graph is the same as the one in
Figure 5.9. The right graph shows similar graph for system with different message trans-
mission rate. In this graph, the forward progress of the system with the adaptive scheme is
0.9742 + 0.0005, and the highest forward progress of the system with the fixed scheme is
0.9710 & 0.0004. In both graphs the system with the adaptive checkpointing scheme per-
forms better than the system with the fixed checkpointing scheme. An interesting difference
between the two figures, however, is the distance between the highest forward progress of
the fixed scheme and the forward progress of the adaptive scheme. When message trans-

mission rate equals 1.5, the distance is 0.0032 4 0.0009; when message transmission rate

73

o 0.984 ~ e e r--- s @ 0976 < —mm e
T ' ; T : :
2 1 | | | | | | 4 | | | | | |
go9ezf— -l b I gagu_,,,,,,l,,,,,,,,, T T]] |
© . X . : <} : : : .
& | i a
°] |
@ 0.980 [~ © 0972 <~ - - -
: g :
o = !
.~ hat i
0.978 -~ 0.970 — ~ - ~ -~
)
0.976 |- ogs8l - -
0.974 - 0.966 1~
: X) . .
0.972 = = [= =i= = = = ey fred = - [- 0964 - of- A, -fxed !
' } e adaplive 5 i : s adaplive :
i I 1 ‘
L e e 1 0962/ - - :
| : ' |
) : : | ; | : .
0.968 L [i i i i I | o0 I | | | | | J
0.30 0.60 0.90 1.20 1.50 1.80 2.10 2.40 0.30 0.60 0.90 1.20 1.50 1.80 2.10 2.40
fixed chkpoint rate fixed chkpoint rate

Figure 5.11: Forward progress graphs with different message rate

(Left: Apesy = 0.5, Right: Ames, = 1.5) (A = 0.003, Ay = 0.03, SS = 2)

equals 0.5, the distance is 0.0020 £ 0.0007. This is because as message transmission rate
decreases, the probability of rollback propagation decreases, and thus adaptive checkpoint-
ing scheme becomes less significant. If message transmission rate is very low (close to 0.0),
the optimal performance of fixed scheme will be very close to the performance of adapt-
ive scheme. We can, therefore, conclude that the performance of adaptive checkpointing
scheme is much better compared to the fixed checkpointing scheme in systems with high
message transmission rate.

Varying the number of stable storages: Figure 5.12 shows the graphs of the sys-
tem with 2 and 6 stable storages. In both graphs the message transmission rate is 1.5. In

the left graph (SS = 2), the forward progress of the system with the adaptive scheme is

74

o 0.976 - @ 0.986 — - - -
© ; ® , . .
i |] | | | } I |
2 I [| I]] | ? p.085 = I T T 1 [1 —T]
50 l | 1 | | & : :
g 2 :
8 ; ' G984
© °
§ 0972 &
.z
5 . 50983
0.970 no82
0.958 0.981 - -
0980f— - - - ------ - b ;
0.966 ‘ ‘
0.979 o ndapliven e
! : : : (B e () Tied ¢
0.964{— - - N :
i adaplive i
; ‘ 09781 « < - -
0.962 |- ! X : s
977 i—
o960 L I I | i L ! | o976 | | I i | ! L |
0.3 0.60 0.90 1.20 1.50 1.80 2.10 2.40 0.40 060 080 100 120 140 160 180 2.00

fixed chkpoint rate

Figure 5.12: Forward progress graphs (Left: SS = 2, Right: SS = 6)

(Amesg = 05, /\1 = 0003, AZ = 003)

fixed chkpoint rate

0.9742 £ 0.0005, and the highest forward progress of the system with the fixed scheme is

0.9710 £ 0.0004. The difference between the two forward progress is 0.0032 £ 0.0009. In

the right graph (SS = 6), the forward progress of the system with the adaptive scheme is

0.9852 £+ 0.0002, and the highest forward progress of the system with the fixed scheme is

0.9839 £ 0.0002. The difference between the two forward progress is 0.0013 £ 0.0004. By

comparing the performance difference between the two methods when SS = 2 and when

SS = 6, we notice that the level of superiority of the adaptive scheme is lower when the

number of stable storages is high, and it is higher when the number of stable storages is

low. As the number of stable storages is increased, the probability of restart is decreased,

and thus the significance of having adaptive checkpointing is decreased. This is also showed

o
©
@
-3

0.984

0.982

0.980

forward progress rate

0.978

0.976

0.974

0.972

75

— . Adaptive Che;:kpointing— -
- = Fixed Checkpointing

0.970
2

5 6
number of stable storages

Figure 5.13: Forward progress of fixed & adaptive alg. with varying stable storages

(Amesg = 0.5, Ay = 0.003, Ay = 0.03)

in Figure 5.13, which shows the forward progress of both the fixed and the adaptive check-

pointing algorithm when the number of stable storages is varied. If the number of stable

storages in each module is unlimited, the probability of restart is zero; the performance of

the fixed scheme would be very close to that of the adaptive scheme. From these exper-

iments we learn that

the adaptive checkpointing scheme performs much better than the

fixed checkpointing scheme for the systems with small number of stable storages.

To summarize this

section, here are the conclusions we can draw on the performance of

the adaptive checkpointing scheme:

1. In all cases the

performance of the adaptive checkpointing scheme of the systems

with “Markov-modulated fault process” is better than that of the fixed checkpointing

scheme.

76

2. The level of superiority of the adaptive scheme depends on the following factors:
e The message transmission rate: the adaptive scheme performs much better under
a high message transmission rate.

e The number of stable storages: the adaptive scheme performs much better under

a low number of stable storages.

CHAPTER 6

CONCLUSIONS

In this thesis the SAN models to determine the optimum checkpoint rate of a two-
processor system and to evaluate the performance of a system with adaptive checkpointing
algorithm have been presented. By defining the model at the SAN level, rather than the
state level, we have been able to build a much more complex model than has previously
been done. As far as we know, no one has constructed a similar model to evaluate the
optimum checkpoint rate for an uncoordinated multiprocessor system.

Although the model incorporates only two processors, it enables us to study the trade off
between many system parameter values. These optimum rate values turn out to be sensitive
to some system parameters, namely state saving cost, restart cost, message transmission
rate of each processor and the number of stable storages in each processor.

Another advantage of this multiprocessor model is that it permits the evaluation of the
adaptive checkpointing scheme proposed in the third chapter. The adaptive scheme, which
adapts its checkpoint rate according to the current fault rate, requires a knowledge of the
optimum checkpoint rate for different fault arrival rates. This knowledge is obtainablg from
the multiprocessor model. The comparisons of systems with adaptive and fixed checkpoint-
ing scheme shows the significance of the adaptive algorithm; especially for a system with a

small number of stable storages and high message transmission rate.

78

Future research on this area should attempt to simplify the model in order to reduce the
state space without eliminating its capabilities. With this state space reduction the model
should be able to evaluate larger systems (i.e. more interacting processors and more state

space units).

Appendix A

DERIVATIONS OF THE FIRST, SECOND AND THIRD MOMENT

This appendix presents the derivations of the first, second and third moment (m,,m.,,

and m3) of a random variable X whose density is shown below:
f@)=pA e ® +(1—p) e 2"

Derivation of the first moment (m,)

my; = F[X]
= [e f(z)ba
=[CepN ef’\l Tt (l—p)lye 6
=p-fyeMTa+ (1 —p)- [[Te 26
= (—E e)+ (L=) (- e)
=p-(—limy_e ﬁe‘*l Lun f;) +(1=p)- (= lm,u_e Al—ze"\2 L /\L)

=p v t+(1-p-5

Derivation of the second moment (m,)

my = FE[X?]
- e ()i
= [7a% pAem™ T 4 2% (1= p)le 2 %6a

— 2]) . fooo T - €~>\1 @8y + 2(1 _p) . fooo T - 6_)‘2‘1"6[1;

= 2p~1-1— .foco e—)\l 176:[; +2(1 _]))3\1'2‘ . fooo 6_)‘3‘7}5@‘

=2p5; - (=M R) 201 = p)3; - (=570 15)

— QpL1 (= limy oo)\%e"\’ T /\il) +2(1 ~ p) o (= lime e Xl:e_’\” + ;\l:)

= 2p- AZ +2(1-p) -5

xaw|"‘

=2(p-3+1-p)35)

Derivation of the third moment (m;)

ms = E[X7]
= [2% f(z)da

= [0 2% phie™M T 4 a3 (1= p)hge 26

=3p- [y, a?-eMe +3(1—p) [T at e

= Ops - [e 6 + 6(1 —p)is - [y wem M6

- 6;_1)%f fooeMeba +6(1—p)is - [y e 6

l\)

2

= 6p5 (=3 R) + 601~ p)is - (—5e 7 [F)

= Gp— (= limy o 5o % 4 5) + 6(1 — p)3z - (= limy oo e 4)

81

Appendix B

TRICKS IN UltraSAN IMPLEMENTATIONS

This appendix describes some “tricks” in implementating the model using UltraSAN.
These tricks are needed to access some internal global variables in the model definitions.
Two tricks described in this appendix are: 1. to access the simulation time, and 2. to

declare some internal global definitions.

B.1 ACCESSING SIMULATION TIME

As mentioned earlier in the SAN model chapter, it is necessary to access the simulation
time to know the exact timing of fault arrivals. This timing is needed to execute the fault
rate estimation algorithm.

The global variable within the Ultra.SAN package that contains this information is called
currentTime. Each time an activity completes this global variable is updated to current
simulation time. When the output gate of the associated activity accesses this variable,
it still contains the exact time of activity completion. This variable can be accessed by
placing “extern timeValue currentTime” syntax on the top of gate definition. An example

of the use of currentTime global variable is in gate fault_event.

82

B.2 INTERNAL GLOBAL VARIABLES DEFINITIONS

In order to implement the adaptive algorithm in the SAN model, we have to define
some global variables that can be accessed by almost all gates in the model. These global
variables are different than the global variables defined in study editor. We shall refer to
these global variables as internal global variables to distinguish them from the other ones.

A header file containing all definitions of internal global variables was created, and was
placed in project_name/int directory. We called this file myglobal.h. Since we are using
steady state simulation for the solution method, the header file (myglobal.h) is included
inside S9im.c file, which is located in the same project_name/int directory. Because this
SSim.c file is recreated every time we do a save in composed model editor, the SSim.c file
has to be reedited to include the header file everytime composed model editor is done with
the save command. With this header file included in SSim.c, we can use these internal
global variables in each gate, both input gate and output gate. For example in fault_event
output gate, we can declare ”extern double LAMBDA 1”7 and use global variable LAMBDAT1

inside the gate.

83

Appendix C

PROJECT DOCUMENTATIONS

This appendix contains the documentations of the SAN models. These documentations
are generated by the UltraSAN software package. Every definitions of each model, starting
from the SAN model itself, the performance variable definitions, and the parameter settings,
are contained in the documentation.

The first section is the documentation of the multiprocessor model, the second section
is the documentation of the adaptive model, and the last section is the documentation of

the fixed model.

C.1 DOCUMENTATION OF THE MULTIPROCESSOR MODEL

stop_proci

b point [
start_testart

restart

chk2_event

StateSaveUnits

Figure C.1: Composed Model: Multiprocessor Model

Table C.1: Reward Variable Definitions for Project Multiprocessor Model

‘ Variable | Definition

forward progress

Rate rewards
Subnet = processor
Predicate:
MARK(rbpoint) == 0 && MARK(chkptsl) == 0
Function:
1

Impulse rewards
none

Simulator statistics
Estimate mean only
Confidence Level = 0.9§
Relative Confidence Interval = 0.10
Initial Transient = 1000
Batch Size = 10000
Variable type = Instant of Time
Start of Interval = 10.0
Length of Interval = 700.0

state savings

Rate rewards
Subnet = processor
Predicate:
MARK(chkptsl)
Function:
1

Impulse rewards
none

Simulator statistics
Estimate mean only
Confidence Level = 0.95
Relative Confidence Interval = .10
Initial Transient = 1000
Batch Size = 10000
Variable type = Instant of Time
Start of Interval = 10.0
Length of Interval = 100.0

Table C.2: Reward Variable Definitions for Project Multiprocessor Model

I Variable [Definition

error 7“600’1)67‘i71g

Subnet = processor
Predicate:

MARK(rb_point)
Function:

1

Impulse rewards
none

Simulator statistics
Estimate mean only
Confidence Level = 0.95
Relative Confidence Interval = 0.10
Initial Transient = 1000
Batch Size = 10000
Variable type = Instant of Time
Start of Interval = 710.0
Length of Interval = 100.0

restart

Rate rewards
Subnet = processor
Predicate:
MARK(rb_poinl) == MARK(StateSave Units)+1
Function:

1

Impulse rewards
none

Simulator statistics
Estimate mean only
Confidence Level = 0.95
Relative Confidence Interval = 0.10
Initial Transient = 1000
Batch Size = 10000
Variable type = Instant of Time
Start of Interval = 70.0
Length of Interval = 7100.0

Table C.3: Reward Variable Definitions for Project Multiprocessor Model

86

LVariable | Definition

rollback

Rate rewards
Subnet = processor
Predicate:
MARK(rb_point) && (MARK(rb-point) < MARK(StateSave Unils)+1)
Function:

1

Impulse rewards
none

Simulator statistics
Estimate mean only
Confidence Level = 0.95
Relative Confidence Interval = (.10
Initial Transient = 1000
Batch Size = 10000
Variable type = Instant of Time
Start of Interval = 10.0
Length of Interval = 100.0

Table C.4: Study Editor Range Definitions for Project Multiprocessor Model

l Study] Variable | Type | Range | Increment [Add./Mult. |

vary.chkcost

chkpoint double | [0.02, 0.2 0.02 Add.
faultrate double 0.003 - -
restart double 0.1 - -
sendmsg double 0.1 - -
ssu short 2 - -
statesaving | double [75, 150] 25 Add.
vary_chkpointing
chkpoint double | [0.05, 0.3] 0.05 Add.
faultrate double | [0.01, 0.03] 0.005 Add.
restart double 0.1 - -
sendmsg double 0.2 - -
ssu short 3 - -
statesaving | double 100 - -
vary._msgrate
chkpoint double | [0.01, 0.1] 0.02 Add.
faultrate double 0.003 - =
restart double 0.1 - -
sendmsg double [0, 0.1] 0.02 Add.
ssu short 3 - -
statesaving | double 100 - -
vary-restart
chkpoint double | [0.02, 0.2] 0.02 Add.
faultrate double 0.003 - I
restart double | [0.05, 0.2] 0.05 Add.
sendmsg double 0.1 - -
ssu short 2 - -
statesaving | double 100 - -
vary_ssu
chkpoing double (0.1, 0.5] 0.1 Add.
faultrate double | [0.003, 0.03] 10 Mult.
restart double 0.1 - -
sendmsg double 0.1 - -
ssu short [16, 28] 4 Add.

statesaving | double 100 -

Table C.5: Non-zero or Variable Initial Markings for SAN Model processor

I Place | Marking |
StateSaveUnits | GLOBAL_S(ssu)
lastchk 1

Table C.6: Activity Time Distributions for SAN Model processor

i Activity [Distribution | Parameter values
chki_event | exponential
rate | GLOBAL_D(statesaving)
chk2_event | exponential
rate | GLOBAL_D(statesaving)
Sfault exponential
rate | GLOBAL_D(faultrate)
mesg_event | instantaneous
processor] | exponential
rate I 10
processor? | exponential
rate | 10
restart exponential
rate | GLOBAL_D(restart)
rollback exponential
vate | 10 x GLOBAL_D(chkpoint)

Table C.7: Activity Case Probabilities for SAN Model processor

88

{Activity | Case | Probability
fault 1105
0.5
processor (1.0 — GLOBAL_D{chkpoini)) * (1.0 — GLOBAL_D(sendmsg))

(1.0 — GLOBAL_D(chkpoint)y * GLOBAL_D(sendmsg)

GLOBAL_D(chkpoint) x GLOBAL_D(sendmsg)

GLOBAL_D(chkpoint) x (1.0 — GLOBAL_D(sendmsg))

processor?

(1.0 — GLOBAL_D(chkpoint)) * (1.0 ~GLOBAL_D(sendmsg))

(1.0 — GLOBAL_D(chkpoint)) * GLOBAL_D(sendmsg)

GLOBAL.D(chkpoint) x GLOBAL_D(sendmsg)

B | QO DD = | Ol NS | O

GLOBAL_D(chkpoint) « (1.0 — GLOBAL_D(sendmsg))

C.2 DOCUMENTATION OF THE ADAPTIVE MODEL

op_procl

enable

setenable

J

sjart_recovery

recovery

start_restart
restarnt

doswitch faultmode

switchmode

Figure C.2: Composed Model: Adaptive Model

39

Table C.8: Input Gate Definitions for SAN Model processor

Gate] Definition
start.restart | Predicate
MARK(rb_point) == MARK(StateSaveUnits) + 1
Function
MARK(rb_point) = 0;
start_rollback | Predicate

MARK(rb_point) > 0 L& MARK(rb_point) <
(MARK(StateSaveUnils)+1)

Function

MARK(rb_point) — —;

stop_faull

Predicate

MARK(rb_point) == 0

Function
tdentity

stop_procl

Predicate
MARK(mesg) I= 1 && MARK(chkptsl) == 0 && MARK(rb_point) ==
0

90

Function
tdentity

stop_proc?

MARK(mesg) I= 2 && MARK(chkpts?) == 0 && MARK(rb_point) ==
0

Function
identity

Table C.9: Output Gate Definitions for SAN Model processor

| Gate |

Definition

fauli!

#Hdefine SSU 3
#define MAX(z,y) ((2) > () ? (v) - (v))

int RBI[SSU+2], RB2[SSUA4;
i oldRBI, newRBI;

it oldRB2, newRB2;

nt n;

wint codel, codel;

/* decode markings */

S — ———— — = — — */
codel = MARK(codel);
RBI[O) = —1;

for (n=1; n<=5SU+1; nt++) {
RBI[n] = codel % (int) pow(.0x(SSU+2), 1.0x(n+1)),
codel — = RBI[n];
RBI[n] = RBI[n] / pow(1.0x(5SU+2), 1.0%n);

code2 = MARK(code?),
RB2O) = ~1;
for (n=1; n<=5SU+1; nt++) {

RB2[n] = code2 % (int) pow(1.0¢(SSU+2), 1.0¢(n+1));

code? — = RBZ[n];
RB2[n] = RB2[n] / pow(1.0x(SSU+2), 1.0%n);

oldRB1 = newRBI = 1;
newRB2 = (RB2[1] > 0) ? RB2[1] : 0;
oldRB2 = —1;
while ((oldRB1 = newRBI) || (oldRB2 /= newRB2)) {
oldRBI = newRBI,
0oldRB2 = newRB2,
newRB2 = MAX(oldRB2, RBI[newRBI});
newRBI = MAX(oldRBI1, RBZnewRBE);

}
MARK(rb_point) = newRBI;

91

Table C.10: Qutput Gate Definitions for SAN Model processor

| Gate |

Definition

fault2

#define SSU 3
Hdefine MAX(5,9) ((5) > (5)) ? () (1)

int RB1[SSU+2], RB2[SSU+2);
int oldRB1, newRBI;

wmt oldRB2, newRB2,

mt ny

wmnt codel, code2;

/% decode markings x/

SR */
codel = MARK(codel);
RBI[O) = —1;

for (n=1; n<=SSU+1; n++) {
RBI1[n] = codel % (int) pow(L.0x(SSU+2), 1.0+(n+1)),
codel — = RBI[n];
RBi[n] = RBI[n] / pou(1.0x(SSU+2), 1.0xn);

1

code? = MARK(code?);

RBIO] = — 1,

for (n=1; n<=8SU+1; nt++) {
RB2[n] = code2 % (int) pow(1.0x(SSU+2), 1.0x(n+1));
code2 — = RBZ[n];
RB2[n} = RB2[n] / pow(1.0«(SSU+2), 1.0+n);

oldRBI = newRBI = I,
newRB2 = (RB2Z[1] > 0) ? RB2[1] : 0,
oldRB2 = —1;
while ((oldRBI '= newRBI) || (oldRB2 = newRB2)) {
oldRB1 = newRBI,
oldRB2 = newRB2;
newRB2 = MAX(oldRB2, RBI[newRBI));
newRBI = MAX(oldRBI, RB2newRBY);

}
MARK(rb_poinl) = newRB2;

92

Table C.11: Output Gate Definitions for SAN Model processor

l Gate] Definition

set_chkl | int SSU = MARK(StateSaveUnils);
mnt n;
it code;
MARK(codel) + = (SSU+2);
MARK(codel) = MARK(codel) % (int) pow(1.0x(SSUH2), 1.0x(SSU+2));
code = MARK(code2);
for (n=1; n<=8SU+1; nt++) {

if ((code % (ind) pow(1.0x(SSU+2), 1.0x(n+1))
>= (int) pow(L.0x(SSUA2), 1.0xn)) && (code % (int) pow(I.0x(SSU+2),
1.0¢(n+1)) < (SSU+1) * (int) pow(1.0x(SSU+2), 1.0xn)))
code + = (int) pow(1.0x(SSU+2), 1.0xn);

MARIK(code?) = code;
MARK(lastchk) = 1;
J*
printf("after chkl: codel1=%d,
code2=%d\n”, MARK(codel), MARK(code2));
*/

set_chk? | int SSU = MARK(StateSave Units);
it n;
it code;
MARK(code2) x = (SSU+2);
MARK(code2) = MARK(code2) % (ind) pow(1.0x(SSU+2), 1.0x(SSU+2));
code = MARK(codel);
for (n=1; n<=5SU+1; n++) {

if ((code % (inl) pow(1.0%(SSU+2), 1.0+(n+1))
>= (int) pow(1.0x(SSU+2), 1.0xn)) && (code % (ind) pow(1.0x(SSU2),
1.0x(n+1)) < (SSU+1) * (int) pow(1.0«(SSU+2
), 1.0%n)))
code + = (int) pow(1.0+(SSU+2), 1.0%n);

}
MARK(codel) = code;
MARK(lastchk) = 2;
/*
printf("after chk2: codel=%d,
code2=%d\n”, MARK(codel), MARK(code2));
*/

set-mesg | int SSU = MARK(StateSave Units);

if (MARK(lastchk) == 1) {
if (MARK(codel) % (int) pow(1.0¢(SSU+2), 2.0) == 0)
MARK(codel) + = SSU+2;

else {

93

Table C.12: Output Gate Definitions for SAN Model processor

Gate | Definition

if (MARK(code2) % (int) pow(1.0x(SSU+2), 2.0) == 0)
MARK(code2) + = SSU+2;

}
/*
prindf(after mesg: codel=%d,
code2=%d\n”,MARK(codel), MARK(code2));
*
/
t11 MARK(mesg) = I,
t12 MARK(mesg) = 1;
MARK(chkptsl) = 1;
t13 MARK(chkpisl) = 1;
t21 MARK(mesg) = 1;
122 MARK(mesg) = 1;
MARK(chkpls2) = 1;
93 | MARK(chkpis?) = 1;

94

Table C.13: Reward Variable Definitions for Project Adaptive Model

95

[Variable] Definition

forward progress

Rate rewards
Subnet = processors
Predicate:
MARK(chkptsl) == 0 && MARK(rb_point) == 0
Function:
1

Impulse rewards
none

Simulator statistics
Estimate mean only
Confidence Level = 0.95
Relative Confidence Interval = 0.10
Initial Transient = 400000
Batch Size = 400000
Variable type = Instant of Time
Start of Interval = 10.0
Length of Interval = 100.0

state savings

Rate rewards
Subnet = processors
Predicate:
MARK(chkpts])
1

Impulse rewards
none

Simulator statistics
Estimate mean only
Confidence Level = 0.95
Relative Confidence Interval = 0.10
Initial Transient = 400000
Batch Size = 400000
Variable type = Instant of Time
Start of Interval = 710.0
Length of Interval = 7100.0

Table C.14: Reward Variable Definitions for Project Adaptive Model

LVariable [Definition

restart

Rate rewards
Subnet = processors
Predicate:
MARK(rb_point) == MARK(StateSave Units) + 1
Function:
1

Impulse rewards
none

Simulator statistics
Estimate mean only
Confidence Level = 0.95
Relative Confidence Interval = 0.10
Initial Transient = 400000
Batch Size = 400000
Variable type = Instant of Time
Start of Interval = 10.0
Length of Interval = 100.0

prob in fault mode 1

Rate rewards
Subnet = processors
Predicate:
MARK(faultmode) ==
Function:
1

Impulse rewards
none

Simulator statistics
Estimate mean only
Confidence Level = 0.95
Relative Confidence Interval = 0.10
Initial Transient = 400000
Batch Size = 400000
Variable type = Instant of Time
Start of Interval = 10.0
Length of Interval = 100.0

Table C.15: Reward Variable Definitions for Project Adaptive Model

I Variable | Definition

prob incorrect faull—mode estimation

Rate rewards
Subnet = processors
Predicate:
MARK(faultmode) /= MARK(est_fmode)
Function:
1

Impulse rewards
none

Simulator statistics
Estimate mean only
Confidence Level = 0.95
Relative Confidence Interval = 0.10
Initial Transient = 400000
Batch Size = 400000
Variable type = Instant of Time
Start of Interval = 10.0
Length of Interval = 700.0

prob rollback

Rate rewards
Subnet = processors
Predicate:
MARK(rb_point) && (MARK(rb_point) < MARK(StateSaveUnits)-+1)
Function:

1

Impulse rewards
none

Simulator statistics
Estimate mean only
Confidence Level = 0.95
Relative Confidence Interval = 0.10
Initial Transient = 00000
Batch Size = 400000
Variable type = Instant of Time
Start of Interval = 10.0
Length of Interval = 700.0

Table C.16: Study Editor Set Definitions for Project Adaptive Model

I Study] Experiment | Variable | Type | Value]

single

expl

myLAMBDA1 | double 0.03
myLAMBDA2 | double | 0.003

myMU1 double | 0.0012
myMU?2 double | 0.00012
restart double 0.1
sendmsg double 0.15
ssu short 4

statesaving double 100

Table C.17: Non-zero or Variable Initial Markings for SAN Model processors

| Place | Marking |
StateSaveUnits | GLOBAL_S(ssu)
enable 1
enableAdapt 1
lastchk 1

Table C.18: Activity Time Distributions for SAN Model processors

99

l Activity ‘ Distribution | Parameter values
adapt exponential
rate | 0.1
chkl_event exponential
rate | GLOBAL_D(statesaving)
chk2_event exponential
rate | GLOBAL_D(statesaving)
fault exponential
rate | if (MARK(faultmode) ==0)
return (GLOBAL.D(myLAMBDAT));
else
return (GLOBAL_D(myLAMBDAZ));
mesg_event instantaneous
processorl exponential
rate | 10
processor? exponential
rate | 10
recovery exponential
rate | extern float aveCheckpoint;
return (10 % aveCheckpoinl);
restart exponential
rate | GLOBAL_D(restart)
setenable instantaneous
setenableAdapt | instantaneous
switchmode exponential
rate | if (MARK(faultmode) ==0)
return (GLOBAL_D(myMUI));
else
return (GLOBAL_D(myMU2));
whichproc nstantaneous

100

Table C.19: Activity Case Probabilities for SAN Model processors

LActivity l Case] Probability

processorl 1 | extern float chkptsTable[];
return ((1.0 - chkptsTablel MARK(esi_frate)]) = (1.0 -
GLOBAL_D(sendmsg)));
2 | extern float chkptsTable[],
return (1.0 — chkptsTablel MARK(est_frate)]) x GLOBAL.D(sendmsg));
3 | extern float chkptsTable]];
return (chkptsTablel MARK(est_frate)] * GLOBAL_D(sendmsyg));
4 | extern float chkptsTable]];
return ((chkptsTable{ MARK(est_frate)]) = (1.0 — GLOBAL_D(sendmsg)));
processor? 1 | extern float chkptsTablef],
return ((1.0 — chkptsTablef MARK(est frate)]) * (1.0 —
GLOBAL_D(sendmsg)));
2 | extern float chkptsTablel];
return (1.0 — chkptsTablel MARK(est_frate)]) * GLOBAL_D(sendmsg));
3 | extern float chkpisTable[];
return (chkptsTable| MARK(est_frate)] x GLOBAL_D(sendmsg));
4 | extern floal chkpisTable[];
return (chkptsTablel MARK(est frate)] * (1.0 — GLOBAL_D(sendmsy))),
whichproc 1105

0.5

101

Table C.20: Input Gate Definitions for SAN Model processors

I Gate [Definition

enableadapt Predicate
MARK(rb_point) ==0 && MARK(enableAdapt) ==0 &&
MARK(fdetected) ==0 && MARK(enable) >0 &&
MARK(chkptsl) ==0 && MARK(chkpts?) ==0

Function

extern time Value enableAdaptTime;
extern time Value currentTime;
enableAdaptTime = currentTime;

enablefault Predicate

MARK(rb_point) ==0 && MARK(enable) == &&

MARK(fdetected) ==0 &&
MARK(chkptsl) ==0 &8 MARK(chkpts?) ==0

Function
extern time Value enableTime;
extern time Value currentTime;

enableTime = currentTime;

starti_recovery

Predicate
MARK(rb.point) > 0 && MARK(rb_point) <
(MARK(StateSave Units)+ 1)

Function

MARK(rb_point) — —;

start_restart

Predicate
MARK(rb_point) == MARK(StateSaveUnits) + 1

Function

MARK(rb_point) = 0;

stop-procl

Predicate
MARK(mesg) != 1 && MARK(chkptsl) == 0 && MARK(rb_point) ==
0

Function
extern float chkptsTable[],
extern float aveCheckpoint,
static float avecounter = 0.0,

aveCheckpoint = (avecounter/(avecounter+1.0))x aveCheckpoint -+
(1.0/(avecounter+1.0)) = chkptsTable[MARIK(est_frate));
avecounter++;

stop_proc2

Predicate
MARK(mesg) I= 2 && MARK(chkpts?) == 0 &d&& MARK(rb_point) ==
0

102

Table C.21: Input Gate Definitions for SAN Model processors

[Gate] Definition

Function
tdentity

Table C.22: Output Gate Definitions for SAN Model processors

I Gate

1

Definition

adapttime

#define N 1500
#define FAULT_MODE 2
#define MAXTABLE 10 /* chkptsTable size %/

/¥ GLOBAL VARIABLES x/

extern double LAMBDAI; /* estimated value of LAMBDAL x/
extern double LAMBDA2; /* estimated value of LAMBDAZ «/
extern double PROB, /x estimated value of MIXTURE /
extern float MU1, MUZ; /% estimated value of MU1 & MU2 x/

extern floal AveDisiMul;

extern float AveDistMu?2;

extern it Counterl, Counter?;
extern float Totall, Total2;

extern int CurrentMode,

extern int AdaptNow;

extern floal chkptsTablef MAXTABLE);
extern floatl frate;

extern time Value currentData;
extern time Value currentTime;
extern time Value enableAdaptTime;
extern timeValue elapseTime;
extern time Value Data[N);

/* LOCAL VARIABLES x/
static int FirstTime = I;
float clusterpoint;

float estrate;

mt 1)

/* FIRST TIME ADAPTIVE SCHEME IS EXEC.; FIND CURRENT
FAULT-MODE x/
if (AdaptNow && FirstTime) {

FirstTime = 0;

Counter? = 0;

}

if (AdaptNow) {
clusterpoint = (LAMBDAI + LAMBDAZ2) / 2.0;

elapseTime + = currentTime — enableAdaplTime;

103

Ta

ble C.23: Output Gate Definitions for SAN Model processors

Gate

I Definition

/« CHECK IF IT’S TIME TO SWICTH FAULT-MODE */

if (CurrentMode==0 && elapse Time> clusterpoint) {
CurrentMode = (CurrentMode + 1) % FAULT_MODE;

}

else if (CurrentMode==1 && Counter2>0 && elapse Time< clusterpoint)
{
CurrentMode = (CurrentMode + 1) % FAULT-MODE;
Counter? = 0;
}
}

/¥ OBTAIN OPTIMUM CHKPTS INTERVAL FROM chkpisTable */
if (CurrentMode == 0)
estrate = 1.0/LAMBDAIL
else
estrate = 1.0/LAMBDAZ;
for (1=0; i<MAXTABLE; i++) {
if (estrate <= i * frate) break;
}

if i==MAXTABLE) i——;

MARK(est_frate) = ¢;
MARK(est_fmode) = CurrentMode;

104

doswitlch

#define FAULT_-MODE 2

MARK(faullmode) = (MARK(faultmode) + 1) % FAULT_MODE;

fault_event

#define DBL_.MAX 1e+20

#define N 1500 /x number of data collected x/
#define MODE 2 /x fault mode in system =/
#define STEP 100 /+ step to estimate MUs %/
#define SMALLPROB 0.01

/% GLOBAL VARIABLES x/

extern double LAMBDAI;

extern double LAMBDAZ;

extern double PROB;

extern float MUI,;

extern float MUZ,

extern float AveDistMul,

extern float AveDistMu2;

extern time Value Data[N]; /x array to store fault intervals x/

Table C.24: Output Gate Definitions for SAN Model processors

] Gate ‘

Definition

extern time Value currentData; /* the last fault intervals
extern timeValue currentTime; /+ current simulalion lime

+/
v/

extern time Value enableTime; /+ time at which *fault’ enabled */

extern temeValue elapse Time;

extern time Value totalcurrentmode; /+ total time in current mode */

extern int CurrentMode,
extern int AdaptNow,;

extern it Counterl, Counters;
extern float Totall, Total2;
extern double totalMomentli;
extern double totalMoment?;
extern double totalMoment$;
extern double momentCounier;

/* LOCAL VARIABLES */
static int currentindex =0
static float Multeration = 0.0;
static float estimateCounter = 0.0,
double curLAMBDAI, curLAMBDAZ2, curPROB,
double m1,m2,m3;

double temp, newmu,

double clusterpoint, p;

int clusteredData[N|;

mt 1, g, maz;

wmt start=0, end=0;

int startMU=0, distanceM U=0;

MARK(fdetected) = 1;
currentData = currentTime — enableTime;
totalcurrentmode + = currentData;

if (totalMomentd < DBL_MAX—(currentDataxcurrentDataxcurrentData))

{

totalMoment] + = currentData;
totalMoment?2 + = currentData * currentData,

totalMomentd + = currentData * currentData * currentData;

momentCounter+-;

/% STORE EVERY N FAULT—INTERVALS IN ARRAY Data +/

if (currentindex == N) {

105

Table C.25: Output Gate Definitions for SAN Model processors

| Gate [Definition
currentinder = 0;
}
Data[currentindez] = currentData;
currentindez+-+,
if (currentinder == N) {
AdaptNow = 1;
/* ESTIMATE FAULT—RATES FROM THE MOMENTS +/
ml = totalMomentl/momentCounter;
m& = totalMoment2/momentCounter;
m& = totalMoment3/momentCounter;
temp = fkmS+m3 + 72xpow(m2,3.0) — T2xmlxmZxm3 —
108xmIxmIxm2xm2 + 96xm3xpow(mi,3.0);
LAMBDALI = ((—2xm8 + 6xmIxm2) + sqri(temp)) / (24xmIxmi —
12xm2);
LAMBDAZ = ((=2+xm8 + G+ml+m2) — sqrt(temp)) / (24xmixml —
124m2);
PROB = (ml — curLAMBDA2) / (curLAMBDAI — curLAMBDAZ);,
}
/* COUNTER FOR ESTIMATION OF TIME TO SWITCH
FAULT-MODE +/
if (CurrentMode==20) {
elapseTime = 0.0;
Totall + = currentDala;
else {
Counter24+;
clusterpoint = (LAMBDAI + LAMBDAZ) / 2.0,
if (elapseTime > clusterpoint) {
Counter? = 0;
elapseTime = 0.0;
}
Total? + = currentData;
}
set_chkl | it SSU = MARK(StateSave Unils);
mt n;
int code;

MARK(codel) * = (SSU+2);
MARK(codel) = MARK(codel) % (int) pow(1.0x(SSU+2), 1.0x(SSU+2));

106

107

C.3 DOCUMENTATION OF THE FIXED MODEL

p_proct
NN\ F’
b
p AN mesg_event Sel
o iy l L
. ’A
J chkpts1 onki_event set
N .
b P> ’ / "
w chkpts2 | aslchk
processor2
t23 set_chk2
chk2_event StateSavaUmits
qtpp_proc2
ﬂ tart_recovery

recovery

sel_rb2 start_restart
- restart

doswitch faultmode
switchmode

Figure C.3: Composed Model: Multiprocessor Model

Table C.26: Output Gate Definitions for SAN Model processors

| Gate | Definition
code = MARK(code2);
for (n=1; n<=SSU+1; n++) {
if ((code % (int) pow(1.0x(SSU+2), 1.0x(n+1))
>= (int) pow(1.0x(SSU+2), 1.0xn)) && (code % (int) pow(1.0+(SSU+2),
L.0x(n+1)) < (SSU+1) * (ind) pow(1.0x(SSUH2), 1.0xn)))
code + = (int) pow(1.0«(SSUA+2), 1.0+n);
}
MARK(code2) = code,
MARK(lastchk) = 1;
set_chk? | int SSU = MARK(StateSave Units);
mt n;
int code;
MARK(code2) * = (SSU+2);
MARK(code2) = MARIK(code?2) % (int) pow(1.0x(SSUA+2), 1.0x(SSU+2));
code = MARK(codel);
for (n=1; n<=SSU+1; n++) {
if ((code % (ent) pow(1.0+(SSU+2), 1.0+(nt+1))
>z= (int) pow(l.0x(SSU+2), 1.0xn)) && (code % (int) pow(1.0x(SSU+2),
1.0x(n+1)) < (SSU+1) * (ind) pow(1.0+(SSU+2
), 1.0%n)))
code + = (int) pow(!L.0x(SSU+2), 1.0xn);
}
MARK(codel) = code;
MARK(lastchk) = 2;
set_mesg | int SSU = MARK(StateSave Units),
if (MARK(lastchk) == 1) {
if (MARK(codel) % (int) pow(!.0x(SSU+2), 2.0) == 0)
MARK(codel) + = SSU42;
}
else {
if (MARK(code2) % (int) pow(1.0¢(SSU+2), 2.0) == 0)
MARK(code2) + = SSU+2;
}
set_rbl #define MAXSSU 50

#define MAX(x,9) () > (3)) ? (=) - (3))

int RBIIMAXSSU+2], RBAMAXSSU+2);
int oldRBI1, newRBI;

int oldRB2, newRB2;

mnt n;

i codel, code?;

int SSU = MARK(StateSave Units);

108

Table C.27: Output Gate Definitions for SAN Model processors

Gate

Definition

/* DECODE MARKINGS «/

codel = MARK(codel),

RBI0] = —1;

for (n=1; n<=8SU+1; n++) {
RBI[n] = codel % (int) pow(1.0+(SSU+2), 1.0¢(n+1));
codel — = RBI[n];
RBI[n] = RBI[n} / pow(1.0«(SSU+2), 1.0+n),

code2 = MARK(code2);

RBI0) = —1;

for (n=1; n<=85U4+1; n++) {
RB2[n) = code2 % (ind) pow(1.0x(5SU+2), 1.0x(n+1));
code2 — = RBZ[n];
RB2[n] = RB2[n] / pow(1.0x(5SU+2), 1.0xn);

/* SET ROLLBACK POINT %/
oldRBI = newRBI1 = 1;
newRB2 = (RB2[1] > 0) ? RB21] : 0;
oldRB2 = —1;
while ((oldRB1 /= newRBI) || (oldRB2 = newRB2)) {
oldRBI = newRBI;
oldRBZ = newRB2;
newRB2 = MAX(oldRB2, RBI[newRBI]);
newRBI = MAX(oldRBI1, RB2[newRB2]),

}
MARK(rb_point) = newRBI1;

set_rb2

#define MAXSSU 50
#define MAX(z,y) (((z) > () ? (=) - (¥))

int RBIIMAXSSU+), RBAMAXSSU+2];
it oldRB1, newRBI;

it oldRB2, newRB2;

nt n;

int codel, codeZ;

int SSU = MARK(StateSave Units);

/¥ DECODE MARKINGS =/
code! = MARK(codel);
RBI[O] = ~1;
for (n=1; n<=8SU+1; n++) {
RBI{n] = codel % (int) pow(1.0x(SSU+2), 1.0x(n+1)),

109

Table C.28: Output Gate Definitions for SAN Model processors

[Gate | Definition

codel — = RBI[n];
RBI[n} = RBI[n] / pow(1.0x(SSU+2), 1.0%n);

code?2 = MARK(code2),

RB20) = - 1;

for (n=1; n<=SSU+1; n++) {
RBZ[n] = code2 % (int) pow(l.0+(SSU+2), 1.0x(n+1));
code? — = RBZ[n],
RB2n] = RBIn] / pow(1.0x(SSU+2), 1.0xn);

/% SET ROLLBACK POINT */
oldRB1 = newRBI = I;
newRB2 = (RBZI] > 0) ? RBZ1] : 0;
oldRB2 = —1;
while ((0ldRB1 != newRBI1) || (oldRB2 != newRB2)) {
oldRB1 = newRBI;
oldRB2 = newRB2;
newRB2 = MAX(oldRB2, RBI[newRBI);
newRB1 = MAX(oldRBI, RB2[newRB2);

}

MARK(rb_point) = newRB2;

MARK(mesg) = 1;

(
il (
112 MARK(mesg) = I;
MARK(chkpist) = 1;
113 MARK(chkptsl) = 1;
t21 MARK(mesg) = 1,
122 MARK(mesg) = 1;
MARK(chkpls?) = 1;
123 MARK(chkpts?) = 1;

110

Table C.29: Reward Variable Definitions for Project Fized Model

111

l Variable | Definition

forward prog

ress

Rate rewards

Subnet = processors
Predicate:
MARK(chkptsl) == 0 && MARK(rb_point) ==
Function:
1

Impulse rewards

none

Simulator statistics

Estimate mean only

Confidence Level = 0.95

Relative Confidence Interval = 0.10
Initial Transient = 400000

Batch Size = 400000

Variable type = Instant of Time
Start of Interval = 10.0

Length of Interval = 100.0

state savings

Rate rewards

Subnet = processors
Predicate:
MARIK(chkptsl)
Function:

1

Impulse rewards

none

Simulator statistics

Estimate mean only

Confidence Level = 0.95

Relative Confidence Interval = 0.10
Initial Transient = 400000

Batch Size = 400000

Variable type = Instant of Time
Start of Interval = 10.0

Length of Interval = 100.0

Table C.30: Reward Variable Definitions for Project Fized Model

112

I Variable | Definition

restart

Rate rewards
Subnet = processors
Predicate:
MARK(rb.point) == MARK(StateSavelUnits) + I
Function:

1

Impulse rewards
none

Simulator statistics
Estimate mean only
Confidence Level = 0.95
Relative Confidence Interval = .10
Initial Transient = 400000
Batch Size = £00000
Variable type = Instant of Time
Start of Interval = 70.0
Length of Interval = 7100.0

prob in faull mode 1

Rate rewards
Subnet = processors
Predicate:
MARK(faultmode) == 0
Function:
1

Impulse rewards
none

Simulator statistics
Estimate mean only
Confidence Level = 0.95
Relative Confidence Interval = 0.10
Initial Transient = 400000
Batch Size = 400000
Variable type = Instant of Time
Start of Interval = 10.0
Length of Interval = 100.0

113

Table C.31: Reward Variable Definitions for Project Fized Model

l Variable I Definition

prob incorrect fauli—mode estimation
Rate rewards
Subnet = processors
Predicate:
MARK(faultmode) '= MARK(est_fmode)
Function:
1
Impulse rewards
none
Simulator statistics
Estimate mean only
Confidence Level = 0.95
Relative Confidence Interval = (.10
Initial Transient = 400000
Batch Size = 400000
Variable type = Instant of Time
Start of Interval = 10.0
Length of Interval = 100.0

prob rollback
Rate rewards
Subnet = processors
Predicate:
MARK(rb_poind) && (MARK(rb_point) < MARK(StateSaveUnits)+1)
Function:
1
Impulse rewards
none
Simulator statistics
Estimate mean only
Confidence Level = 0.95
Relative Confidence Interval = 0.10
Initial Transient = 400000
Batch Size = 400000
Variable type = Instant of Time
Start of Interval = 10.0
Length of Interval = 700.0

Table C.32: Study Editor Set Definitions for Project Fized Model

! Study [Experiment | Variable | Type | Value |

single

expl

myLAMBDAL1 | double 0.03
myLAMBDAZ2 | double | 0.003

myMU1 double | 0.0012
myMU?2 double | 0.00012
restart double 0.1
sendmsg double 0.15
ssu short 4

statesaving double 10

Table C.33: Non-zero or Variable Initial Markings for SAN Model processors

[Place | Marking |
StateSaveUnits | GLOBAL_S(ssu)
lastchk 1

Table C.34: Activity Time Distributions for SAN Model processors

115

[Activity I Distribution | Parameter values
chkl.event | exponential
rate | GLOBAL.D(statesaving)
chk2_event | exponential
rate l GLOBAL_D(statesaving)
Sault exponential
rate | if (MARK(faultmode) ==10)
return (GLOBAL_D(myLAMBDAI);
else
return (GLOBAL_D(myLAMBDAZ2));
mesg-event | instantaneous
processor] | exponential
rate] 10
processor? | exponential
rate | 10
recovery exponential
rate | extern float aveCheckpoint,
return (10 * aveCheckpoint);
restart exponential
rate | GLOBAL_D(reslart)
switchmode | exponential
rate | of (MARK(favltmode) ==0)
return (GLOBAL.D(myMU1));
else
return (GLOBAL_D(myMUZ2));
whichproc instantaneous

116

Table C.35: Activity Case Probabilities for SAN Model processors

Activity l Case] Probability

processorl 1| (1.0 — GLOBAL_D(chkpoint)) * (1.0 — GLOBAL_D(sendmsg))
(1.0 — GLOBAL.D(chkpoint)) x GLOBAL_D(sendmsg)
GLOBAL_D(chkpoint) x GLOBAL_D(sendmsyg)
GLOBAL_D(chkpoint) « (1.0 — GLOBAL_D(sendmsg))

(1.0 — GLOBAL_D(chkpoint)) * (1.0 — GLOBAL_D{sendmsg))
(1.0 — GLOBAL_D(chkpoint)) * GLOBAL_D(sendmsg)
GLOBAL_D(chkpoint) * GLOBAL_D(sendmsy)
GLOBAL_D(chkpoint) x (1.0 — GLOBAL_D(sendmsg))

0.5

0.5

processor?

whichproc

DO = | O DO =] Qo N

Table C.36: Input Gate Definitions for SAN Model processors

Gate | Definition |

stari_recovery | Predicate
MARK(rb_point) > 0 && MARK(rb_point) <

(MARK(StateSave Units)+1)
Function

MARK(rb_point) — —;
start._restart Predicate

MARK(rb_point) == MARK(StateSaveUnits) + 1
Function

MARK(rb_point) = 0;
stop_procl Predicate

MARK(mesg) I= 1 && MARK(chkptsl) == 0 && MARK(rb_point) ==
0
Function

rdentity
stop.proc? Predicate

MARK(mesg) I= 2 && MARK(chkpis?) == 0 && MARK(rb_point) ==
0
Function

identity

Table C.37: Output Gate Definitions for SAN Model processors

[Gate | Definition
doswitch #define FAULT_MODE 2

MARK(faultmode) = (MARK(faultmode) + 1) % FAULT_MODE;

fauli_event

#define DBL_MAX 1e+20

#define N 1500 /+ number of data collected x/
#define MODE 2 /* fault mode in system */
#define STEP 100 /+ step to estimate MUs x/
#define SMALLPROB 0.01

/* GLOBAL VARIABLES */

extern double LAMBDAI;

extern double LAMBDAZ2;

extern double PROB;

extern floal MUI,

extern floal MUZ,

extern float AwveDistMul,

extern float AveDistMu?2;

eztern time Value Data[N|; /+ array to store fault intervals */
extern timeValue currentData; /x the last fault intervals */
extern timeValue curreniTime; /x current simulation time */
extern timeValue enableTime; /+ time al which *fault’ enabled */
extern time Value elapseTime;

extern time Value totalcurrentmode; /* total time in current mode x/
extern int CurrentMode;

extern it AdaptNow,

extern it Counterd, Counter?;

extern float Totall, Total2;

extern double totalMomentl;

extern double totalMoment?;

extern double totalMoment3;

extern double momentCounter;

/* LOCAL VARIABLES x/

static int currentindex =0;

static float Mulleration = 0.0,

static float estimateCounter = 0.0;

double curLAMBDAIL, curLAMBDA2, curPROB;
double m1,m2,ms;

double temp, newmu,

double clusterpoint, p;

117

Table C.38: Output Gate Definitions for SAN Model processors

[Gate [Definition

int clusteredData[N|;

mt 1, §, max;

mt start=0, end=0;

it startMU=0, distance MU=0;

MARK(fdetected) = 1;
currentData = currentTime — enableTime,
totalcurrenimode 4+ = currentData;
if (totalMoment8 < DBL_MAX—(currentDataxcurrentDatlaxcurrentData))
{
totalMoment! + = currentData;
totalMoment? + = currentData * currentData;
totalMoment8 + = currentDatla * currentData * currentData;
momentCounter++;

/¥ STORE EVERY N FAULT—INTERVALS IN ARRAY Data +/
if (currentinder == N) {
currentinder = 0,
}
Data[currentindez] = currentData;
currentinder+-+;

if (currentindex == N) {
AdaptNow = 1;

/* ESTIMATE FAULT—RATES FROM THE MOMENTS +/

ml = totalMomentl/momentCounter;

m2 = totalMoment2/momentCounter;

m8 = totalMomentd/momentCounter;

temp = fxmSxm8 + T2 pow(m2,3.0) — T2xmlxm2+m3 —

108xmixmIxm2xm2 + 96xmIxpow(m1,3.0);

LAMBDAL = ((—2«m8 + Gxmixm2) + sqri(temp)) / (24{xmixml —
12xm2);

LAMBDA2 = ((—2+m3 + GxmlIxmf) — sqri(temp)) / (24xmixml —
12xm8);

PROB = (ml~ curLAMBDAZ2) / (curLAMBDA1 ~ curLAMBDAZ2);

}

/x COUNTER FOR ESTIMATION OF TIME 1TO SWITCH
FAULT—MODE %/
of (CurrentMode==0) {

118

Table C.39: Output Gate Definitions for SAN Model processors

Gate | Definition
elapseTime = 0.0;
Totall + = currentData,
else {
Counterf++;
clusterpoint = (LAMBDAI + LAMBDAZ2) / 2.0;
if (elapseTime > clusterpoint) {
Counter? = 0;
elapseTime = 0.0;
}
Total2 + = currentData;
e |}
set_chkl | int SSU = MARK(StateSaveUnaits);
mt ny
it code;
MARK(codel) * = (SSU+2);
MARK(codel) = MARK(codel) % (int) pow(1.0x(SSU+2), 1.0x(SSU+2));
code = MARK(code?);
for (n=1; n<=5SU+1; n++) {
if ((code % (int) pow(1.0«(SSU+2), 1.0x(n+1))
>= (int) pow(1.0x(SSU+2), 1.0xn)) && (code % (int) pow(1.0x(SSU+2),
1.0x(n41)) < (SSUA+1) * (int) pow(1.0x(SSU+2), 1.0+n)))
code + = (int) pow(1.0x(SSU+2), 1.0xn),
}
MARK(code2) = code;
MARK(lastchk) = 1;
sel_chk? | int SSU = MARK(StateSaveUnits);
it n;
it code;

MARK(code2) x = (SSU+2),

code = MARK(codel);
for (n=1; n<=S5U+1; n++) {

if ((code % (ind) pow(1.0+(SSU+2), 1.0+(n+1))
>= (int) pow(1.0¢(SSU+2), 1.0xn)) && (code % (int) pow(1.0x(SSU+2),
1.0k(n+1)) < (SSU+1) (int) pow(1.0+(SSU+2

), 1.0%n)))
code + = (int) pow(1.0¢(SSU+2), 1.0%n);
}

MARK(codel) = code;
MARK(lastchk) = 2;

MARK(code?) = MARK(code2) % (int) pow(1.0x(SSU+2), 1.0x(SSU+2));

119

Table C.40: Output Gate Definitions for SAN Model processors

Gate

] Definition

sel_mesyg

int SSU = MARK(StateSaveUnits);

if (MARK(lastchk) == 1) {
if (MARK(codel) % (int) pow(l.0¢(SSU+2), 2.0) == 0)
MARK(codel) + = SSU+2;

else {
if (MARK(code2) % (int) pow(l.0+(SSU+2), 2.0) == 0)
MARK(code2) + = SSU+2;
}

set.rbl

#define MAXSSU 50
#define MAX(z,y) (((2) > () 2 (2) - (y))

int RBIIMAXSSU+2), RBYMAXSSU+2);
it oldRBI1, newRBI;

int oldRB2, newRB2;

it n;

it codel, codel;

int SSU = MARK(StateSaveUnits);

/+ DECODE MARKINGS %/

codel = MARK(codel);

RBI[0) = —1;

for (n=1; n<=55U+1; n++) {
RB1[n] = codel % (int) pow(l.0x(SSU+E), 1.0+(n+1));
codel — = RBI[n];
RBI[n] = RBI[n] / pow(1.0+(SSU42), 1.0%n);

code? = MARK(code?);

RBI0 = —1;

for (n=1; n<=8S5U+1; n++) {
RB2[n] = code2 % (int) pow(1.0+(SSU+2), 1.0«(n+1));
code? — = RB2[n]|;
RB2[n] = RBZn] / pow(1.0x(SSU+2), 1.0xn);

/% SET ROLLBACK POINT %/

oldRBI = newRBI1 = I;

newRB2 = (RB2[1] > 0) ? RB2[1] : 0;

oldRB2 = — 1, .

while ((oldRBI /= newRBI) || (oldRB2 = newRB2)) {

oldRB1 = newRBI;

120

Table C.41: Qutput Gate Definitions for SAN Model processors

Gate l Definition

oldRB2 = newRBE;
newRB2 = MAX(oldRB2, RBI[newRBI]);
newRB1 = MAX(oldRB1, RB2[newRBY),

}
MARK(rb_point) = newRBI;

set_rb2

#define MAXSSU 50
#define MAX(z,9) (((z) > (9)) ? (2) - (v))

int RBIIMAXSSU+2), RBIMAXSSU+2);
wnt oldRBI, newRBI;

it oldRB2, newRB2;

mt n;

it codel, code?;
int SSU = MARK(StateSave Units),

/* DECODE MARKINGS */

codel = MARK(codel);

RBI[)) = —1;

for (n=1; n<=8SSU+1; n++) {
RBI[n] = codel % (int) pow(1.0x(SSU+2), 1.0x(n+1));
codel — = RBI[n];
RB1[n] = RBI[n] / pow(1.0x(SSU+2), 1.0xn);

code? = MARK(code?);

RBI] = —1;

for (n=1; n<=8SU+1; nt++) {
RBEn] = code2 % (int) pow(1.0x(SSU+2), 1.0x(n+1));
code? — = RB2[n];
RBZn] = RB2[n] / pow(1.0x(SSU+2), 1.0xn);

/* SET ROLLBACK POINT %/
oldRBI = newRBI = 1,
newRBEZ = (RB2[1} > 0) ? RB2[1] : 0;
oldRB2 = —1;
while ((0oldRB1 /= newRBI) || (0ldRB2 != newRB2)) {
oldRB1 = newRB1;
oldRB2 = newRB2;
newRB2 = MAX(oldRB2, RBI[newRBl});
newRBI = MAX(oldRBI, RB2[newRB2);

MARK(rb.point) = newRB2;

121

Table C.42: Output Gate Definitions for SAN Model processors

Gate I Definition

t11 MARK(mesg) = 1;

t12 MARK(mesg) = 1;
MARK(chkptsl) = 1,

(
(

113 MARK(chkptsl) = 1;
(

121 MARK(mesg) = 1;
122 MARK(mesg) = 1
MARK(chkpts?) = 1;

123 | MARK(chkpts?) = I,

122

[1]

123

REFERENCES

JW. Young, “A first order approximation to the optimum checkpoint interval”, Communica-
tions of ACM, 17, Sept 1974, pp. 530-531.

A. Brock, “An analysis of checkpointing”, Proceedings of the 6th Inter. Conf. on Production
Research, Aug 24-29, 1981, pp. 707-711.

K.M. Chandy, “A survey of analytic models of rollback and recovery strategies”, Computer,
vol. 8, May 1975, pp. 40-47.

K.M. Chandy, J.C. Browne, C.W. Dissly, and W.R. Uhrig, “Analytic models for rollback and
recovery strategies in database systems”, I[EEE Transactions on Software Engineering, vol 1,
Mar 1975, pp. 100-110.

E. Gelenbe, “On the optimum checkpoint interval”, Journal of ACM | vol. 26, Apr. 1979, pp.
259-270.

Asser N. Tantawi and Manfred Ruschitzka, “Performance analysis of checkpointing strategies”
ACM Transactions on Computer Systems, vol. 2, no. 2, May 1984.

D.B. Hunt and P.N. Marinos, “A General-Purpose Cache-Aided Rollback Error Recovery Tech-
nique”; Proc. 17th Symp. Fault-Tolerant Computing, IEFE, no. 778, 1987, pp. 170-175.

R.E Ahmed, R.C. Frazier, and P.N. Marinos, “Cache-Aided Rollback Error Recovery algorithm
for shared memory multiprocessor systems”, Proc. 20th Symp. Fauli-Tolerant Computing,
IEEE no. 2051, 1990, pp. 82-88.

K.L. Wu, W.K. Fuchs and J.H. Patel, “Error recovery in shared-memory multiprocessors using
private caches”, IEEE Transactions on Parallel and Distribuied Systems, vol. 1, no. 2, Apr.
1990, pp. 231-240.

Parameswaran Ramanathan and Kang G. Shin, “Use of common time base for checkpointing
and rollback recovery in a distributed system”, IEEFE Transactions on Software Engineering,
vol. 19, no. 6, Jun. 1993, pp. 571-583.

J.L.W. Kessels, “Two designs of a fault-tolerant clocking system”, IFEFE Transactions on
Computing, vol. C-33, no. 10, Oct. 1984, pp. 912-919.

C.M. Krishna, K.G. Shin, and R.W. Butler, “Ensuring fault tolerance of phase-locked clocks”,
IEEE Transactions on Computing, vol. C-34, no. 8, Aug. 1985, pp. 752-756.

K.G. Shin and P. Ramanathan, “Clock synchronization of a large multiprocessor system in the
presence of malicious faults”, IEEE Transactions on Computing, vol. C-36, no. 1, Jan. 1987,

pp. 2-12.

[14]

[15]

[16]

[19]

(20]

124

J.A. Couvillion, R.Freire, R. Johnson, W.D. Obal II, M.A. Qureshi, M. Rai, W.H. Sanders,
and J.E. Tvedt, “Performability modeling with UltraSAN” | I[EEE Software, pp. 69-80, 1991.

W.H. Sanders, W.D. Obal II, M.A. Qureshi, and F.K. Widjanarko, “UltraSAN Version 3: Ar-
chitecture, Features, and Implementation”, Proceedings of the ATAA Computing in Aerospace
10 Conference, San Antonio, pp. 327-338, March 28-30, 1995.

S.R. McConnel, D.P. Siewiorek, and M.M. Tsao, “The measurement and analysis of transient
errors in digital computing system”, Proc. 9th Annual Intr. Conf. on Fault-Tolerant Compul.
(FTCS-9), Jun. 1979, pp. 67-70.

S.E. Butner and R.K. Iyer, “A statistical study of reliability and system load at SLAC”, Central
for Reliability Computing, Standford Univ., Tech. Rep., Jan 1980.

Daniel P. Siewiorek and Robert S. Swarz, “Reliable Computer Systems: Design and Evalu-
ation”, Digital Press, second edition, 1992.

Paul R. Rider, “The method of moments applied to a mixture of two exponential distributions”,
Annals of Mathematical Statistics, vol. 32, 1961, pp. 143-147.

V.5.S. Nair and J.A. Abraham, “Hierarchical design and analysis of fault-tolerant multipro-
cessor systems using concurrent ervor detection”, IEEE 20th Inler. Symp. on Fauli-tolerant
Computing, Jun. 1990, pp. 130-136.

Joseph L.A Hughes, “Error detection and correction techniques for dataflow systems”, , pp.
318-321.

M. Ball and F. Hardie, “Effects and detection of intermittent failures in digital systems”,
AFIPS Conf. Proceedings, vol. 35, 1969, pp. 329-335.

Omur Tasar and Vehbi Tasar, “A study of intermittent faults in digital computer”, AFIPS
Conf. Proceedings, vol. 46, 1977, pp. 807-811.

Yann Hang Lee and Kang G. Shin, “Design and Evaluation of a Fault-Tolerant multiprocessor
using hardware recovery blocks”, IEEE Transaciions on Computers, vol. C-33, no. 2, Feb.

1984, pp. 113-124.

S.H. Fuller ef. al., “Multimicroprocessors: An overview and working example”, Proceedings
IEFE, vol. 66, Feb. 1978, pp. 216-228.

Ravishankar K. Iyer and Mei Chen Hsueh, “Analysis of field data on computer failures”,
Journal of Comput. Seci. and Technol., vol. 5, no. 2, 1990, pp. 99-108.

M.C. Hsueh, R.K. Iyer and K.S. Trivedi, “Performability modeling based on real data: A case
study”, IEEFE transactions on computers, vol. 37, no. 4, April 1988, pp. 478-484.

(28]

[36]

125

J.I. Meyer, A. Movaghar, and W.H. Sanders, “Stochastic activity networks: Structure, beha-
vior, and application”, Proceedings of the International Conference on Timed Peiri Nets, July
1985, pp. 106-115.

W.H. Sanders and J.F. Meyer, “Reduced base model construction methods for stochastic activ-
ity networks”, IEEE Journal on Selected Areas in Communications, vol. 9, January 1991, pp.
25-36.

J.F. Meyer and L. Wei, “Analysis of workload influence on dependability”, Proc. of the 18th
Intern. Symp. on Fault Tolerant Computing System, 1988, pp. 84-89.

J.C. Laprie, “Dependability: Basic Concepts and Terminology”, WG 10.4 - Dependability
Computing and Faull Tolerance, August 1994.

Nitin H. Vaidya, “Another Two-Level Failure Recovery Scheme: Performance Impact of Check-
point Placement and Checkpoint Latency”, Tezas A&M Universily, College Station, Depart-
ment of Computer Science, Technical Report 94-068, December 1994.

Yi-Min Wang, Pi-Yu Chung and W. Kent Fuchs, “Tight Upper Bound on Useful Distributed
System Checkpoints”, Universily of Illinois at Urbana-Champaign, 1994.

Alex S. Papadopoulos and Ram C. Tiwari, “Bayesian Approach to Life Testing and Reliability
Estimation Under Competing Exponential Failure Distributions”, Microelectron. Reliab., Vol.
29, No. 6, pp. 1039-1050, 1989.

Rajesh Singh, S. K. Upadhyay, and Umesh Singh, “Bayesian Estimators of Exponential Para-
meters Utilizing A Guessed Estimate of Location”, Microelectron. Reliab., Vol. 33, No. 4, pp.
521-527, 1993.

Dallas R. Wingo, “Maximum Likelihood Estimation of Exponential Distribution Parameters
Using Interval Data”, Microelectron. Reliab., Vol. 33, No. 1, pp. 57-62, 1993.

