
DESIGN AND IMPLEMENTATION OF AN EXTENSIBLE TOOL FOR PERFORMANCE
AND DEPENDABILITY MODEL EVALUATION

BY

GERARD PATRICK KAVANAUGH III

B.S., Virginia Polytechnic Institute and State University, 1995

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1998

Urbana, Illinois

iii

 ABSTRACT

The goal of the Möbius project is to develop an object-oriented, formalism-

independent, stochastic modeling framework, and to implement the framework in a practical,

performance-dependability evaluation tool. The Möbius framework is the specification of an

abstract notion of modeling in which models may be represented in many formalisms. The

Möbius tool uses this flexible modeling approach for model construction, and implements a

means for solvers to interact with these models in order to determine measures of interest.

More than simply providing an interface for the framework, the Möbius tool is the realization

of architectural concepts that allow it to be both extensible and maintainable.

This work describes the architecture of the Möbius tool, as well as the features it

provides for the future inclusion of new functionality. Specifically, the tool’s main

application is developed, as well as the implementation of extensible base classes from which

the tool’s functional units or modules for model construction and solution may be derived.

The types of modules supported are also defined. In particular, these consist of atomic model

constructors, composed model constructors, reward model constructors, studies, and solvers.

In addition, the Möbius tool provides a means for the modular construction and solution of

models through these modules, and was developed such that new modules will be simple to

build and include in the future. Further, the implementation of the tool shows both the

usefulness of our approach and the flexibility of the Möbius modeling framework.

iv

To all my loved ones

v

ACKNOWLEDGMENTS

I would like to begin by thanking Dr. William Sanders for his confidence in me and

for his technical guidance with my work in the PERFORM Group. Further, I would like to

thank John Sowder, Alex Williamson, and Jay Doyle for their friendship and dedication on

the Möbius project. Thanks also to Dan Deavours and Doug Obal for their technical expertise

and advice throughout my research. Specials thanks also to Jenny Applequist for her help in

reviewing this thesis.

Additional thanks go to the Defense Advanced Research Projects Agency, Information

Technology Office, for funding under contract DABT63-96-C-0069, and to the Motorola

Space Systems Technology Group, including Renee Langefels and Peter Alejandro, for their

long-term funding of the UltraSAN and Möbius projects.

Finally, I would like to thank my family for their constant support, Shannon for her

incredible devotion and her constant inspiration, and all my friends for just being who they

are. Lastly, I would like to thank God for giving me more than I ever could have asked for.

vi

TABLE OF CONTENTS

Page

1. INTRODUCTION...1
1.1. Modeling Overview ..1
1.2. Möbius Framework Introduction ..2
1.3. Research Objectives..4

2. ARCHITECTURAL OVERVIEW ...6
2.1. Our Basic Architecture..6
2.2. Overview of the Möbius Tool...7

2.2.1. Module access...8
2.2.2. Module overview ..9
2.2.3. Rapid application design...11
2.2.4. Implementation overview ...12

3. THE CONTROL PANEL ...17
3.1. Introduction...17
3.2. Initialization ..18
3.3. Module and Model Access..19

3.3.1. Creating and opening models..19
3.3.2. Adding and removing modules...24

3.4. Supporting Classes..25
3.4.1. Utility classes ..25
3.4.2. Dialog windows ..26

4. CLASSES TO SUPPORT MODULE IMPLEMENTATION..28
4.1. Module Organization ..28
4.2. Interface Classes ...30

4.2.1. Dependency maintenance..30
4.2.2. Saving ...32
4.2.3. Validating models ...35
4.2.4. Propagation of interface saves ..36
4.2.5. Loading module interfaces for access ...40
4.2.6. Compiling ...41
4.2.7. Importing...41

4.3. Editor Classes..42
4.3.1. Undo functionality ..42
4.3.2. File menu commands ..43
4.3.3. Textual editors ..46
4.3.4. Graphical editors...46
4.3.5. Global variables ..56

4.4. Information Classes...57
4.4.1. Compilation ..57
4.4.2. Communication...58

5. CONCLUSIONS AND FUTURE RESEARCH...60

vii

APPENDIX: MÖBIUS TOOL FILE STRUCTURE ..62

REFERENCES ...63

viii

 LIST OF FIGURES

Figure Page

Figure 1: Möbius Framework Formalism Types ..3
Figure 2: Basic Architecture Structure..7
Figure 3: Module Relationship Diagram ..11
Figure 4: Möbius Tool Architecture ...12
Figure 5: Model Transformation Process..14
Figure 6: Model Transformation Implementation...15
Figure 7: The Möbius Control Panel ..17
Figure 8: Control Panel Model Access ...20
Figure 9: Type and Class Lists..21
Figure 10: Module Composition...28
Figure 11: Dependency Graph Example ...31
Figure 12: Dependency Node Information Example ..32
Figure 13: Interface Save Functionality Flow Chart Diagram..33
Figure 14: Example of a Propagation List ..37
Figure 15: Propagation List Formation...38
Figure 16: Möbius Simulator Textual Editor Example...46
Figure 17: Möbius SAN Editor Graphical Editor Example..48
Figure 18: SAN Editor Panel Menu..49
Figure 19: SAN Editor Edge Examples ..55
Figure 20: Möbius Tool File Structure ...62

1

1. INTRODUCTION

1.1. Modeling Overview

The use of modeling to predict system behavior is useful during system conception,

design, and analysis. Many important system behaviors rarely occur, and many systems are

too costly to allow the building of prototypes of many design alternatives. For these and

similar reasons, computer modeling is becoming increasingly popular in many fields. Since

the early 1950s, people have been applying queuing network theory to systems of interest in

order to determine performance characteristics, such as average customer waiting time and

average queue length.

The process of modeling leaves the modeler with a large number of possible decisions,

such as which formalism to use, how to solve the model, and how to specify the performance

variables of interest. Today, although queuing theory is still in use, there are many formalisms

that can be used to specify complex system behavior, including, for example, Petri nets [1]

and stochastic activity networks [2]. These formalisms allow modelers to specify systems

with contention for resources and state-dependent delay times. Furthermore, as computers

have grown increasingly faster, modelers have been able to simulate larger systems, and

analytically solve larger Markov models.

There have thus been many tools designed to facilitate the specification and solution of

models. Some examples of this type of tool are UltraSAN [3], HiQPN [4], and SHARPE [5].

Although all of these tools have high-level model interfaces that allow for rapid model

specification, the modeler is still often restricted by the means of either model specification, or

solution, or both. Some formalisms are very useful for representing certain types of system, or

even parts of larger systems, while others may be superior for different systems. For example,

stochastic activity networks are easier to use for modeling resource contention than queuing

networks are. Some tools, such as SHARPE, allow model specification in multiple

formalisms (with the restriction that information is passed by results), whereas most tools

permit the use of only a single formalism. Although some tools, for example UltraSAN,

support multiple means for solution, integrating new solvers is often a complicated task.

2

From a research standpoint, it is difficult to expand these tools to accommodate new research.

Consequently, research based on these tools may be very limited by their capabilities.

The Möbius tool’s architecture, presented in this thesis, implements a means for model

construction that is described by the Möbius framework [6]. The tool’s model construction

methods not only allow the specification of models in multiple formalisms, but also allows

formalisms to share notions of state between them. This enables system behavior to be

specified in whatever formalism is most convenient. Further, the tool permits researchers to

apply existing solvers to new formalisms. In this way, new formalisms or means for model

specification do not mandate the implementation of special solvers. The tool also allows

modelers to rapidly design interfaces for specifying models in these formalisms. In addition,

the Möbius tool permits large models to be composed of smaller, simpler models, which may

be reused in multiple systems, thereby making a modeler’s job easier. Similar to code reuse,

this allows modelers to maintain libraries of components that may be composed to define

larger models quickly and easily.

1.2. Möbius Framework Introduction

The Möbius framework incorporates a notion of modeling that is less restrictive than

in existing tools. It is a framework in which new formalisms, new model construction and

solution techniques, and new means of reward specification may be incorporated easily.

Different notions of state in different formalisms may be shared, and solvers may be designed

to analyze models specified in formalisms that have yet to be written. The framework is

rigorously defined in [6]. An overview is presented here, since a general understanding of the

framework is required in order to understand the work presented in this thesis.

The Möbius framework, as shown in Figure 1, uses several different types of

“formalisms” during model specification. In this context, formalisms are high-level modeling

languages used for system representation. One or more of these formalism types are used to

define a model within the framework. Each different formalism type plays a different and

important role in the construction of the larger model. Actions in the Möbius framework

define the components in a model that change its “state.” State variables within the Möbius

framework are the basic units that have values, and are acted upon by the actions. The

3

combination of the values of the state variables in a model represents the state of the model.

Further, “models” in each formalism are built using state variables, actions, and/or other

“models.” A model in the framework is a behavioral description of a system or portion of a

system expressed in a particular formalism.

Figure 1: Möbius Framework Formalism Types

The following provides a brief description of each formalism type:

• Atomic Model: An atomic model is defined by a set of actions, state variables, and

the rules describing the interactions between the two.

• Composed Model: A composed model specifies a function that takes one or more

models (atomic or composed) as its input and returns a model as its output.

Certain composition functions are able to exploit symmetries to reduce state-space

size and specification requirements for large models. Examples of composed

models include the SAN Replicate/Join formalism [2] and composed model graphs

[7].

• Reward Model: A reward model consists of a model and a set of measures that are

defined by functions of state on that model. Reward models may also augment the

state of the underlying model. In order for numerical solvers to work with these

reward models, the entire reward must be encoded in the state. For example, some

performance measures require that the knowledge of the last action completed be

added to the underlying model’s state.

Formalism type

Model Model

Formalism Formalism

Composed RewardAtomic

Formalism

Model Model

Formalism

Connected

4

• Connected Model: A connected model consists of a collection of models that are

dependent in such a way that the measures (results) of one model are passed as

parameters to another.

Although the formalism types in the Möbius framework have been described, no

description of specific types of state variables, actions, compositions, or performance

variables was necessary to do so. This is precisely the goal of the framework. Different

formalisms may have completely different notions of state or action. Rather than specifying

what these notions are, the framework approaches modeling from a different direction,

allowing many different notions of these abstract concepts. Because of this, a system’s

behavior may be specified in terms of whatever formalism is most useful, or its behavior may

be decomposed into different operating modes that may be modeled separately.

1.3. Research Objectives

Although the Möbius framework provides a flexible and abstract approach to

modeling, it is not a tool. It is a theoretical means for mathematically specifying large models

in terms of submodels of one or more formalisms. This thesis describes the development of

an approach (reflected in what we call an “extensible architecture”) for developing

applications such as the Möbius tool, and then shows how that architecture was used to

develop the Möbius tool itself.

More specifically, this thesis will

• Define an architectural approach for the development of extensible and

maintainable applications like the Möbius tool.

• Describe the implementation of the control panel, which acts as the Möbius tool’s

main application.

• Describe the implementation of the interface, editor, and information classes that

are the base classes for any model specification, composition, reward specification,

and solution “module” in the tool.

• Provide a means for rapidly implementing new interfaces in the implementation.

• Provide a system into which new research may be easily integrated.

5

• Provide a system for defining models such that they may be reused and

recomposed in a variety of ways.

The remainder of this thesis is organized as follows. Chapter 2 provides a description

of the development of the extensible architecture, including the types of functions it must

support and the general concepts that define it. It also provides an overview of how the

Möbius tool was implemented, using the architecture as a guide. Chapter 3 describes the

implementation of the control panel, which is the main application of the tool. Chapter 4

discusses the three main components of a module (an interface in the tool for model

construction or solution), and describes their implementation. These components are the

interface, editor, and information classes respectively. Chapter 5 summarizes the results of

this thesis, describes the conclusions drawn from this work, and suggests areas of future work

that are both implementation- and research-oriented.

6

2. ARCHITECTURAL OVERVIEW

This chapter presents an abstract notion of the architecture used in building the Möbius

tool. As much as possible, discussion of the actual implementation of the tool will be left for

later chapters. The goal of this chapter is to give the reader a broad understanding of the

functionality that the tool requires. Later chapters will provide details on how this

functionality is achieved.

2.1. Our Basic Architecture

In defining an architectural approach to support development of the Möbius

performance/dependability evaluation tool, we aimed for an approach that would be

extensible, maintainable, user-friendly, and useful. By extensibility, we mean that modules

may be added to or removed from the application. By maintainability, we mean that the

application should be designed such that modifications are possible. All applications contain

implementation errors, and in order to fix these errors, the application’s support staff will have

to alter the implementation of the main application, the modules, or both. Correcting

implementation errors or adding additional features should not invalidate the previous

version’s data. In addition, the application should be user-friendly in the sense that modules

should be similar in their interfaces. Lastly, modules should be able to share information

among themselves and users should be able to record previous progress or specifications

within the application’s various modules to ensure that the application is useful.

Figure 2 shows the structure that was developed for the architecture in order to meet

these goals. It has a central main application from which the modules may be launched. It

also has a well-defined, although modifiable, set of module types. A module type is a

functional classification for a group of modules in the tool. It is important to define these

module types so that the tool may be well-organized. By specifying module types through

which access to individual modules is possible, the application designer is forced to choose

the types of function that the tool will allow.

7

Figure 2: Basic Architecture Structure

In addition, the architecture gives a user access to the set of modules that it contains.

This is so that new functional units may be added or unnecessary ones removed. General

functions of modules in the architecture are also specified. Modules support some means of

information-sharing or communication among them. Modules also support some form of user

interaction or editing capability. Lastly, modules should permit a user, where necessary, to

store settings or parameters so that he or she is not required to define them again.

By defining these module functions abstractly, we have simplified the difficult process

of designing a tool to meet the prescribed goals. This architecture is a useful solution for

many systems. One example of an application that is well-suited to this architecture is a VLSI

design package in which different components may be used together to define ICs, and whose

performance must be evaluated.

2.2. Overview of the Möbius Tool

The Möbius framework is also a good candidate for implementation within the

architecture. Modules can easily be created to implement different formalism types or solvers.

Further, the resulting tool would be useful for research since new modules could be created

quickly and easily to test or to prove different research applications. The remainder of this

chapter shows how the architecture just described was applied to the task of designing a tool

that implements the Möbius framework. In implementing the Möbius tool, we will show not

Main Application

Module AccessModule Types

Modules

Module Communication Module Editing Data Storage

8

only that the architecture is useful for defining complex applications, but also that it is

possible to implement solvers that interact with the Möbius framework’s abstract notion of

model specification.

The Möbius tool’s purpose is to enable model construction through the notions defined

in the Möbius framework, and to allow for the solution of these models. This section

introduces the Möbius tool, and shows how the tool is an implementation of the architecture

by discussing how the architecture’s requirements for module types, module access, and a

main application are met. Further, it describes how the tool incorporates the notions of model

specification defined by the Möbius framework.

2.2.1. Module access

There are many facets to the Möbius tool, but one of the most fundamental functions

that it must be capable of performing, as an implementation of the architecture, is that of

providing a main application for starting the modules contained within it. Each module

accessed through the main application has a graphical user interface (GUI) for specifying

models or solver parameters, and contains some system-specific functions for saving,

undoing, and other similar functions that users expect. Part of the difficulty in providing a

module-launching facility is that the tool needs to be able to launch modules without needing

to know anything about the modules themselves. Further, users, whether they are researchers

or system analysts, should be able to add new modules, and the tool must act appropriately on

them. More specifically, the tool needs to be informed of which modules are available to a

specific user, since the Möbius tool should not have to change at all in order to incorporate a

different user’s formalisms or solvers. Actual implementation details of how these functions

are made possible within the tool are described in Chapter 3.

Once the means of module access is defined in the main application, a selection

mechanism for choosing among the modules must be provided so that a user may specify

which module to run. In order for the tool to be user-friendly, there should be some level of

abstraction protecting the user from having to have any knowledge of class hierarchies or

implementation-specific information. Consequently, upon the user’s selection, the tool must

determine which module the user specified and start it.

9

2.2.2. Module overview

Möbius also needs to provide some way of grouping modules together into module

types as specified by the architecture. In the tool, these types are also the keys to defining the

relationships between the models created by the modules. One of the first tasks that was

required in implementing the architecture was to determine exactly what these different

module types were and how they would interact. The Möbius framework has a well-defined

set of formalism types that break models in the framework into predefined functional units.

Consequently, many of the module types in the tool were taken directly from the framework’s

set of formalism types. The module types in the Möbius tool are atomic model constructors,

composed model constructors, reward model constructors, study constructors, and solvers.

Although studies are a trivial kind of connected model, more complicated notions are not yet

supported. Due to the tool’s extensibility, it should be simple in the future to include a more

complicated connected model constructor. Further, the notion of solvers exists in the tool,

whereas the framework has no notion of solution. This is because although the tool uses the

framework’s notion of modular model specification, it also is designed for use in analyzing

the behavior of these models. The solver modules are used to determine performance

measures over the model.

Each module type has specific features and characteristics. For module types that

represent the Möbius framework’s formalism types, the descriptions are very similar to the

descriptions of formalism types found in Section 1.2. The following list describes each

module type’s important characteristics:

• Atomic Model Constructors: Atomic models are the basic building blocks of any

larger model. Their constructors allow the specification of structural models in

terms of state variables, actions, and/or other formalism-specific modeling

constructs, such as input or output gates in SANs.

• Composed Model Constructors: Composed models are a means for creating

larger models from the atomic model building blocks. Consequently, composed

model constructors allow users to specify composed or atomic submodels that are

contained within the constructed model. No new actions or state variables are

defined in a composed model constructor. Instead, users are presented with types

10

of formalism-specific functions that may be used to define the composed model

functionally in terms of the submodels it contains.

• Reward Model Constructors: Reward model constructors may vary widely, but

they all must contain means for specifying measures of interest in terms of the

underlying model’s state. In addition, these constructors may provide a means for

specifying additional state variables that are required for the correct determination

of those measures. Path-based reward model constructors are an example of a case

where this type of functionality may be necessary.

• Study Constructors: Study constructors provide a way for parameters on models

to be altered quickly and easily. From a user’s point of view, the model’s action

and state variable relationships are identical, but through changes in the model

parameters, systems can be analyzed or compared under many different conditions.

In the Möbius tool, these parameters are called global variables. These global

variables may have been defined in any of the atomic, composed, or reward model

constructors that were used to define the model.

• Solvers: Solvers are modules that execute a model such that the overall system

behavior may be determined. Through a reward model, solver modules work in a

variety of ways to calculate the system’s specified performance characteristics. In

general, all solvers take some model as input and generate some form of results.

The format of these results may differ from solver to solver. Examples of solvers

include simulators and state space generators.

Figure 3 shows how the different modules are expected to access each other in order to

obtain the information necessary to function. This figure shows the type of module allowed to

provide input to each module type. These input requirements stem naturally from the

definitions of the module types shown above. In particular, atomic model constructors do not

require any other models as input, while composed model constructors need atomic models or

other composed models as input. Reward model constructors require that some model be

defined; that model may have been specified in either a composed or an atomic model

constructor. Study constructors require access to reward models. Solvers use the output of

study constructors and perform whatever task is necessary to determine the system behavior

11

specified by the reward model over the defined submodel with the parameters set according to

the study. Solvers may also use the output of other solvers. For example, many numerical

solvers require a state space in order to calculate results.

Figure 3: Module Relationship Diagram

In addition to providing an implementation in which the models may be accessed by

each other, the Möbius tool also defines the language through which these models

communicate. Every module within the tool is required to support certain interaction

specifications so that other modules may obtain the information they need. In this way, the

models constructed by these modules may have extremely different implementations, notions

of state, or types of action; but as long as their corresponding modules support the tool syntax,

any other model module will be able to interact with them.

2.2.3. Rapid application design

The Möbius tool is implemented in such a way that new modules may be easily

created. In order to allow researchers to integrate new modules into the Möbius tool quickly

and easily, much of the basic functionality has already been written in a set of base classes.

By implementing new modules as subclasses of these prewritten classes, a new module writer

or formalism designer has relatively little work to do to include his or her research results in

Atomic
Model

Constructor

Composed
Model

Constructor

Reward
Model

Constructor

Study
Constructor

Solver

One or More Required

One Required

12

the Möbius tool. In fact, since much of the tool’s functionality is independent of specific

modules, these predefined base classes are able to contain all of the functionality common to

all modules. These predefined classes thus allow a designer to concentrate on his or her

particular module functionality, without requiring a deep understanding of the tool’s inner

workings. Already defined within these base classes is all of the functionality that makes the

look and feel of different module GUIs similar, maintains model dependency information, and

handles file menu functions such as saving and opening models. More detail on how this was

done, as well as exactly what functionality is already supplied in these base classes, is

contained in Chapter 4.

2.2.4. Implementation overview

The Möbius tool architecture is shown in Figure 4. As the figure shows, there are

three main components to the tool. They are the control panel, the module implementation,

Figure 4: Möbius Tool Architecture

and the abstract model specification. In this section, these components will be described in

order to give the reader a relatively complete understanding of how the tool works. The

remainder of this thesis will be a more detailed description of the module and control panel

Möbius Tool Architecture

Atomic Composed Reward

Formalism Specification

Model Model Constructors

Control Panel Module ImplementationAbstract Model Specification

Model Construction

Studies

Model Solution

SSGen
Numerical

Solvers

Simulators

13

implementations. An in-depth discussion of the tool’s use of the abstract model specification

may be found in [8].

The control panel is the tool’s main application. Within the control panel is the

functionality not only for launching new modules, but also for doing so in a completely

module-independent way. Further, the control panel organizes module access according to

module type, and provides a means for adding new modules or upgrading existing ones as the

extensible architecture requires for extensibility and maintainability.

The abstract model specification is a set of classes that implement the notions of

model, state variable, and action in a formalism-independent way. By deriving all formalism

specification classes from these abstract classes, formalisms may interact with one another or

with solvers. This interaction is enabled by certain virtual methods that must be overloaded in

order for the formalism specification to be nonabstract. Once the formalism specification has

been created in terms of the abstract model specification, models may be specified in terms of

the formalism.

Within the tool’s architecture, the abstract model specification is defined in a set of

abstract C++ base classes. Methods that are formalism-specific are defined as virtual in these

base classes so that they may be completely formalism-independent. Formalism specifications

are a set of formalism-specific classes that are derived from these base classes, and that

overload the proper virtual methods. The abstract notions of state variable and action in the

base classes may be given formalism-specific implementations in the formalism specification.

For example, in queuing networks, the formalism specification for actions would be servers,

and for state variables would be queues.

Module implementation in the tool is divided into two categories: model construction

and model solution. Model construction is further subdivided into module types similar to the

Möbius framework’s formalism types, such as atomic, composed, and reward model

constructors. The notion of studies is also incorporated in model construction. The tool also

introduces modules that are designed to solve the models generated with the model

constructors. These types of modules include state space generators, simulators, and

numerical solvers.

14

The initial tool implementation supports a single atomic model constructor (based on

SANs), a single composed model constructor (based on a replicate/join formalism similar to

the one found in UltraSAN), and a single reward model constructor. The tool also contains

two types of study constructors, for specifying global variable ranges as either sets or

functions. Lastly, the tool supports a state-space generator [9], several numerical solvers, and

a distributed simulator [10]. In the future, more constructors and solvers of each type will be

added.

Each module type may be thought of as performing a specific transformation on a

model. Figure 5 shows the functional transformation that each module type performs on a

model. A structural model, as specified by a user, is turned into an executable model, which

is its software equivalent, by each of the model-constructing modules. Each of the solvers

then takes a model and generates results. For example, a simulator or a state-space generator

uses an executable model to generate results. The state-space generator’s results are a

behavioral model that numerical solvers may use to obtain results.

Figure 5: Model Transformation Process

This transformation process is performed through compilation and linking of C++

class files that are a particular executable model. Figure 6 shows this process. Specifically,

Structural Model Executable Model Behavioral Model

Model Constructors State Space Generator

Simulator Numerical Solvers

Results

15

Figure 6: Model Transformation Implementation

when constructing models, information is passed between modules through predefined

methods and data structures that must be supported in order for any module to be usable. In

addition, an implementation of the formalism itself is created in terms of the abstract model

specification. The structural model may then be transformed through the model constructors

into the terminology of the formalism specification.

To perform the transformation, model constructors, which are implemented as a set of

Java classes, support methods that generate model-specific classes derived from the formalism

specifications. When the formalism specifications are linked and compiled with the model

specifications, an executable model is generated that is identical to the structural model the

user input, but cast in the correct formalism.

Solvers take the executable model specifications of the model, and by linking together

object files for reward model specification, atomic models, compositions, and studies,

generate a solvable model. Solvers may then interact with this solvable model to determine

the specific measures of interest. This solver/model interaction is done through methods

specified in the abstract model specification such that any solvable model that a solver is

Model Construction
and

Solution

Model Specification

Linking

Abstract
Model

Specification

Linking

Executable
Models

Solvable
Models

Atomic Models

Composed Models

Studies

Solvers

Reward Models
Module

Communication

Module Types

Control Panel

Formalism
Specification

16

presented with will support them. For example, the interface for SANs requires that a user

specify SAN-specific information such as initial place markings and activity rates. All of this

information is then used to create a textual output class that is derived from a C++ version of

these SANs. Then the generated code is linked and compiled with the library’s SAN

formalism, and an executable self-contained model is created. By “self-contained,” it is

implied that all of the execution and behavioral knowledge concerning a specific model

component is contained within this executable. A similar process occurs for other atomic

models, composed models, reward models, studies, and solvers.

Note that many C++ executable models may be linked into numerous solvable models,

just as the structural model defined in a module constructor may be used in numerous larger

models. This is how the specification and solution of models is accomplished, and how both

parts of the tool ensure the correct interaction and the modularity of models while

implementing the Möbius framework’s abstract notion of model specification.

17

3. THE CONTROL PANEL

3.1. Introduction

The control panel is the Möbius tool’s main application. It organizes the accessible

module types, as well as the model construction and solution modules of each type. It enables

a user to run multiple modules at the same time, and provides users with a simple means for

opening or creating models through these modules. Further, it implements caching strategies

to make model access fast.

The control panel is a window that consists of a menu bar and a status text bar. The

menu bar is used for performing functions like creating, opening, and closing models and

exiting the system, and the status text is used to display current system functions or status.

Figure 7 shows a picture of the Möbius control panel running under Windows NT.

Figure 7: The Möbius Control Panel

Because the control panel is implemented in Java, its appearance may differ on other

platforms, but its functionality on all platforms is identical. This chapter is devoted to

explaining how the control panel provides module access and categorization of modules, and

the important features that make the Möbius tool useful for the construction and solution of

models.

In this chapter, there will be numerous references to Java-specific terminology and

characteristics. For completeness, some important terms will be defined here, but for a more

complete understanding of Java, see [11]. First, a class refers to a set of data elements and a

group of methods that act on them. Furthermore, packages in Java are a collection of classes

organized together because of their similar functionality. For example, the java.awt

package contains basic visual components that may be used to define interfaces, and the

18

java.lang package contains Java’s most central classes. Components are classes that

implement graphical user interface objects. List boxes, windows, and menu items are all

examples of components. In addition, Java is interpreted, which means that Java is compiled

for a Java Virtual Machine rather than for a specific architecture. This allows Java to be

platform-neutral, among other things. Further, Java is a dynamic language, in the sense that

Java classes may be loaded into and instantiated in a running Java interpreter at any time.

Lastly, serialization refers to the process of writing an object’s complete state to an output

stream. This enables a currently running class to be represented by a file. Deserialization

refers to the opposite process of creating and loading a class from an input stream.

3.2. Initialization

The first time the Möbius tool is started by a particular user, the .mobius directory is

created by the control panel in that user’s home directory. Details of the content of this

directory are found in the appendix. In short, this directory contains a modules.cp file that

specifies the menu set up for that user and the class files corresponding to different modules,

which are associated with specific menu items. If the Möbius tool is being run for the first

time, and the .mobius directory was just created, then the control panel will have no

accessible modules. The modules that a specific user requires access to may be added to the

control panel, however. When the control panel is closed, or, equivalently, the tool is exited,

the modules.cp file is written such that the most recent accessible module configuration is

always saved.

The modules.cp file contains lines of the format:

<Module Type>;<Class Package>.< Class Name>

where “module type” corresponds to the specific module’s category and “class package” refers

to the Java package containing the class file specified as “class name.” The actual class that is

identified here is to be an implementation of the module launched by the control panel. A

more detailed discussion of the means by which these modules are associated with menu

items and launched in the control panel is given in Section 3.3. The following is an example

of the format of each line found in the modules.cp file:

Atomic Model;Mobius.san.SanInterfaceClass

19

Another initialization file in the .mobius directory is the upgrades.cp file, which

specifies version upgrades so that the control panel may automatically recognize when code

updates or module upgrades have been performed. Details on how this file is used are also

contained in the following section.

3.3. Module and Model Access

This section describes the ways that both modules and specific models are accessed in

the Möbius tool through the control panel. As stated in the previous section, it is possible for

users to change the modules that are accessible to them. Models are module data in the

Möbius tool, and they may be in one of three possible states. They may exist on disk, they

may be opened for editing within a module, or they may be stored within a loaded module,

which is not being edited. Loaded modules permit the quick communication of model data

whereas opened modules permit the editing of model data.

3.3.1. Creating and opening models

Modules are accessed through the file menu on the control panel. It is possible to

either create a new model or open an existing one through each type of module. Since models

are module data, the saving and opening of models may be performed in a module-

independent way through the serialization of the entire module. This is flexible, but it may

write a great deal of extraneous information in addition to the model unless the module

serialization methods are overloaded such that only the essential data within the module is

written. Since Java already defines the writeObject() method for this purpose on all

serializable objects, there was no need to implement special methods within the Möbius tool

to facilitate the overloading of object serialization methods.

Access to specific module types for model construction is done through the control

panel’s file menu. Figure 8 shows an example of the submenus that may be encountered by

the user while trying to create a new model. This menu structure organizes modules

according to the formalisms they represent, and each formalism or module is associated with

the correct module type that categorizes it. The submenus encountered while an existing

20

module is being opened are identical to those found when trying to define a new model, but

the function performed upon the final menu item selection is different.

Figure 8: Control Panel Model Access

As the figure shows, the first submenu encountered consists of a list of all the module

types. Upon selecting from this menu, the user is presented with all of the formalisms or

accessible modules of that module type. While trying to create a new model, the user’s final

click on the module menu item will launch a new version of the correct module. If the user

wants to open an already defined model, Möbius will display a file dialog through which the

user may select the saved model to load into the correct module.

This process is not as straightforward as it might seem. Recall that the Möbius tool

needs to be easily extensible. Consequently, it is not possible to simply hardcode the correct

formalisms, or modules, in the control panel. Instead, the control panel needs to operate on

modules in a generic way. This is a case where Java’s interpretation and dynamic class

loading become useful. Several data structures enable this functionality and flexibility.

Within the control panel there are two important lists. First, the Types list is a list of

the allowable module types (atomic, composed, etc.). The other, the Classes list, is a list of

lists of specific modules. Figure 9 shows an example organization of these lists.

21

Figure 9: Type and Class Lists

The organization of the Classes list is identical to that of the Types list, but each

sublist contains formalism-specific modules. Notice how these data structures mirror the file

menu new and open submenu hierarchies. In fact, the new and open submenus are created

from these lists. Thus, when the user makes a selection, it is simple to find the corresponding

formalism module in the classes list.

When the user wants to create a new model of a particular formalism, the Class object

for that formalism is accessed. This Class object is a special object, one of which exists for

each class loaded into a Java Virtual Machine. Normally, to create a new class, we would

define an object of the correct type and set it to reference the proper object by calling new

with the correct constructor. Using these Class objects, we do not need to know the

constructor, and consequently, the control panel never needs to know the class name of the

module the user wants to launch. That is the mechanism for creating new models in a generic

way. Any module’s implementation class has a corresponding Class object. This Class

object is accessed, and its newInstance() method is called. This method returns a new

instance of the correct class, which was created using the class’s empty constructor. Then

some processing, which is described below, is performed, after which the module’s editor is

shown, and the user is free to edit the new model of the specified type.

When the user wants to open an existing model, the corresponding module class is

used, but its Class object is ignored. Instead, an open file dialog is presented to the user.

Each formalism module class has a unique extension by which appropriate model data may be

Types Vector

Atomic Model
Composed Model

Reward Model
Study
Solver

Classes Vector

State Space Generator
Simulator

Set Study Editor
Range Study Editor

Performance Variables

Rep/Join Composer

SANs
Queuing Networks

22

recognized, and the file filter is set to files of that type. After a file is selected, the file name is

passed to the formalism method interfaceNameIsValid(), which is able to determine

whether the specified model file is truly a serialized class of that formalism type. If the model

is acceptable, then it is deserialized, some processing is performed by the control panel, and

the module’s graphical user interface is shown for the user to edit.

Two things are done during the control panel’s processing stage prior to displaying a

module’s editor. First, the module’s reference to the control panel that launched it must be

set. In a new model, the reason the reference needs to be set may be obvious, since the new

model’s module will have a null pointer to the control panel. In a deserialized model, it is

also necessary because any old control panel reference that was written to disk would be

useless to the model in trying to access the new control panel that opened it. In fact, the

ControlPanel variable for a module’s interface is declared transient for this reason.

Transient is a Java keyword referring to a field that is not serialized with the rest of the class.

There is no reason to write the information, since it will be meaningless upon deserialization.

The second thing done prior to displaying a module’s editor is that the control panel caches

the interface. This is discussed below. After the control panel has performed these two steps,

it presents the module’s GUI to the user.

The deserialization of model data requires noticeable time, since the entire file must be

read and a corresponding object instantiated. It would be undesirable for a user to have to

wait for this deserialization to take place every time he or she attempted to load a model for

interaction. Therefore, the control panel implements caching strategies so that recently

accessed models are only deserialized once.

The implementation of these strategies consists of two vectors: an open interface list,

and a loaded interface list. The open interface list contains pointers to each module whose

editor is open. The loaded interface list contains object pointers to all modules that are not

open, but have been used for information by other models or solvers. Any open interface that

has an associated file is moved from the open cache to the loaded cache when it is closed.

This is because once a module has been opened, it is more likely to be used by another

module. These caches may each contain references to up to ten modules, and the replacement

strategy simply removes the first element in the list when this bound is exceeded.

23

Another important feature that the tool supports in order to make the tool more

maintainable is automatic upgradability. Since formalisms may be extended, or their

implementations may require correction due to programming errors, the Möbius tool provides

a means for upgrading existing modules. Since models are saved and opened using

serialization and deserialization respectively, the original classes implementing older modules

cannot be changed. If they were changed, then Java would simply throw an exception error

while trying to deserialize a model in an older module version, since it would not recognize

the old class format. Consequently, all upgrades require new module classes.

Once these new module classes are present, however, the Möbius tool’s upgrade

functionality takes place transparently to a user. This is done in two ways in Möbius: version

upgrades and model patches. A version upgrade is required when there is a large change to

the tool’s existing classes. This may be a result of several formalism upgrades, or may be due

to a change in the module base classes or supporting component packages since classes from

these packages are used in all the formalism modules. Model patches are local to a single

formalism and will usually be due to bug fixes or formalism extensions.

The mechanism for version upgrades requires several changes. First, it requires a new

main class or a replacement to the old one if the control panel class has been changed. This

main class is the class that contains the main method. Only one class may contain this

method. This class’s only function is to start the correct control panel class with the existing

Runtime object. If the base classes or utility classes have been changed, new versions of all

formalisms should be generated in new version packages. In this way, all of the old

formalism classes will remain valid.

Once the control panel has been instantiated, it will look for an upgrades.cp file in

the user’s .mobius directory. This file has lines of the form:

<new class package and name>;<old class package and name>

where each line represents an outdated class file and the new class file that replaces it. The

control panel uses this information to alter the menus such that all old formalism classes in the

Classes vector are replaced with the corresponding upgraded formalisms.

For model patches, the upgrades file can be used, or the upgraded module may simply

be added to the control panel like any other module. A list in each module, the

24

upgradeList, is the list of other module classes for which the module is an upgrade.

When a new module is added, any formalism for which it is an upgrade is first removed.

When any model is opened, all of the modules in the Classes vector are searched to

see if any of them are upgrades for the module that originally constructed the model. If an

upgrade is found an automatic model data conversion process is begun. This process is

described in detail in Subsection 4.2.7.

Upgrade functionality is included in the Möbius tool to satisfy the need for

extensibility and flexibility. Formalism upgrades and tool enhancements should not invalidate

existing model data. Both the version upgrade and the single formalism upgrade are designed

to avoid any such problem, and make the inclusion of new research and the correction of

existing errors as simple a task as possible.

3.3.2. Adding and removing modules

In order for the Möbius tool to be extensible, the module types were implemented in a

dynamic way. Different users may have access to completely different module types, and

consequently, different modeling formalisms. The control panel allows users to both add and

remove modules to or from any module type on the file menu.

The control panel’s “Modules” menu provides access to two interfaces, one for adding

new models and one for removing existing modules. In order for a new module to be added,

an “add modules” dialog window is used, which requires the user to enter the desired module

type of the new formalism. This dialog window allows the specification of which submenu

will contain the launching menu item for the formalism. It is a user’s responsibility to ensure

that the formalism also meet the definition of the module type to which the user is adding it.

The user must also specify the package containing the module, and the name of the class file

itself. This is enough information for Java to load the class dynamically from the file and

properly place it in the Classes vector. Consequently, no modifications to the control panel

are necessary for it to handle existing or future formalisms as long as they are of one of the

predefined module types. Similarly, the functionality to remove modules provides an

interface through which module classes may be taken out of the Classes vector.

25

3.4. Supporting Classes

In addition to the classes that specifically implement modules and the control panel,

many additional classes were implemented in order to build them. These simpler classes or

supporting classes are not restricted to use in the Möbius tool, although they were developed

for it.

3.4.1. Utility classes

The utility classes are the most basic classes implemented for the tool. They are the

tool’s basic support for modules. There were two main goals in the development of these

classes: a consistent look and feel across modules, and a way to correct Java’s library class

inadequacies. These classes may be found in the Mobius.Utils package.

First, a consistent look and feel is useful in making a user comfortable with an

application. Further, it reduces the time it takes a user to learn how to use future modules if

he or she is already familiar with the types of interface components he or she will encounter.

These classes include lists, choice boxes, text fields, buttons and other visual components.

Since all modules are expected to use these classes, it is easy to define default sizes, colors,

fonts, and other properties for components. This allows a consistent look and feel to all of

these components on any interface. It also makes the interface developer’s job much simpler,

since these classes are already provided. Further, if Möbius’s look and feel is to be changed,

then these classes may be altered such that the changes will automatically be propagated to

any existing modules.

Second, although Java offers many useful features, such as platform independence,

interpretation, and object orientation, it is still a very new language. As such, it is far from

bug-free. During the development of Möbius, numerous problems were discovered in the

java.awt package. Platform independence has still not been fully realized, and in the most

severe cases, exceptions actually occur in some classes. For example, attempting to remove

all of the elements from lists or choice boxes that were empty in the JDK for HP’s caused

exceptions. Through the definition of the utility classes, these errors were corrected so that

they do not appear in any Möbius modules.

26

In addition, the utility classes have been designed to look correct on the multiple

platforms for which Möbius is supported. This was necessary because fonts appear different

on different platforms, and because the components themselves have slightly different

appearances from platform to platform. In some cases, the differences are great enough to

cause interfaces to be unusable. Some components may be pushed off the visible area of the

windows that contain them. Through the utility classes, different fonts and default component

sizes enable interfaces to appear correctly on Windows NT, Linux, Solaris, and HP-UX

systems.

In other cases, some classes were used in many modules, but did not exist anywhere

within Java’s standard libraries. For example, in Java, a vector is a dynamically sized list of

objects, but basic types are not objects. Consequently, it is impossible to make a vector of

ints, booleans, floats, or any other basic type. Further, since Java has no pointer

types and removes address access to variables, the use of objects is the only way to pass

parameters by reference to methods. For both of these reasons, Möbius classes representing

basic types are defined such that they are derived from the java.lang.object class.

3.4.2. Dialog windows

Dialog windows are also implemented as supporting classes for the tool, and may take

many different forms. Examples of dialog windows include OK/Cancel windows and Open

File dialog windows, among many others. These types of window are extremely useful for

quickly obtaining responses from users or for displaying important information. The

Mobius.Dialogs package contains a useful base dialog from which others may be rapidly

derived, as well as numerous simple dialogs that most modules require. These include

Yes/No, OK/Cancel dialogs and a list dialog for displaying large amounts of information to

the user. These classes are provided both to standardize the look and feel of modules by

presenting users with a consistent set of dialog windows, and to enable application designers

to implement new dialogs with minimum effort.

One of the properties of dialog windows that make them useful is described by the

term “modal.” If a dialog is modal, its process is blocked until the window is disposed. For a

user, this means that while the dialog is being displayed, other windows in the same process

27

are inaccessible. Since the Möbius tool runs in a single process, any modal window may be

used as a way to get a response from the user by preventing him or her from doing anything

else within the system until the response is provided. This ability of dialog windows is quite

powerful, and is put to use in many parts of the tool.

28

4. CLASSES TO SUPPORT MODULE IMPLEMENTATION

This chapter presents the implementation of the classes that define the modules in the

Möbius tool. The abstract module classes for the tool were designed to support the

formalism-independent functions that the Möbius tool provides. Modules are thus required to

overload formalism-specific methods in order to implement the desired formalism

functionality for model construction or solution as necessary. Further, these base module

classes support many functions that make the development of specific formalism modules or

solvers easier.

4.1. Module Organization

Modules are the functional units in the Möbius architecture, and the means for model

construction and solution in the tool. Modules in the Möbius tool are composed of three main

classes from the Mobius.BaseClasses package. A module, as shown in Figure 10,

consists of an interface, an editor, and an information class. In Sections 4.2, 4.3, and 4.4, each

of these classes is described in detail, but a general overview of their relationships will be

given here.

Figure 10: Module Composition

A module may be thought of as a single entity, since none of the three classes that

define a module will ever be found without the other two. There are three main module

requirements defined by the Möbius architecture, and each of these module classes

Information ClassEditor Class

Interface Class

User Interaction Module Communication

Data Storage
Control Panel Access

29

implements one of them. The interface class is the main class through which model types are

recognized and the module itself is referenced. The editor class is the main GUI for a module,

and provides module editing. The information class is the part of the module that specifies

the means for communication with other modules. By organizing module functionality

through separate classes, the process of developing new module objects is simplified.

The interface class contains references to both the editor and the information classes,

each of which in turn has references to the interface class. The editor and information classes

are expected to use the interface in order to reference each other. When a programmer wants

to create a new module for use in the Möbius tool, the first step is to create a class derived

from each of these base module classes. Each of these classes has some methods that may and

some methods that must be redefined by the derived class for the module to be non-abstract.

The interface class is the main component of a module. It is through the interface

class that a module specifies its function in the tool. In the case of model constructors, this is

a specification of which formalisms constructed models belong to (for example, whether a

module constructs SANs or replicate/join composed models), and in the case of solvers, it is a

specification of the type of solution method the module performs. Further, it is through these

interface classes that model dependencies are maintained, model compilations are performed,

upgrades are enabled, and the means of model storage is specified. The mechanisms by which

interfaces are implemented and their interactions are performed are described in Section 4.2.

The editor class is the means of user interaction with a model. Each interface needs a

corresponding editor in order to allow a user to define the model, solver parameters, or other

types of variables associated with that type of module. Many components have already been

provided in the supporting classes to make designing an editor simple, and to ensure that all

editors have a consistent look and act similarly. More detail on editor classes and the

components provided to ease their development are in Section 4.3.

The information class is the class through which modules communicate. Many

methods must be defined to ensure that a derived information class is nonabstract. The types

of interaction performed through the information class may include determining model

information such as the names and types of state variables in a model, or the names of global

variables defined in a model. System-specific information, such as the name and path of the

30

makefile to use when compiling a structural model into an executable model, is also

communicated through the information class. A deeper discussion of the functions required in

an information class, and how modules interact through them, is provided in Section 4.4.

4.2. Interface Classes

The interface class is discussed in more detail in this section. It is through the

interface class that different formalisms are recognized and different models are accessed.

The base class for these interface classes in the tool is

Mobius.BaseClasses.BaseInterfaceClass. In order to simplify the design of

new formalisms and modules in the tool, the base interface class implements several

important functions that are used by the system transparently to all derived interfaces. This

makes any new formalism, study editor, or solver work correctly within the Möbius tool with

very little additional effort on the programmer’s part.

4.2.1. Dependency maintenance

One of the main functions of the interface classes is to keep track of model

dependencies. Recall that one of the goals of the Möbius tool is to allow for modular design

of models enabled by submodel reuse. For this to be possible, some means for ensuring the

total model’s consistency must be present.

Before discussing how dependencies are handled, several terms must be defined.

Figure 11 shows an example of a possible “dependency graph” within the Möbius tool; it will

be used to help describe the important terms. A dependency graph is a directed graph used to

describe dependency relationships between model constructors in the Möbius tool. In Figure

11, each box corresponds to a different model-specific interface class. Each interface in the

graph is referred to as a node. A parent node is a node that contains the current node. A child

node is a node contained by the current node. In the figure, the Reward1 reward model node

has the Study1 and Study2 nodes as parents, and the Composed1 composed model node as its

only child node. A root node is a node with no parents. In the figure, the Study1, Study2,

Study3, and Reward3 nodes are all root nodes. A dependency tree is a set of connected nodes

in the graph terminating at a root node.

31

Figure 11: Dependency Graph Example

Figure 11 also shows some important characteristics of the way the Möbius tool

provides model modularity. Any given model may be contained in multiple dependency trees.

For example, the atomic model interface, Atomic2, is contained in three distinct dependency

trees, each of which has a different study node as a root. Further, although solvers require

studies in order to determine the model’s behavior, any type of model-constructor interface

may be a root interface in a dependency tree. In this figure, both studies and reward models

are shown as possible roots.

At each interface in the tree, two important pieces of information are stored in order to

maintain dependency information. Specifically, each node stores a copy of the root nodes for

each tree that it is in, and the subtree of which it is the root. For example, Figure 12 shows the

dependency node information that is stored for the Composed1 node from Figure 11. This

information is sufficient for the determination of any dependency information important for

maintaining model consistency.

Each dependency tree represents a particular model. In order for a model to be

solvable, the Möbius tool requires that the model have a single study for global variable

specification, and a single reward model for performance measure specification. The reward

model requirement is included so that the model will have a reward structure, and the

requirement of a study is chosen to ensure that all parameters have been defined. Note that

the tool does allow composed and atomic models to be used in multiple larger models

Study1 Study2

Reward1 Reward2

Study3

Composed1

Reward3

Composed2

Atomic1 Atomic2 Atomic3

32

multiple times. In the future, the tool may be extended to allow more complicated model

hierarchies involving multiple reward models or studies; even submodels containing solvers

could be allowed for fixed point solution.

Figure 12: Dependency Node Information Example

The abstract class that implements the interface portion of modules in the tool is the

BaseInterfaceClass. The BaseInterfaceClass has two specific methods that

developers of derived formalism interfaces are expected to use to interact with the dependency

lists. These methods are include() and uninclude(), and they each take another

interface as a parameter. The include() method should be called when the current model

contains another model. The included node then becomes a child of the node that included it.

uninclude() should be called when the current model no longer contains any occurrences

of another submodel. The uninclude() method removes that interface from the calling

interface’s child list. Because the new formalism developers are limited to using these

methods, there is no direct interaction with any node’s parent list. This limitation reflects the

notion that submodels should be independent and unaware of the larger models that may

contain them.

4.2.2. Saving

The interface class is also responsible for performing all of the correct functionality

associated with saving a model. Figure 13 is a flow chart of the interface class save

Study1

Study2

Composed1

Atomic1 Atomic3

Root List Dependency Tree

33

Figure 13: Interface Save Functionality Flow Chart Diagram

Start save

End

Interface is
named

Start
saveAs();

Save Propagation

Get file name

File name is

No

Yes

Yes

Valid

File is an
existing
model

Keep root
 list

Copy root list

Invalid

Interface is
a root

Canceled

No

No

Yes

Editor.beforeSave();
Editor.save();

prepareForSave();

serialize model

Yes

Model
correctly
written

No

fixDependencies();

Yes

No

34

functionality, and is included as a reference for the discussion on the interface save

implementation.

When a new model is being edited and has yet to be saved, it does not have an

associated filename by which the control panel may recognize it. For this reason, each

interface has an untitledName field to which the control panel concatenates a unique

number when a new interface is created for editing. Until the model is saved this is the unique

identifier for the corresponding interface.

The first time a model is saved, the saveAs() method is invoked. This method

obtains a new file name for the model. This file name must be a valid name for the formalism

type. Specifically, each interface has a particular extension specified for models of that type.

The user will continue to be prompted for file names until a valid one is specified or the save

is canceled. Then, the interface checks to see whether the specified file name already exists.

If it does, and the user is trying to replace an old model, the old model is loaded through the

control panel, and the user has the option of retaining the saved class’s root list. In this way,

users may replace old submodels with updated ones, and retain the proper structure of the

larger model. If the old model is no longer a valid interface class, or if it was a root, then the

user is not prompted.

Then, if the interface is not a root node in the dependency tree, the save is propagated

up the tree. Save propagation will be described in detail in Section 4.2.4. This section

focuses on the save functionality that occurs on a root interface. In particular, if the saved

model is a root, several functions must be performed before the model data may actually be

written to disk. First, methods are called on the GUI itself. Since this GUI will be derived

from the base editor class, the interface class knows the methods will be present. These

methods are beforeSave() and save(), and will be described in Section 4.3, which

specifically deals with the editor class. For this discussion, it is sufficient to know that some

processing is performed in the editor prior to saving, and that these methods are called. After

these methods are called, the interface’s prepareForSave() method is invoked. The

prepareForSave() method is used to correct the child list of the current interface. In

particular, the information specified by calls of include() and uninclude(), which is

35

kept in temporary lists prior to saving, is used to update the interface regarding the child

interfaces to add or remove from its dependency tree.

After the included and unincluded interface information is correctly processed, the

model is then written to disk through Java’s object serialization methods. This process is

considered successful if the file of the specified name exists, and the user has write access to

it. If the model was successfully saved then the fixDependencies() method is called.

The fixDependencies() method is used to perform two functions. First, the

children interfaces and the root interfaces are processed to see whether the corresponding files

still exist, and the interfaces in the root list are checked to ensure that they are still roots.

Second, the models in the dependency tree are updated to contain the current node as a root if

it is one, or to remove it from their root lists if it is no longer one. After this, the save is

complete, the saved interface’s dependency tree and root list should be correct, and all other

nodes in the interface’s subtree of the dependency tree should also be correctly updated.

After a save, the model is then compiled if it is “compilable.” Whether a model is

compilable is determined by a simple flag that should be set if the model has been defined

incorrectly. The functionality of model compilation itself will be described in Section 4.2.6.

4.2.3. Validating models

Since submodels may be used in numerous larger models, the Möbius tool needs a

means for ensuring that changes in these submodels do not cause the models that contain them

to become “invalid.” Invalid, as used here, denotes a situation in which some submodel has

been changed, and those changes have made some specification in a containing model

incorrect. For example, if a replicate/join composed model contains two submodels that share

a piece of state, and the state variable contained in one of the submodels has been deleted, the

composed model will become invalid. In that case, the composed model must be changed.

Different formalisms require different validation techniques. Consequently, the base interface

class contains a validateInterface() method that returns true if the interface is

valid. By default this method does nothing and returns true. Formalism module designers

are expected to overload this method to correctly account for possible changes in submodels.

36

This method should not simply detect errors and exit, however. It should detect errors,

determine the means for correcting the errors if possible, and prompt the user to accept the

necessary changes if they are substantial. If the changes in a validation are accepted the parent

model should be completely valid based on the definitions of the submodels it contains.

Further, if changes may be validated without affecting any of the user’s model specifications,

there is no need to prompt the user, and validation may be performed without any user

interaction whatsoever. By propagating these validations up a dependency tree, an entire

larger model including composed models, reward models, and studies can be made valid

automatically in response to changes in a contained submodel.

4.2.4. Propagation of interface saves

In Section 4.2.2, the save functionality was described, but the propagation of interface

saves was not discussed. Propagation of interface saves occurs when a model that is not a

root interface is saved. Since submodels may be included in many larger models, this process

ensures that all of the containing models remain consistent despite changes in any contained

models.

The first step for propagation is to determine the ordered list of interfaces to which the

changes need to be propagated. The order is extremely important, and not as straightforward

as it might at first appear. Submodels may be contained in larger models multiple times in

different ways, and any submodel must be processed prior to the processing of any of its

parent nodes. The appropriate save order is determined using the method

getPropagationSaveList(), which returns the list of interfaces to which changes

need to be propagated, in reverse order. Figure 14 shows an example of two complex models

with dependency roots A and J, and a correct propagation list for changes in submodel X.

Although not unique, the sequence of interface nodes X, D, K, C, B, J, A is a valid

propagation order for making both large models consistent with any changes in interface node

X.

It is easy to see that the propagation list shown will ensure that all models are

consistent, but the algorithm to obtain the propagation list may not be obvious. To illustrate

37

how the propagation list is generated, we will go step-by-step through the algorithm

implemented by the getPropagationSaveList() method.

Figure 14: Example of a Propagation List

The algorithm creates an initial propagation list containing the list of root interfaces

for the node initiating the propagation. This list is then processed in order for each node. At

each node, any children that contain the changed model in their dependency subtree are

appended to the end of the list. If a node to be appended already appears in the list, the first

occurrence is removed prior to the appending of the node to the end of the list. In this way,

lower-level models in the tree are processed prior to any parent models. This process is

repeated until the entire list has been processed. The result is always a valid propagation list

in reverse order.

For the example model dependencies shown in Figure 14, Figure 15 shows the step-

by-step formation of the propagation list. At step one, the list consists simply of node X’s

root list. At step two, node A’s children, B and C, are added to the list, since both contain

model

J

K

D

H X

A

B C

X ED

H X

F D

H X

ABCD JKX

Propagation List

38

Figure 15: Propagation List Formation

X. At step three, node J’s child K is added to the list, since it too contains model X. At step

four, since models are considered to contain themselves, both of B’s children, X and D, are

added to the list. In step five, node D is removed from the list, since it was already present,

and then appended. Step six is identical to step five, except that in this step, node K is

processed. In step seven, the list is not changed, since node X has no children. In step eight,

A J

A J B C

A J B C K

A J B C K DX

A J B C K DX

A J B C K DX

Propagation ListStep

1

2

3

4

5

6

7

8

9

A J B C K DX

A J B C K D XX

A J B C K D X

39

X is removed from the lists and appended to the end, since D is one of its parent nodes.

Lastly, in step nine, the list is again not changed since X has no children, and the algorithm

terminates, because the end of the list has been reached. The resulting list is identical to the

example shown in Figure 14, except in reverse order.

After the correct sequence for change propagation is determined, a modal window is

displayed, and the propagation of saves begins. Since modal windows block the processes in

which they were spawned, the user is prevented from attempting to alter submodels while the

changes and saves are propagating. Consequently, after propagation, model consistency is

assured.

More specifically, after the propagation window is displayed, all of the modules in the

interface list are saved to temporary files in the .mobius/temp directory. This save is done

because if the change were canceled during propagation, then all of the changes that occurred

as a result of propagation would also have to be canceled. The easiest way to do this is simply

to restore the original state that all of the modules had before the propagation happened.

Next, validateInterface() is called on each interface in the list. This causes

any module to become consistent with any changes in lower-level modules. If the validation

changes are accepted, the next module is validated. If the validation changes are canceled, the

original save is canceled. This ensures either that the changes propagate to all models

necessary or that they are not saved in any model. Again, this is designed to prevent the user

from generating inconsistent models. If all of the validations are accepted, then each module

in the list is saved. Lastly, each module in the list is compiled, and the user is notified of any

compilation errors in any model. Compilation errors do not mean that a model is necessarily

invalid. More specifically, complicated functions within modules, like reward functions on

performance variables or gate functions in SANs, may now have undefined state variable

references, which the user needs to correct in order for the generated code files to be

compilable.

At the end of the propagation process the window stays visible, but is no longer modal.

Thus, the window may be used in correcting possible compilation errors while access is

restored to other active windows in the current process. Any models containing the altered

model are now completely consistent, although possibly not compilable, and the user is free to

40

continue editing his or her model. Because of this automatic propagation process, users do

not need to worry about the complicated module dependencies, and changes in submodels,

which are used in many places, may be performed quickly and efficiently.

4.2.5. Loading module interfaces for access

Before a particular module may access another, the interface of the module to be

accessed must be “loaded.” In Chapter 3, loaded modules were described as those without

visible editors. However, the process of loading an interface involves more than deserializing

the module or accessing the module in the control panel’s cache. In particular, “loading”

another module’s interface also provides a means to prevent certain inconsistencies from

occurring, specifically those that occur when multiple model constructors are being used.

Loading accesses the open version of a module if there is one available. However, the open

version of a module may contain unsaved changes. If the module that is accessed is not saved

after it is loaded, the model may become inconsistent because, although the changes have

been discarded, the accessing module may already have incorporated them. For example, this

would occur if a user had unsaved changes in an atomic model, and then after the unsaved

changes were incorprated into a composed model, the user closed the atomic model without

saving.

In order to prevent these kinds of inconsistencies, a module’s interface class should be

loaded through the loadInterface() method before it is accessed. This loading process

not only acts as a means to minimize module access time, but also ensures model consistency.

Module loading provides fast access by deserializing a model only once, after which it is

cached for future accesses. Consistency is ensured because the control panel will determine

whether changes are unsaved in an open model. If there are unsaved changes, the user will be

prompted to save them. This provides the user with a means for guaranteeing consistent

models while being able to simultaneously edit different parts of the model.

Propagation guarantees that changes in all models are saved. Therefore, there is no

need to prompt the user to save interfaces loaded during propagation. In order to handle

situations such as propagation, the loadInterface() method detects whether a

propagation is in process. If it is, then any open module’s interface is automatically used

41

without prompting the user for approval. This ensures that propagation through many models,

which may require loading numerous interfaces with unsaved changes, does not present a user

with a stream of dialog windows to which he or she must respond.

4.2.6. Compiling

Compiling at the interface level is not done in order to create the final executable

model. Instead, it is a means to ensure that any user specification results in the generation of

valid C++ code for the model. For example, it is the means by which the user may find errors

in the reward functions, the SAN gate functions, or any other user-defined code segment.

Typically, when a model is compiled, a window is displayed in which the messages to

the standard out and error streams are displayed. If compilation is successful, the user is told

so; otherwise, the user is presented with the errors. Just prior to compilation, the information

class’s compile() method is called. This method is expected to generate the required

header and code files and a makefile for compiling them. (A more detailed description of this

method is provided in Section 4.4.) Then the makefile is used to compile the model on the

current architecture. Currently, g++ is the compiler used for this process.

There are several options enabled during compilation that deal with how the

information is presented to the user. The compilation window may be displayed always, or

only if there are errors. In addition, parameters allow a reference to the compilation window

to be returned. This functionality is used during propagation, in which compilation windows

are never shown; but the windows are stored in case the user wishes to see them. Since the

propagation window is no longer modal after propagation, these compilation windows may be

used as references during the correction of models with errors.

4.2.7. Importing

The importing functionality was introduced in Chapter 3, during the discussion on

upgrades. Importing an interface refers to the process of taking an old interface class version

and returning a new interface class version. The base interface class contains the method

importInterface() for performing this upgrade function. An object is passed to this

method since there may be many classes for which a new interface version is an upgrade.

42

Based on the class of the object that was passed, the proper upgrade process is undertaken to

copy the old class’s data into the new class’s data structures. This process includes copying

over file names, dependency tree information, and all model- and formalism-specific data.

This method is empty at the base level, and should be overloaded by formalism designers. It

is expected that these methods will grow with time as subsequent versions are released, to

allow any existing models to be expressed in the most recent class version.

4.3. Editor Classes

The editor class is the second of the three base classes that form a module in the

Möbius tool, and provides the fundamental means of specification in all modules. The base

class for all editors in Möbius is the Mobius.BaseClasses.BaseEditorClass. This

class contains many methods to enable designers of new modules to rapidly develop new

derived editors which look and feel like other Möbius module editors. Further, the editor

class also contains many expected system methods that, for example, interact with the control

panel or their interface class. The main goal of this class is to make the derivation of new

module editors for future research as simple a process as possible.

4.3.1. Undo functionality

One of the functions that the base editor supports is “undo functionality.” Undo

functionality provides a user with the ability to automatically return an editor to the state

before the last change was made. The editor class uses two classes within the

Mobius.Utils package to provide this functionality. These classes are the UndoEvent

and the UndoVector.

The undo vector is composed of two associated vectors. The first is a list of undo

events and the second is a list of descriptions of those events. The undo vector possesses

methods to clear the lists and to add events and descriptions to the lists. The UndoVector

class also implements a method to perform the first undo event on its stack. This method,

doFirstEvent(), calls the doAction() method on the first event on the stack prior to

removing it and its description from the undo vector’s lists. Thus in order to make any user

43

event “undoable,” a derived undo event class should be created and its doAction() method

should be overloaded to perform the actions necessary to counteract what the user did.

The base editor class implements this undo functionality through an UndoList data

member. The undo list is derived from the UndoVector class. In addition, it is associated

with the first menu item on the editor’s “Edit” menu such that the menu item’s text always

displays the description of the next undo event on the list. Further, a user’s click on the menu

item will call the doFirstEvent() on the undo list. Thus, in derived modules it is a

straightforward process to determine how to undo an action. First, a derived undo event class

that does the correct “undoing” actions must be created. Then that undo event is added to the

editor’s undo list to make the action in a derived editor undoable.

This process is further simplified by the fact that all of the utility class visual

components have default undo functionality already defined for them. This may consist of

“unchecking” a checkbox or restoring the previous text in a text field. To enable this

functionality in a particular Möbius utility classes, its setUndoList() method must be

called after it is constructed. This method should be passed a reference to the editor’s undo

list.

4.3.2. File menu commands

All derived editors also inherit their menu functionality from the base editor class.

This functionality consists of typical File menu commands such as New, Open, Reopen, Save,

SaveAs, Print, and Close. This section explains the functionality associated with these

commands.

Two important editor methods are used frequently in these commands,

checkForSave() and checkForClose(). The checkForSave() method first

determines if there have been any changes in the model. Changes have been made if a special

flag, changed, has been set or if any events have been performed such that there are undo

events on the editor’s undo list. If there are changes in the editor, then the user is prompted to

save if they so desire. A “Yes” response calls the Interface save() method to properly save

the module. A “No” or “Cancel” response causes the module not to be saved.

44

In either case, if the module is not saved then the interface’s

fixDependenciesInSavedModel() method is called. This method was not described

in the interface section because it is so closely tied to the editor. If the root list of the interface

class has changed and the editor is being thrown away without saving changes, the saved

model needs to be updated or the changes will be lost. If the root list has changed then there

must be a serialized model file. The fixDependenciesInSavedModel() method

opens this file on disk, updates its root list, and reserializes it. This may seem like quite a bit

of unnecessary overhead, but it is necessary in order to maintain the consistency of a model’s

dependency tree. Canceling changes in a model’s specification must not cancel the changes in

a model’s dependency tree.

The method checkForClose() detects if changes have been made, and if they

have informs the user that they will be lost. If the user accepts their loss then the method

returns true. It is not necessary for this method to call

fixDependenciesInSavedModel() because it is only used when the user wishes to

reopen the model, and the method for reopening is able to fix dependencies more efficiently

than the more general fix dependencies call.

There is one other frequently used method in file menu commands. The dispose()

method normally destroys a class and frees the memory associated with it for garbage

collection. An editor’s dispose method has been overloaded to interact more usefully with the

Möbius tool, however. It hides the editor so that it is no longer visible. Then it notifies the

control panel that the editor is no longer open. This enables the control panel to remove the

corresponding interface from the open cache and place it in the loaded cache so that any future

accesses do not require the model to be deserialized. Only if the model had never been saved,

which would make loading of it by other models impossible, is the module truly destroyed.

The following list describes the editor’s performance for file menu commands that a

user may perform.

• New: When a user clicks the New file menu item, checkForSave() is called

to allow the user a chance to save before their most recent changes are lost. Then a

new instance of the module is created through the Class object’s

newInstance() method. After this the new interface’s control panel reference

45

is set, and its editor is shown in the same place as the current one. Lastly, the

current interface is disposed.

• Open: The open command first provides the user with a file dialog prompting the

user to select a model file of the same type as the one from which the open

command was issued. If the model specified was not the current one, it is opened

(or accessed through the opened cached if it was already opened), and its editor is

shown where the current one is. Lastly, the current interface is disposed.

• Reopen: Reopening a model will first call checkForClose(). If the user does

elect to reopen, then most recently saved version of the interface is restored. This

involves first deserializing the class from its associated file, and then invoking

fixDependenciesInSavedModel(). Invoking this method preserves any

possible new dependencies the interface may have after the model changes are lost.

• Save: When a user clicks on the save menu item, the interface’s save() method

is invoked. Two methods are then called before the module is serialized.

Specifically, the beforeSave() method is for system use. It resets the

changed flag, and removes all the elements from the undo list. Then, the editor’s

save() method is called. This method is empty in the BaseEditorClass

because derived editors are expected to overload this method. It should be defined

to perform any necessary data structure manipulation before serialization or

compilation is attempted.

• SaveAs: The saveAs() command calls the interface’s saveAs() method.

Similar to editor saves, both the beforeSave() and the save() method are

invoked on the editor.

• Print: The print command calls the editors print() method. At the base editor

class, the print method is empty. Any derived module is expected to have this

method overloaded to generate HTML code that properly documents the current

editor specifications. The Mobius.Documentor package contains many

classes that already generate HTML lists, images, and tables that module designers

may use implement their formalism specific print functionality.

46

• Close: The close command simply calls checkForSave(), and then

dispose() on the editor.

4.3.3. Textual editors

The simplest form of editor is the textual editor. This editor is still a graphical user interface,

but the term textual here refers to the fact that a user is not required to draw as part of the

module’s specification. Instead, these editors are composed of a combination of graphical

components within which the user is allowed to choose or type information as required.

Figure 16 shows the editor associated with the Möbius simulator, as an example of a textual

editor. It is composed of components such as choice boxes, text fields, and tab panels, from

the Mobius.utils package.

Figure 16: Möbius Simulator Textual Editor Example

4.3.4. Graphical editors

The graphical editor is more complicated to implement. The term graphical as used

here refers to the fact that much of the model’s specification is drawn by a user. There are

many reasons why graphical editors are important. First, many formalisms, such as SANs,

47

Petri nets, and queuing networks, are naturally represented as pictures, and an editor for

specifying pictorial formalisms should be graphical. Further, graphical representations of

pictorial formalisms provide a modeler with a better way to visualize a model’s structure than

a textual equivalent would.

Implementing a graphical formalism from scratch would be a daunting task. To do so

would require a great deal of overhead associated with creating basic drawing capabilities

before any implementation of their module-specific functionality would be possible.

Moreover, much of that work would be identical in different formalisms. Further, requiring

all new editors to implement the same basic functionality individually would result in a

different look and feel for every graphical editor. That would make learning new interfaces

much more difficult. To avoid these problems, editors in Möbius may be equipped with a

special panel in which all of the important formalism-independent graphical specification

functionality has already been implemented.

The remainder of this section describes, in detail how this panel operates. It begins

with an overview of functionality and initialization. Then the operation of the panel class is

described. Specifically, the modes in which the panel may be operating are discussed. These

modes are “create,” “select,” “selecting,” “moving,” and “connecting.” Then, issues related to

implementation and extensibility of the basic panel object are presented. That is followed by

a description of two derived panel object types, vertices and edges. In particular, the way that

these objects extend the base panel object, and may themselves be extended by formalism-

specific objects, is described. During the discussion on edges, the three predefined edge

types, which are straight lines, connected lines, and spline curves, are described.

Functional overview and initialization

Figure 17 shows the SAN editor, an example of a graphical formalism editor. The

default panel functionality for graphical formalisms consists of graphs with directed edges and

types of vertices. Objects representing formalism-specific notions may be placed in the panel

as the vertices of the graph and connected by directed edges. One may move objects by

dragging them, and select them by clicking on them. In the Möbius tool, an attempt was made

to make interactions with these graphical formalisms through the panel as intuitive as

48

possible. Therefore, shift and control buttons are used for multiple object selection much as

they are in Windows applications. Further, more complicated definitions about particular

Figure 17: Möbius SAN Editor Graphical Editor Example

vertices in the graph may be specified through popup menus that appear in response to right-

clicks on objects.

Typically, GUIs that contain the panel will do so within a scrolling panel. This

scrolling panel is implemented within the BaseScrollPanel class, and implements

horizontal and vertical scrollbars so that a small editor may contain a much larger panel. The

traditional appearance of graphical editors in the Möbius tool contains a scrolling panel as the

only component. The base scroll panel class is not abstract. This is because the scroll panel is

an implementation of a simple container with scroll bars, and nothing formalism-specific is

required for it to work correctly.

Certain methods must be invoked in an editor’s constructor in order to notify it of the

fact that it is graphical, and to enable graphical-editor-specific functionality. In order to

enable panel interactions from the base class functionality, DefineScrollPanel() must

be invoked and passed a reference to the scroll panel containing the desired formalism-

specific panel class. Once the panel has been specified, an editor’s Initialize() method

should be called. First, this method calls several methods on the panel, which initialize the

49

panel with the information about the allowable formalism constructs. Then the

Initialize() method adds to the editor’s menu bar an additional “Panel” menu that is

designed to interact with the panel. The next section consists of a more detailed discussion of

this panel menu and the panel itself.

The panel class

Panels are classes designed to contain other components. In Möbius, the components

they contain are canvases with pictures representing formalism-specific constructs. The panel

is implemented in the BasePanelClass. As stated earlier, the panel is closely associated

with a “Panel” menu on the menu bar. This panel menu contains a list of available formalism

constructs and connectors that may be used to describe dependencies between those

constructs. The formalism constructs are vertices in the connected graph, and the connections

are edges. Another panel menu item is the cursor selection. The cursor selection is a means

for interacting with the drawing, and it enables functionality such as multiple object selection.

Figure 18 shows the panel menu for the SAN editor in the Möbius tool as an example.

Figure 18: SAN Editor Panel Menu

The panel always operates in one of five modes: create, select, selecting, moving, or

connecting. These modes are entered based on a combination of panel menu selections and

user mouse events. Java’s mouse listeners were used in order to catch any mouse events and

detect the object that was their source. In determining the proper response, it is also important

to know whether the event occurred within the panel, or within one of the objects the panel

contains. The following list describes each of these operating modes in detail:

50

• Creating: Creating is the operating mode by which a formalism construct is

added to the panel and consequently the structural model. This mode is enabled

when the user selects a formalism construct on the panel menu. If the user clicks

in the panel in this mode, an object of the appropriate type will be placed in the

panel at the place that was clicked.

• Select: The select mode is entered when the mouse pointer is over a vertex in the

panel, and the user has made either the cursor selection or a formalism construct

selection in the panel menu. In this mode, clicking on the object will cause it to

become selected. When selected, an object’s picture may be altered. The panel

keeps track of selected objects through a list called the SelectedGroup. When

the mouse pointer exits the object, the panel returns to the creating operating mode.

Holding down shift while clicking on the object will add the object to the selected

group; if shift is not being held down, the object will become the only selected

object.

• Selecting: The selecting mode, while similar to the select mode in that it is a way

to select objects, is different in many ways. First, it is triggered by dragging the

mouse in the panel. Dragging occurs when the mouse button is held down while it

is moved. When this operating mode is entered, within the panel, a box appears

whose corner is located at the mouse location, and which is resized as the mouse is

dragged. If shift is held down during this operation, then any vertices that are

contained within this box have their selection states toggled. If shift is not held

down, then all vertices become deselected prior to the resizing of the box.

• Moving: The moving operating mode is entered when the mouse is dragged

within a vertex. As soon as this mode is entered, a box appears that surrounds all

the selected vertices in the panel. The box then moves with the mouse, and the

selected vertices are then moved to wherever the user’s drag ends.

• Connecting: The connecting operating mode is entered when a user selects an

edge type from the panel menu. In this mode one begins, a connection by clicking

on a vertex. After this initial click, additional clicks in the panel may or may not

place edge points within the panel, depending on the type of edge selected. An

51

example of an edge point is the point at which a connected edge turns. The

connection is terminated with a click on another vertex, and an edge of the

appropriate type is placed in the panel connecting the two vertices. Right-clicking

at any time after the initial click cancels the connection in progress.

In addition, undo functionality for interacting with some of these operating modes is

already defined in the base editor class. The BasePanelUndoEvent class has been

designed to allow for undoing object moves, connections, or group deletions automatically

without a formalism designer needing to implement any of this functionality at the derived

level. This class is derived from the undo event class, and the correct undo event is placed on

the undo list as required for any user actions.

All operating modes are available within any graphical formalism. It is only necessary

for the derived formalism-specific panel to maintain the information on what vertices are

allowed. This information is communicated to the event-handling functionality and the panel

menu through the method RegisterObjects() on the panel class, which is called during

the editor’s initialization.

All derived panels should overload the RegisterObjects() method to call

RegisterPanelObjectType() for each type of formalism construct allowed. Because

a derived panel object and its description is passed to each of these calls, the panel menu may

be completely created with the correct formalism-specific construct descriptions when the

editor is initialized. Further, each menu item on the panel menu may be associated with the

correct type of object to create upon selection.

The panel object

There are several different kinds of panel objects, but all of them are derived from the

BasePanelObjectClass. They are vertices, edge points, and edges. In this section, the

implementation of the basic panel object class is described. Subsequent sections will discuss

the implementation of the derived panel objects.

As stated earlier, the base panel object is a canvas that may display many types of

picture. Panel objects may be in one of three states, and there are flags on the object for

setting or determining that state. The possible states are highlighted, selected, or neither.

52

Objects are highlighted when the cursor is hovering over them in the panel. Objects are

selected with clicks, and each group of selected objects may be interacted with as a single unit

during moving or deleting operations. There are also flags indicating which states are

allowable for a particular object. By setting these flags in derived objects, the functionality

defined in the panel object may be activated or deactivated as desired.

The paint() method exists on all visual components in Java, including the

java.awt.Canvas class from which the panel object is derived. This method is the

method by which Java refreshes the appearance of all components. This method is overloaded

on the panel object to call one of three methods, depending on its state. These methods are

DrawHighlighted(), DrawSelected(), and DrawSelf(), and they are called when

the object is highlighted, selected, or neither, respectively. In the panel object, these methods

are empty since all graphical representations are formalism-specific. These methods must

thus be overloaded for formalism-specific objects to correctly draw their graphical

representations. Typically, the graphical representations for all states are identical except for

the object’s color, which may then be used to recognize the object’s state.

Panel objects are also each named. A visible label displaying this name may be

attached to the panel object. A flag indicates whether this label exists; if it does, it always

appears directly below the panel object that it names. These labels were implemented in the

BasePanelObjectLabelClass class. In addition, it is in the base panel object that

undo functionality for any panel object is defined. Through the

BasePanelObjectUndoEvent class, the creation, renaming, or deleting of any single

panel object has been made “undoable” in a formalism-independent way.

Another important set of functions implemented by the base panel object is that of the

popup interaction methods. As stated in the base panel section, one means for user interaction

with formalism constructs is popup menus that appear when objects are right-clicked.

Different popup menus may be defined for any derived panel object. These popups should be

derived from the BasePanelObjectPopupClass, which by default allows for object

interactions such as defining, renaming, deleting, and label hiding/showing. The

getPopup() method by default returns one of these base panel object popups, but any

derived object may overload this method to return whatever popup class is desired.

53

The means by which panel objects are created is also noteworthy. Recall that an

object of each type must be passed to the panel through calls of the

RegisterPanelObjectType() method. When the user wants to create a new panel

object of a certain type, this original object’s Duplicate() method is called.

Duplicate() uses Java’s predefined clone() method to create a second instance of the

object. After the clone is created, the construct() method must be called. Cloning an

object is a memory copy. As a result, string pointers and other object references point to the

same place. It will create problems, however, because cloned objects do not refer to different

addresses. For example, all the panel objects of any given type would point to the same

location for their name, and changing that location would then change every name. The

construct() method allows the specification of new addresses for each cloned instance.

Derived panel objects should overload the construct() method to allocate space for any

fields where these problems could be encountered.

When the construct() method is called, the object does not yet have a

graphics object. A graphics object is the Java class for the storage of a visual

component’s picture. This means that some object definitions may not be performable in the

construct() method. For example, determination of font information may not be

performed until an object’s corresponding graphics object has been instantiated. As a

result, the Initialize() method is called directly after an object is placed in the panel.

Any object definitions that must be performed after the graphics class has been instantiated

may be performed through the overloading of this method.

Most likely, module designers will only need to specify vertices for their formalism

constructs, since edges have been specified in a formalism-independent manner. Even if they

do need to specify edges, these programmers will probably never need to derive any

functionality directly from the BasePanelObjectClass, since more specific classes for

vertices, edges, and edge points have already been defined in BaseVertexClass,

BaseEdgeClass, and BaseEdgePointClass respectively. The following sections

discuss each of these types of derived panel object in greater detail.

54

Vertices

Because significant functionality has already been defined in the base panel object

class, the vertices, implemented in the BaseVertexClass, simply add interactions with

connections. Since the structural models are directed graphs, vertex classes maintain lists of

the inputs and outputs specified by their connecting edges. These lists are automatically

maintained through the interaction of the base vertex with the base edge classes. However,

specification of the rules for these connections between vertices has been simplified by a set

of methods and data fields on the base vertex class.

All vertices have a ValidConnections list. This list is checked when any

connection is attempted. This list will contain the descriptions of the valid output vertex

types. These descriptions will be identical to the identification strings found on the “Panel”

menu. In addition, flags allow module programmers to specify whether vertices have no valid

outputs at all, or whether duplicate outputs are allowed. For the specification of more

complicated connection rules, the method validConnection() may be overloaded to

determine whether a connection is valid.

By default, any connection between vertices will appear to connect the middles of the

vertices’ pictures to each other. This functionality may be changed, though. In particular, a

list of the points that specify where the user clicked to initiate or terminate the connection is

maintained. Consequently, points other than the center of a vertex may be used as the

endpoints of the connector. The endpoint of the connection is passed to the method

connectTo() as specified by the user’s click location, and the method returns the point

where the connector’s end point should be drawn. If this method is overloaded, a derived

vertex may allow connections within a vertex wherever they are desired. This functionality is

used, for example, in activities with cases in the SAN editor. The following section describes

the implementation of BaseEdgeClass, the most basic connector object, and discusses the

derivation of several useful edges.

Edges and edge points

The BaseEdgeClass has been implemented as a means for allowing rapid

development of edges in the panel. Further, this class implements methods that interact with

55

vertices to maintain their input and output lists when they become connected. In addition,

three types of edge have already been defined for use in any graphical formalism.

These predefined edges are the straight connection, the connected line, and the spline

curve. Their menu items on the “Panel” menu are shown in Figure 18. A straight connection

appears as a straight line between the two vertices. A connected line is a collection of straight

lines that are attached and may turn at edge points. Lastly, spline curves are similar to Bezier

curves except that they follow the contours of their defining points more closely. Figure 19

shows examples of each of these types of edge in Möbius’s SAN editor. The classes

BaseStraightLineClass, BaseConnectedLineClass, and BaseSplineClass

are the implementations of each of these types of edges.

Figure 19: SAN Editor Edge Examples

In the case of the spline and connected line edges, the small diamonds along the edges

are examples of edge points. For the connected line edge, the points are the places at which

the straight lines that make up the connected line are connected. For the case of the spline

curve, these edge points are used to calculate all of the points that actually lie on the spline

curve that they define; therefore, they do not necessarily lie on the curve. These edge points

are also extendible, such that different edges may have different-looking edge points. The

most basic edge point is implemented in the BaseEdgePointClass. Further, the type of

Spline Curve

Straight Connection Connected Line

56

edge point for any edge is specified by the edge’s produceEdgePoint() method. This

method must return an instance of the correct edge point class. If no edge points are allowed,

for example in a straight connection, this method may return null.

All of these edges, although derived from the panel object class, are nonvisual.

Instead, their appearance is generated using BaseEdgePieceClass. These edge pieces

are capable of containing several points all connected by lines. The edges use the edge pieces

rather than simply drawing the edge in a single canvas because all Java components are

enclosed in rectangular boxes. That means that long edges are contained in large rectangular

canvases. The larger these canvases are, the longer it takes to repaint them, and the greater the

number of overlapping components. Overlapping canvases are a problem because the objects

underneath are hidden. By using multiple edge pieces to draw an edge, the repainting speed is

optimized. Edges may then implement algorithms such that a minimum number of these edge

pieces is used to draw the edge. These components are flexible so that any new derived edges

may also use them for their visual representation. The fact that straight lines, connected lines,

and splines have all been implemented using these edge pieces is evidence of their flexibility.

4.3.5. Global variables

In addition to undo lists, file menu commands, and graphical panels, many formalisms

may need to allow users to define global variables for models. Like global variables in

programs, these variables in models are defined outside any particular part of a model. Thus,

they allow information to be shared across the entire model. To make this easy, global

variable declarations have been implemented in the BaseEditorClass. In the Möbius

tool, studies allow ranges to be predefined on these variables. Consequently, the variables

may be left undefined in the model itself, and then used as parameters later to easily alter a

model’s specification for comparison.

In order for an editor to create and provide access to global variables, its constructor

must call the enableGlobalDeclarations() method. This method will add a

“Globals” menu to the editor’s menu bar. This menu contains two menu items. One menu

item allows global variables to be declared, and the other allows the global declarations to be

removed. Two lists on the editor, localGlobalNamesList and

57

localGlobalTypesList, maintain the names and types of any global variables that are

declared in the current module.

The implementation of these global variables at the model specification level is

simple. Any model specification in which global variables are used must simply declare an

external variable of the correct type and name. Since a study is required on any solvable

model in the Möbius tool, the study declares these global variables in a separate file. Model

specifications are linked with these global variable declarations during compilation.

4.4. Information Classes

The information class implements communication between modules. In addition, it

contains methods that the Möbius tool uses for the creation of executable models. The class

that implements the information portion of the module is the

Mobius.BaseClasses.BaseInfoClass. This section describes how compilation and

communication are done in the Möbius tool to aid the designers of new modules.

4.4.1. Compilation

As said in Section 4.2.6, the compile() method on the information class is called

prior to the compilation of the model. In the base information class, this method is empty,

since the functionality associated with this method is completely formalism-specific. On each

derived module, this method must generate C++ files that represent the structural model

specified in the module’s editor.

In addition, the compile() method must generate a makefile that compiles these

files into an archive and place the archive in the correct architecture directory in the

.mobius/lib directory. Generation of makefiles in the Möbius tool is done by the

MakeFileWriter class. This class takes as input the list of model code files and the name

of the archive to compile, and then generates a makefile that will work correctly within the

Möbius file structure.

Because of the modularity of models, parent models must include the header files of

the models they contain. Further, solvers require the names of every model’s compiled

archive so that they may be linked into a single solvable model. To support requirements such

58

as these, information classes must support methods to exchange information concerning the

generated code and compiled archives for a model. To exchange compilation information,

every derived information class must support five methods. In the BaseInfoClass, each

of these methods is declared abstract; module designers must define them before the derived

information class may be instantiated. Specifically, the methods are as follows:

• getListOfHeaderFiles(): This method must return a list of header files (.h

or .hpp), with the path included, that are the C++ specification of the model.

• getListOfCodeFiles(): This method must return a list of code files (.cpp),

with the path included, that are the C++ specification of the model.

• getMakefile(): This method must return the name of the makefile to execute

in order to create an executable model.

• getArchiveFile(): This method must return the name of the archive into

which the makefile places the executable model.

• getRequiredArchives(): This method must return the list of archive files

that contain the formalism specification for the type of module.

4.4.2. Communication

The information that is communicated between modules, as well as the motivation

behind the communication of that information, will be described in this section. All of the

methods necessary for module communication are declared abstract in the

BaseInfoClass. Like the compilation methods, module communication methods must be

defined in each module.

In order to understand the methods, it is important to recall that there are three basic

components of any model at the most abstract level: state variables, actions, and models. The

information class for any module is required to support methods that return specific

information concerning the state variables, state variable names, names of actions in the

model, the list of submodels that a model contains, and the list of interface classes that

correspond to those model names. Furthermore, any valid information class must support

methods that return the names and types of the global variables declared in the submodel.

These methods return a list of sets of global variable names or types respectively. The list is

59

indexed exactly like the list of models, and each set contains the global variable names or

types that were defined in the corresponding model. In this way, all global variables declared

in a model are determinable, as is the specific model in which they were declared. These

methods are useful during the declaration of global variables within parent modules, since

they ensure that all globals of a particular name are defined to be of the same type.

Specific types of information class within the tool may support other communication

methods in addition to these. For example, the Möbius simulator accesses a list of

performance variables in the Möbius performance-variable-model constructor in order to

determine which are terminating and which are steady state variables. Such implementations

may limit a module’s flexibility, but may enable modules to work together more efficiently.

Consequently, formalism designers must make sure not only that the abstract information

methods are overloaded, but also that any methods required by potentially interacting modules

are defined.

60

5. CONCLUSIONS AND FUTURE RESEARCH

This thesis has presented an architectural approach for developing modular and

extensible applications, and showed how this approach was used to develop the Möbius

performance/dependability evaluation tool. Within the tool, modules for both model

construction and solution have been developed. Further, the model construction in the tool

has been implemented using the Möbius framework’s flexible notion of model specification.

This enables models to be specified modularly, and allows solvers to act upon models without

any specific knowledge of state. The core implementation of the Möbius tool developed in

this thesis consisted of the implementation of the control panel, the base module functionality,

and a library of additional supporting classes.

The control panel has been developed as the tool’s main application. It allows new

modules to be added or removed dynamically. Further, it provides a place from which any

accessible module type may be launched. Modules are the tool’s functional units for model

construction or solution. Module implementation has been divided into three functionally

distinct classes: the interface, editor, and information classes. So that new modules may be

designed with minimum effort, basic versions of each of these classes have been implemented

with much of the formalism- and solver-independent functionality. The base interface classes

support module saving, opening, loading, and dependency maintenance. The base editor class

implements undo and file menu functionality, and also provides extensible formalism-

independent graphical interface objects. The information class specifies communication

methods that modules must support which allow the exchange of both model- and

compilation-specific information. In addition to those classes, supporting classes that correct

some of Java’s errors, provide platform independence, and allow for rapid GUI development

have also been implemented.

The proof of how easy it is to develop modules has been shown through the

implementation of a SAN editor, a replicate/join composer, a reward model constructor, set

and range study editors, a distributed simulator, a state space generator, and several numerical

solvers. All of these modules were developed in a short period of time once the Möbius tool

architecture had been implemented. As a result, we are confident that it will be easy to extend

61

the Möbius tool using the results of new research. A few specific examples of this research

that could enhance the work developed in this thesis include:

• The implementation of functionality to make graphical editors more useful, such as

double buffering schemes that optimize panel refreshing speed and zoom

capabilities for model visualization.

• The implementation of serialization methods such that saved model information

may be minimal.

• The implementation of compilation and file structure support for non-UNIX

systems.

Examples of research that could be used to enhance the tool in a more general way

include:

• The development of more complicated connected models, not only to expand the

scope of systems that may be modeled, but also to show the flexibility of the

Möbius framework.

• The development of additional atomic formalisms in order to show that the

Möbius framework allows for different notions of state to be shared.

62

APPENDIX: MÖBIUS TOOL FILE STRUCTURE

There are several types of file to discuss with respect to the Möbius tool. These are

initialization files, configuration files, module data files, and executable model specification

files. All of these files except the module data files are organized in a .mobius directory

that exists in each user’s home directory. The .mobius directory is organized as shown in

Figure 20. It contains initialization files for specification of startup parameters, a temp

directory for storing useful information during execution, and a lib directory that is designed

for architecture-specific executable model specifications. Within the lib directory, a

directory will exist for each architecture on which a model has been compiled. The

architecture directory, in turn, contains a compiled archive file, which contains an executable

model compiled for that architecture.

Figure 20: Möbius Tool File Structure

Module data files contain structural descriptions of model-specific information, as

well as information concerning model dependencies and information regarding the files

necessary for model compilation. In addition, these files are stored in a module-specific

format. These files may be stored anyplace where a user has read/write access within the file

system, and it is the user’s responsibility to organize them efficiently.

.mobius

Initialization files

temp

lib

architecture 1

architecture 2

Model1.a

Model2.a

Model1.a

Model2.a

Directory

File

63

REFERENCES

[1] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Englewood Cliffs, NJ:

Prentice-Hall, 1981.

[2] W. H. Sanders, “Construction and solution of performability models based on

stochastic activity networks,” Ph.D. dissertation, The University of Michigan, Ann

Arbor, Michigan, 1988.

[3] UltraSAN User’s Manual Version 3.0, University of Illinois, 1995.

[4] F. Bause, “Queueing Petri nets: A formalism for the combined qualitative and

quantitative analysis of systems,” in Fifth International Workshop on Petri Nets and

Performance Models, Toulouse, France, October 1993, pp. 14-23.

[5] R. A. Sahner, K. S. Trivedi, and A. Puliafito, Performance and Reliability Analysis of

Computer Systems: An Example-Based Approach Using the SHARPE Software

Package. Boston: Kluwer Academic Publishers, 1996.

[6] D. D. Deavours, “The Möbius framework,” unpublished, in progress.

[7] W. D. Obal II, “Measure-adaptive state-space construction methods,” Ph.D.

dissertation, The University of Arizona, August 1998.

[8] J. M. Doyle, “Development of the Möbius abstract model specification,” M.S. thesis,

University of Illinois, Urbana, IL, in progress.

[9] J. Sowder, “State space generation techniques in the Möbius modeling framework,”

M.S. thesis, University of Illinois, Urbana, IL, 1998.

[10] A. Williamson, “Discrete event simulation in the Möbius modeling framework,” M.S.

thesis, University of Illinois, Urbana, IL, 1998.

[11] D. Flanagan, Java in a Nutshell: A Desktop Quick Reference, 2nd ed. Sebastopol, CA:

O’Reilly & Associates Inc., 1997.

