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ABSTRACT

In modeling, analytical solutions to models of complex systems can often be obtained

by creating the state-space of a model and then solving this behavioral representation using

numerical techniques.  However, in generating such state spaces, two difficulties arise: the

prohibitive amount of computer memory needed to store large state spaces, and the large

amount of time needed to generate the state-space.  In addition, the algorithms used for state-

space generation are generally tailored only to a specific modeling formalism. The work

presented here addresses these issues using a new toolkit named Möbius.  The goal of the

Möbius project is to develop an object-oriented, formalism-independent, stochastic modeling

framework, and implement the framework in a practical, usable performance/dependability

evaluation tool.

  Use of the Möbius framework permits the state-space generator to be implemented in

a formalism-independent way, since the framework defines the properties of state and

actions.  Exponential, deterministic, and instantaneous action types are supported in the

implementation of the state-space generator.   To reduce the memory required and the time

needed for state generation, efficient data structures and fast output file generation methods

were used. The performance of the state-space generator implementation is promising and

allows the analysis of large and complex models.  By using the Möbius framework, the state-

space generator implementation also provides a basis for easy extensions and feature

addition.
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1. INTRODUCTION

1.1. Modeling Overview

The use of prototypes is common in industry for the analysis of complex systems.  The

benefit of building a prototype is that it can effectively mimic the behavior of the system

before final production.  This allows for the analysis of the performance and dependability of

the system before commitment to a final design.  However, modern systems are often too

complex to prototype in the early development stages.  For these systems, computer modeling

and analysis are also useful.  By using the solutions to a model of a system, a designer can

predict performance and diagnose problems and flaws earlier than would be possible if

prototyping were the sole evaluation method.

 Generally speaking, there are three modeling solution methods used to compute

information about a system being modeled: closed-form solutions, numerical solutions, and

simulation.  Closed-form solutions are mathematical descriptions of the measured property

written as a function in closed form.  While using a closed form is ideal, it is generally

impossible to determine one for all but the simplest models.  Conversely, when a closed-form

solution is not available, a simulation may be used to examine the model.  Simulation is a way

of numerically exercising the model for the inputs in question to see how they affect the

output measures of performance [1].  In other words, a simulation samples the random process

and observes the resulting behavior.  With enough samples, the measures can be estimated

with a certain level of confidence.  While simulation can solve any model through this “brute

force” approach, it becomes less practical for estimating measures based on events that are

rare, because of the large number of samples necessary.

An intermediate approach to model analysis is to use a stochastic process to represent

the system and solve the process numerically.  These processes are often expressed with a

high-level modeling formalism such as stochastic activity networks (SAN) [2] and converted

into a state-level representation through a method called “state-space generation.”  State-space

generation is an algorithmic way of producing the desired stochastic process of a model given
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some higher-level, more abstract representation of the model.  This behavioral model

representation is then solved by one of several numerical techniques depending on

characteristics of the behavioral model and on the type of measure the modeler is interested in

analyzing.  This solution method is called a numerical solution method and is important in

model analysis because it produces fast, extremely accurate results for moderately complex

systems with rare events, for which simulation is impractical.  In addition, with moderately

complex systems, numerical results can often be produced with higher accuracy in less time

than they could be with simulation.

1.2. Möbius Overview

Many modeling tools are currently available that can be used to represent a system in a

compact high-level representation, generate a state-space from the high-level representation,

and then use numerical solutions or simulation to determine properties of interest.  Examples

of such tools include UltraSAN [3], HiQPN [4], and DSPNexpress [5], among others.  Each of

these tools is based on a single high-level modeling language or formalism.  The algorithms

used for solution and analysis of these modeling languages may be fast, but are often tied

closely to the high-level representation that the particular tool uses.  Ideally, a modeling tool

would have the ability to use many modeling languages to represent systems and use a generic

yet complete set of modeling primitives.  The SHARPE modeling tool [6] allows multi-

formalism models, but limits interactions between models to results passed after model

solution, and does not permit sharing of states and events between models.  Result sharing

allows solution methods specific to each formalism to operate on each model, but does not

allow general solution methods to operate on a combined, multi-formalism model.  The

Möbius modeling framework allows more general interaction between models, while at the

same time supporting multiple formalisms and a wide variety of solvers.

The Möbius approach does not prescribe a particular modeling formalism, but rather a

framework to support a diverse set of formalisms.  As long as a formalism can be expressed in

the framework, it can be supported in Möbius.  The Möbius framework consists of a basic set

of modeling primitives including “models,” “states,” and “actions.”  Each basic component

has associated functions defined on it to allow for model execution.  Using the framework,
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each component can be used to define how a model using a specific formalism can act.  Thus,

the Möbius framework says what the components can do, not how they do it.  For example,

“firing” an action in a model changes state, but how it changes state depends on the

formalism, the model, and how the “firing” was defined.

The Möbius framework components have been implemented in a tool referred to as the

Möbius tool.  The Möbius tool is written in C++ and Java.  Java was chosen for its property of

rapid interface development due to its assortment of predefined classes and libraries.  C++

was chosen for the state-space generator since C++ is compiled and thus produces code that

executes fast.

1.3. Research Objectives

Four areas of research within the Möbius tool are presented in this thesis: compact and

efficient data structures for state generation that produce fast execution and low memory

usage; a formalism-generic state generation algorithm, support for deterministically and

exponentially distributed and instantaneous actions, and an interface in the Möbius tool that

aids in producing the state space of a high-level model.    The main objectives of the work are

to examine performance results of the new algorithms as well as to provide theory and insight

into additional state generation techniques.

  The rest of the thesis is organized into five chapters.  The second chapter presents a

more detailed explanation of the Möbius modeling framework, highlighting its interaction

with the state-space generator.  The basic modeling building blocks are explained there, as are

all of the model types within the Möbius tool.  The second chapter also includes an overview

of stochastic processes for exponential and deterministic distributions.  The third chapter

describes and explains the formalism-generic state generation algorithm. In Chapter 4, a

detailed description of the implementation of the state generation application is presented.

Chapter 4 emphasizes the data structures used in the implementation.  In Chapters 5 and 6, the

results, conclusions, and future work are discussed.   In Appendix A, the user’s manual for the

state-space generator tool is presented.  Finally, Appendix B details the output file formats

that can be produced by the Möbius state-space generator.
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2. MÖBIUS FRAMEWORK

The Möbius framework defines an extensible modeling environment that supports a

diverse set of formalisms.  A fundamental part of the Möbius modeling framework is the

“formalism-generic” interaction between the model and the solution mechanisms.  Of specific

interest to the state-space generator is the path from “atomic” model to “solvable” model.  In

this chapter, definitions and explanations of each model type in the Möbius framework are

presented.  Also, the basic model components “state” and “action” are explained.  Finally, in

the last section of this chapter, the output of the state-space generator, a stochastic process,

will be reviewed to help the reader understand the state generation algorithm described in the

next chapter.

2.1. State Variables

State variables are entities that have a value and a type associated with each of them

and are the basic building blocks of a model.  An example of a state variable is a place in a

stochastic activity network, where the value is the marking of the place and the type is a

natural number.  In a model, the set of all state variables and their values represents the “state”

of the system.  In the Möbius tool, for example, functions used on state variables include

statesize(), setstate(), and currentstate().  These methods define the

physical size the state occupies in the executable version of the model (memory size), a

method to set the state variable to a particular value, and a method to return the value of all

the state variables in a model at a given time, respectively.

A key feature of this definition of state in the Möbius framework and tool is that it

allows for state to be implemented in a potentially complex way. For example, the state of a

model could be defined as the collection of all markings in a stochastic activity network

combined with the values in a queuing network.  The only restriction is that the value and the

type of the state variables must be precisely defined.
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2.2. Actions

Actions are the state-changing entities of a model. Within the framework, support is

provided both for timed actions, which are actions that complete in a specified amount of

time, and for instantaneous actions, which are actions that complete in zero time.  The exact

implementation of the action specification, including details of the enabling functions,

distribution parameters, and state-changing functions, is left to specific formalisms.  The

Möbius tool simply provides a set of data members and methods that must be defined on the

model primitives by the formalism designer in order to describe the execution of models

within the formalism.  For example, in a stochastic activity network, the enabling function,

reactivation methods, and distribution type must be defined in order for a SAN model to

execute.

An important aspect of actions in the Möbius environment used by the state-space

generator is the use of “ranks” and “weights.”  The rank of an action is defined as the priority

of an action within a “group.”  The weight of an action is the relative importance of an action

as compared to other actions in a “group.”  In state generation, weights are used to

probabilistically determine certain exploration paths.  For example, in a SAN, weights are the

equivalent of cases on activities.  Ranks are used by the state-space generator to break ties

when two or more instantaneous actions are “enabled” in the same state of the system.  An

action is said to be enabled if in the current state the action is allowed to fire or execute the

state-changing function associated with it through the Möbius framework.  Chapter 3 explains

in more detail the use of ranks and weights within the state generation algorithm.

A useful extension available as a result of the existence of the rank and weight

attributes of actions is the creation of action “groups.”  Groups are sets of actions combined

together for selection purposes.  Groups are mainly used in the context of simulation of the

model, as described in [7].  In simulation, groups behave as actions, but selection of specific

actions within the group may occur as a result of model execution.  Action composition

allows for policies to be developed that define when actions within groups are selected and the

processes by which the selection occurs.  In the context of the state-space generator, groups

are used in the calculation of the total weight of a group when determining the probability of

an action firing, as explained in Chapter 3.  For example, in stochastic activity networks,
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activities have cases, which are used to choose probabilistically between possible paths of

execution.  In Möbius, a SAN activity with cases is represented as a group of activities such

that each activity’s weight corresponds to the case probability.

2.3. Models

Within the Möbius framework, models are made up of actions and state variables.

Four types of models are supported in the Möbius framework: “atomic,” “composed,”

“reward,” and “connected.”   Atomic models are the basic building blocks of any larger models

that are developed using only one formalism.  Combinations of models using single or

multiple formalisms are called composed models.  Composed models allow creation of new

complex system models, using the most appropriate formalism for each component.  Not only

do composed models facilitate the specification of complex combinations of models, but they

also enable exploration of the model structure to obtain a more time- and/or space-efficient

solution.  Models joined through results are called connected models.  Connected models can

be used for model interaction through results passed after model solution, as found in

SHARPE [6].

Defining “reward variables”  on these composed or atomic models allows the various

analytic and simulation solution methods to solve for the behavioral characteristics of the

model.  Reward variables are a method for defining functions on the state of a model.  A

model containing reward variables and other model(s) is called a reward model.  Reward

models contain methods for specifying reward variables in terms of the underlying model’s

state.  Reward models may also have additional notions of state.  For example, using

stochastic activity networks, a reward model may add state to the model for storing impulse

reward information.

Once reward variables are defined on a model, the model is said to be solvable.

Certain parameters within a solvable model may be varied during execution by creation of

studies.  These studies allow variables within the model to change; each variation is called an

experiment.  Thus each study may contain multiple experiments that change the model’s

parameters such that the user can analyze the model under many different conditions.

Analytical solution methods and simulations may then be used to analyze the derived solvable
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model and the experiments defined on it.  The state-space generator uses a solvable model to

generate a stochastic process, which can be solved numerically, as is explained in detail in the

next section.

2.4. Stochastic Process Overview

Through the state-space generation, a stochastic process representing the behavior of

a solvable model is created.  Then, well-established numerical techniques can be used to solve

this stochastic process for measures of interest as specified by the reward variables of the

model.  While many types of stochastic process exist, only a few can be solved numerically.

This section will describe two stochastic process types that can be generated by the Möbius

state-space generator: Markov processes and Markov regenerative processes.  A complete

formal definition of the Markov and Markov regenerative processes will not be presented.

Instead, a brief overview of the mathematical background will be provided, and details needed

for state generation will be examined.

Stochastic processes are mathematical models useful for the description of random

phenomena as functions of a parameter that usually has the meaning of time (exclusively time

for the Möbius tool).  More specifically, a stochastic process is a family of random variables

{ X(t), t ∈T} defined over the same probability space, indexed by the parameter t, and taking

values in the set S.  The values assumed by the stochastic process are called states, so that the

set S is called the state space of the process [8].

One type of stochastic process generated by the Möbius state-space generator

represents a Markov process.  Markov processes have the following property:

which is known as the Markov memoryless property.  A stochastic process for which this

condition holds is known as a Markov process.  In words, the condition says that the future

evolution of the process from the instant of time tn on is independent of the past history of the

process; the future depends only on the current state of the process.  Models containing only

timed exponentially distributed and instantaneous actions produce Markov processes.
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Another important class of processes produced by the Möbius state-space generator is

that of Markov regenerative processes.  A Markov regenerative process has the property that

at some time points the process (probabilistically) restarts itself [9].  Informally, there is a

sequence of embedded time points at which the Markov memoryless property is satisfied.  At

these time points, future behavior of the process is independent of the past behavior.  Models

containing instantaneous actions and timed actions with exponential and deterministic

distributions produce Markov regenerative processes.   The only limitation imposed on a

model is that only one deterministic distribution can be enabled for any state of the model.

When numerical techniques are used to solve a model, specific details of the Markov

or Markov regenerative process are needed.  For the Markov process representation, the state-

space generator partially outputs the state transition-rate matrix (sometimes called the

infinitesimal generator matrix) Q, defined as

where qij is the rate of the process from state i to state j.  The state-space generator does not

directly produce the qii entries since they are easily obtained by a summation of the qij entries.

This form allows the state occupancy probability vector (a vector containing a list of all the

probabilities of being in a certain state of the process at a given time) to be solved using a

variety of numerical techniques for both steady-state and transient solutions.

 The output representation produced by the state-space generator for a Markov

regenerative process is similar to that produced for a Markov process.  This representation is

solver-specific and was originally implemented in [10].  To express the regeneration points, a

similar state transition-rate output is produced in which the probabilities of each next tangible

state are output.  Thus the output is a hybrid state-transition rate matrix with rates being

replaced by probabilities when a deterministic action is enabled.  These probabilities are

appended with a minus sign so that the numerical solver can distinguish rates from

probabilities.

i
ij

ijii

ij

qqq

Sj,i      ]q[Q
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3. STATE GENERATION ALGORITHM

In this chapter, a detailed description of the state generation algorithm used to generate

the underlying stochastic process from a model will be explained.  A formalism-generic

algorithm is presented in terms of the methods defined in the Möbius framework.  In the

context of this chapter, the term method is used as a way of compactly expressing details of

the algorithm, not implementation-specific functions.  The state generation algorithm is

divided into two parts.  The first part is the main state generation algorithm that determines all

states of a model in a breadth-first manner.  The second part specifies precisely how to

determine next states when timed and/or instantaneous actions are enabled in a specific state.

1           At = { αt0,αt1,…} // At is the set of all timed actions in the model
Az = { αz0,αz1,…}  // Az is the set of all instantaneous actions in the model
S = { ∅}  // S is the set of generated states
U = { µ0} // U is the set of unexplored states, µ0 is the initial state
NS = { ∅}              // NS is the set of next states
5 While U ≠  ∅
6 

For some µ ∈ U
NS = { ∅}
NS = ComputeNS(µ , p=1)  using Algorithm 2

// p is a probability
ComputeReward(µ)

10 ∀ ns ∈ NS
      if ns ∉S
              S = S ∪ ns

                   U = U ∪ ns
          End ∀

15 U = U - µ
End For

While end

Figure 1: State-Space Generation, Algorithm 1
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Algorithm 1 (see Figure 1) uses five sets to determine all states in a model: the set of

timed actions (At), the set of instantaneous actions (Az), the set of “generated” states (S), the

set of “unexplored” states (U), and the set of next states (NS).  The sets of timed and

instantaneous actions are used in Algorithm 2.  The explanation of these two sets is left until

the explanation of Algorithm 2.  The set of “generated” states contains all unique states that

have been produced at any point in time by the state-space generator.  Generated states are

those “tangible” states that have been found using the ComputeNS method.  A tangible state is

a state that has no instantaneous actions enabled in it.  The unexplored set contains all tangible

states that have not been used by Algorithm 2 to determine all tangible next states.   The set of

next tangible states found by using Algorithm 2 is stored in the NS set.  These five sets are

used to determine all tangible states for a model.

After initialization of the five sets in the algorithm, the main while loop in which

unexplored states are generated is entered.  First, some state in the unexplored set is picked.

Initially, this is the initial state of the model.  Then, Algorithm 2 is used to determine all

tangible next states of a state µ through the method ComputeNS, which takes as input a state

and a probability.  Initially, the probability value is set to 1 to determine rates from one

tangible state to another as explained in Algorithm 2.  Algorithm 2 is presented in Figure 2.

Before explanation of the policies for execution of Algorithm 2, the Probability

method will be presented. The Probability method is used to determine the probability that an

action will fire in a certain state of the model.  Probability takes an action as input and returns

the probability of this action firing in the current state of the model.  The probability of each

enabled action is determined using the weight method on an action and the equation below.

The probability is used to determine rate values between tangible states.  The StoreQ

method is called to store the rates in the state-transition rate matrix representation output by

the state-space generator.  When the model produces a Markov process (i.e., only exponential

timed and instantaneous actions are present) then the rate to a next state can be represented by

the multiplication of all probabilities from one tangible state to another by the rate of the

()Weight......()Weight.()Weight.Weight().

()Weight.
)y(Probabilit

z210

z
z αααα

αα
++++

=
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action enabled in the previous tangible marking.  In the current implementation, two or more

1 ∀ αt ∈ At

               If αt.Enabled()
        µi+1 = αt.Fire(µi)
     p = p*Probability(µi)

                           If Az  ≠ ∅ and PathLength() < MaxPathLength
5               ∀ αz : αz.Enabled()

           While αz.NumberEnabled() > 0
     Case 1:    // one enabled

    µi+1 = αz.Fire(µi)
      Case 2:  // more than one enabled

10        ∀ αz ∈ Az : αz.Enabled() : αz..Rank() = αz+1.Rank()
         SetState(µi)
       µi+1 = αz.Fire(µi)

goto line 4, µi =µi+1, p = p*Probability(αz)
     End ∀

15      Else
                  αz = HighestRank(αz, αz+1)

            µi+1 = αz.Fire(µi)
       

      End While
       End ∀
       Else StoreQ(p)

20             End ∀

Figure 2: Next Tangible State Computation, Algorithm 2

instantaneous actions enabled by a state change from a deterministic action are not allowed.

Algorithm 2 shows how the set of all next states is computed given a state of the

model.  The algorithm uses the sets At and Az.  These sets contain all the timed and

instantaneous actions of a model.  These actions are split into two sets, since different

execution methods are needed for each type.  If the current state of the model only contains

enabled timed actions, then the next state is determined by calling the Fire method on an

action.  The Fire method on an action takes a state as input and returns the new state by

executing the action’s state changing function.  The method is executed for every timed action
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that is enabled given the state µ of the model. However, if instantaneous actions are enabled, a

more complex state-changing algorithm is employed.

While instantaneous actions are enabled, the model continues to change state

according to the specific instantaneous action being fired.  With respect to the firing of

instantaneous actions, there are two possible cases: there is one enabled instantaneous action,

or there are two or more enabled instantaneous actions.  If two or more instantaneous actions

are both enabled in the current state, then an “execution policy” must be used to determine

which one is allowed to fire.  The Möbius framework defines the execution policy in the

context of the state-space generator as the process in which model execution is determined

when instantaneous actions are enabled.  The Möbius state-space generator uses ranks and

weights in this policy.  Specific to the algorithm, if more than one instantaneous action is

enabled, the first step in the model execution is that the method Rank is called on the action.

The Rank method returns the rank of an instantaneous action within the model.  The

instantaneous action with the highest rank is then fired.  However, if two instantaneous

actions have equivalent ranks, then Algorithm 2 is recursively applied until the next tangible

state is determined.  The variable p is modified at each recursive step by multiplication of the

new probability found through the Probability method by the old value.  This value is then

used in determining the overall rate for a Markov process, or probabilities for a Markov

regenerative process, from one tangible state to another.

When only one instantaneous action is enabled, the Fire method executes and returns

the new state.  Once the new state is returned from this part of the algorithm, the check for any

enabled instantaneous actions, line 4, is repeated.  The algorithm then recursively continues

while any new instantaneous actions are enabled until all tangible next states are found.  The

number of recursions, however, is limited to MaxPathLength to allow for practical

implementation.   After all tangible states are found, Algorithm 2 returns the set of all next

states of the model given a current state as input.

After returning from Algorithm 2 with the set of next states, Algorithm 1 first calls the

method ComputeReward with the current state µ as input to determine the reward of state µ of

the model.  The ComputeReward method is defined on a reward model in the Möbius

framework, which allows for formalism-independent reward gathering.  After reward
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computation, all next states determined by Algorithm 2 not yet explored are added to the

unexplored set.  This algorithm continues until the unexplored set is empty and thus all

tangible states of the model have been determined.  The algorithm returns the set S which

contains the set of all tangible states of the model.   The implementation of the state-space

generator algorithm in the Möbius framework is presented in Chapter 4.
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4. STATE-SPACE GENERATOR IMPLEMENTATION

In this chapter, we will discuss the implementation of the state-space generation

algorithm presented in Chapter 3.  The Möbius state-space generator implementation has two

main components: a C++ solution engine and a Java interface.   As shown in Figure 3, the

execution of the C++ state-space generator solution engine is done in three phases:

initialization, state and reward generation, and output formatting.    We first discuss the

initialization stage, which performs the setup required for the model interaction and initializes

the data structures.   The next section of the chapter discusses the state and reward generation

execution stage.  In that section, a more detailed description of the data structures used in the

implementation as well as discussion of the implementation of deterministic actions is

presented.  The output-formatting stage is then discussed.  That section describes the different

representations for the state-transition rate matrix produced by the state-space generator.  The

chapter concludes by discussing the Java interface used to interact with the C++ solution

engine.

Figure 3: Execution Flow Diagram

4.1. Initialization

In the initialization stage, several steps occur to set up values and parameters needed

by the state-space generation routine.  The initialization steps in the state-space generator

implementation are important since they set up the generic interaction between a model and

the state-space generator, and more specifically the interaction with actions in the model.  As

shown in the first algorithm of Chapter 3, the state-space generator needs two lists

Initialization
State and
Reward

Generation

Output
Formatting
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corresponding to the two kinds of actions: timed and instantaneous.  These lists are formed by

using data members defined on actions that flag the type of action being represented.  Once

the lists are made, the list of timed actions is scanned to determine the distribution types of the

actions.  Determination of a model’s action types allows the state-space generator to ascertain

whether all actions are of types supported in the state-space generator.  Determination of the

action types also makes it possible to use optimized routines for models with certain actions.

 The initialization stage also allocates an initial block of memory to each data

structure.  The size of these blocks is fairly large, to avoid the significant overhead that would

be caused by many additional allocations during state-space generation.  The state-space

generator also initializes the output files used to store the state-transition rate matrix and

associated reward.  In order to minimize the amount of data that must be kept in main

memory, these files are written to disk during the state and reward generation stage of state

generation.  The files are then converted to the desired output format in the output-formatting

stage.

4.2. State and Reward Generation

After initialization, the next stage of execution is the state and reward generation.

Three issues are discussed in this section with respect to the state and reward generation stage:

the interaction between models and the state-space generator, the data structures used to store

and look up states, and the issues related to supporting deterministically distributed actions.

More specifically, the first subsection describes the generic interface of the state-space

generator that allows the formalism-independent state generation algorithm to be

implemented.  The second subsection presents the two data structures used in the generation

algorithm: a hash table and a queue.  Finally, we discuss how deterministic actions are

supported in the state-space generator.

4.2.1. Model interaction

The Möbius state-space generator interacts with models in a formalism-independent

way.  Three methods are used to do this: SetState(), CompareState(), and Fire().

SetState() sets the current state of the model to the input passed to this method.
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CompareState() takes two states as input and returns true or false depending on whether

they are equal.  Fire() takes an action as input and returns the new state of the model after

this action is fired.  The state-space generator obtains implementations of these methods from

the reward model.  These methods, defined on the reward model, allow the state-space

generator to interface indirectly with many types of models, including composed and atomic

models.

In addition, the state-space generator interacts with the reward model by use of two

methods, Reward() and Impulse(), that compute the reward associated with particular

states in the model.  The two methods are the implementation of ComputeReward as used in

Algorithm 1 of Chapter 3.  Specifically, the Reward() method returns the reward rate for a

specific state.  The Impulse() method returns the impulse reward associated with the firing

of a certain action in a model.  During the state-space generation, the values returned by the

Impulse()and Reward() methods are output to a file to avoid the need to hold the set of

rewards for all states in memory at once.  After the state and reward generation stage has

completed, the file contains all reward values for every reward variable for every state in the

model.

4.2.2. Data structures

A main limitation of state-space generation of large models is the prohibitive amount

of time and memory needed.  The choice of particular data structures to use in the state

generator is thus very important.  This section explains the data structures used to store the set

of generated and unexplored states.  Due to its fast lookup and insertion time, a hash table is

used to store the set of generated states due to its fast lookup and insertion time.  A queue is

used to store the set of all unexplored states, since it provides constant insertion and deletion

time.
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Figure 4: Hash Table Data Structure

Hash Table

The data structure used to store the set of generated states must have fast lookup and

fast insertion time.  Fast lookup time is needed since a lookup must occur for every state

generated to determine whether the state is in the set of generated states.  Also, each new state

generated must be inserted in the generated set to be used in future comparisons.  In addition

to being fast, the data structure used to store the set of generated states must use as little extra

memory as possible, beyond that required to store the states themselves.  A hash table was

chosen for this data structure because given an efficient hash function, it has fast lookup, fast

insertion, and uses memory conservatively.

A pictorial representation of the hash table and associated data structures is shown in

Figure 4.  The figure shows the two components of the data structure: the hash table and the

state arrays that contain the states themselves.  The hash table holds 32-bit values used to

determine where a state can be found in the state array structures. The state arrays are of fixed
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stored in the hash table contain the ID and index information needed.  The first 24 bits (bit

positions 0-23) of each value represent the index into a state array, and the remaining 8 bits

(bit positions 24-31) represent the state array ID.

To determine the hash key, which is the index into the hash table to use when either

storing newly generated states or searching for a specific state, we use a hash function on the

state.   To preserve the time efficiency of the hash table data structure, it is important to find a

hash function that produces few collisions.  Collisions occur when use of the hash function on

two states produces two identical outputs, and thus two identical indices into the hash table.

It is not straightforward to determine a hash function for the Möbius state-space

generator that produces few collisions, since no information about the structure of the state is

accessible to the state-space generator and the size of the state being hashed is not known in

advance.  To build an efficient and useful hash function given these constraints, one must

define a function that considers the state as a block of memory, but assigns a known structure

to the memory.  This is done by breaking each state into a set of 1-byte values.  These values

are then used as input to the hash function.  The hash function also depends on the order of the

1-byte blocks and is adaptable to any state size.

In particular, the hash function computes a polynomial function (of degree 32) by use

of Horner’s rule [11].  The hash function is defined as

where StateSize is the number of 1-byte blocks of state and State contains the 1-byte state

values.  The hash function computes a 32-bit key by summing all values from 0 to StateSize-1.

At each step of the summation, the 1-byte state values are multiplied by 32 raised to the power

of i to distribute the 1-byte state values over the 32 bits of the hash key.  After the key is

computed, the index into the hash table is taken to be the modulus of the hash key and the

hash table size.  The modulus is taken to produce an index within the size of the hash table.  It

should also be noted that the hash table size is a prime number so that the hash function will

distribute well over the entire hash table [11].  In the actual implementation of the state-space

generator, the summation is replaced with a bitwise exclusive-or to reduce the time necessary
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to compute the key.  If the state size is not larger than 6 bytes, then the hash function is

directly executed, varying i from 0 to the StateSize-1, to obtain the hash key.

However, if the state has more than six 1-byte values, then some information may be

lost due to the multiplication.  Thus, in the Möbius state generator, each state must be brought

within the range, which is 6 bytes.  For this purpose, the state is broken up into 6-byte

partitions, upon each of which the hash function is then executed.  The hash key is then

formed by taking the exclusive-or of the output of the hash function for every one of these 6-

byte partitions.

Even though a relatively collision-free hash function is implemented in the state-space

generator, a collision policy must be used when states hash to the same position in the hash

table.  To solve this problem, the state-space generator implements a quadratic probing

collision resolution strategy using the function

where j is the number of collisions.  This function specifies a new index to go to when a

collision occurs.  For insertion, new indices are computed until an empty position is found.

For a lookup, all states that are reached must be compared to the next state until either a match

occurs (the state is not a new state), or an empty position is reached (the state is a new state,

and should be added to the table).

If a hash table size that is a prime number is used, the quadratic probing procedure

described in the last paragraph is guaranteed to terminate if the table is at least half empty

[11].  If a prime number hash-table size is not used, the procedure may loop and never

terminate.  For this reason, rehashing (described next) is done when the table becomes half

full.  Quadratic probing also has the desired property of reducing “primary clustering.”

Primary clustering [11] occurs when keys hash into a cluster of values in the hash table

requiring several attempts to resolve the collision, thus reducing overall performance.

Another important design decision when using a hash table is the hash table size.

Unfortunately, with state generation, there is generally no way to determine a priori the

number of states that will be generated before the states are actually produced.  Thus, the

state-space generator needs to be able to reassign hash table sizes dynamically.  This dynamic

12)1()( −+−= jjfjf
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resizing is called rehashing.  When the hash table fills to a specified level (usually 50% or

less; the percentage can be specified as an input parameter to the generator), a new table is

allocated, all its keys are rehashed using the new hash table size, and corresponding values are

stored in the new hash table.  The new table size is prime and is approximately double the

previous table size.  Although rehashing does take time, the results in Chapter 5 will show that

the performance of the generator is not affected significantly.  That is due to the fact that the

time spent rehashing is small compared to the overall execution time.  Because of rehashing,

the number of states generated is not limited by any predefined hash table size.

Queue

The queue data structure is used to store the set of unexplored states.  The data

structure for storing the set of unexplored states was much easier to develop than the data

structure for the set of generated states, since no searches or lookups are required, only

insertions and deletions.  A natural structure that has a constant insertion and deletion time is

a special type of list named a queue.  A queue was chosen not just because of the constant

insertion and deletion times, but also because states are added to the end of the queue and

removed from the front of the queue.  By using this insertion and deletion policy, the state

space is generated in a breadth-first manner.

An interesting modification used in the state-space generator implementation of the

queue is dynamic resizing.  As with the hash table, there is no a priori information about the

total number of states in the state-space of the model, so it is necessary that it be possible to

change the queue size during state generation.  In particular, our implementation assumes a

fixed size to start.  If this size is exceeded, a new queue structure is created, and the states in

the old structure are copied to the new structure.  The number of times a new structure needs

to be generated is minimized by doubling the queue size each time a new structure is

produced.

4.2.3. Deterministically distributed actions

Three types of actions are supported in the Möbius state-space generator:

exponentially and deterministically distributed timed actions and instantaneous actions.
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Chapter 3 presented an algorithm that can directly be used for models’ with exponentially

distributed and instantaneous actions.  Special attention is needed, however, to support

deterministically distributed actions.  In particular, when a model contains deterministic

actions, the algorithm presented in Chapter 3 must be modified in a manner similar to that in

[10] to generate the state space.  More specifically, in this instance, the state-space generator

generates a Markov regenerative process.  To produce this process, modifications were needed

in both the data structures and the output file.  In particular, a new list data structure was

added that keeps track of every state of the process, which enables a deterministic action.  The

generator uses this list when writing the generated process to disk.  The format of the state-

transition rate matrix file for a Markov regenerative process is similar, but not identical, to

that for Markov processes.  When an action is deterministic, the probabilities (rather than

rates, as with exponentially distributed actions) to the next tangible state are written to disk.

Each of these probabilities is appended with a minus sign to signal to the numerical solver that

it is a probability instead of a rate.  Additionally, a new file is produced containing the

information about which deterministic action (if these is more than one) was enabled in a state

and its associated deterministic parameter.  Appendix B explains these files in more detail.

4.3. Output Formatting

The third and final stage of execution in the state-space generator is output formatting.

In this stage, the files containing the state-transition rate matrix and reward file that were

written during the state and reward generation stage are rewritten to the format specified by

the user of the state-space generator.   The state generator application supports six file formats

as shown in Table 1.  See Appendix B for more specifics on these output formats.

The importance of supporting multiple file formats lies within the numerical solution

techniques that are used to solve the generated models.  In particular, different numerical

techniques require different types of access to the state-transition rate matrix (e.g., row-only,

column-only, or both row and column) to obtain a solution.  The choice of an efficient data

structure thus depends on the particular solution method employed.  Because of this, many

different solvers will go as far as converting the input state-transition rate matrix from



22

Table 1: State-Space Generator File Formats

ASCII Row Format

Binary  Row Format

ASCII Column Format

Binary Column Format

ASCII Möbius Format

Binary Möbius Format

its written form to a new form for solution.

The state-space generator has tried to provide many different file formats to avoid, as

much as possible, the need for the conversion used by some numerical solvers.  In addition to

the different forms of the state-transition rate matrix, both ASCII and binary file types are

available.  ASCII files can be used when the files are needed over multiple platforms having

different byte orderings.  Binary files are available for single-platform use and can

significantly decrease the amount of time needed to read in the file from disk.

The three formats for the state-transition rate matrix that the state-space generator

supports are row format, column format, and the Möbius format.  A file in row format

contains the state-transition rate matrix in a form such that for every state, all outgoing states

and rates are listed.   Similarly, a file in column format lists the state-transition rate matrix

such that for every state all incoming states and rates are listed.  The Möbius file format also

lists the state-transition rate matrix in column format, but adds three pieces of information: the

maximum rate in the system, the total number of outgoing transitions, and for every state, the

sum of all outgoing rates.  These additions allow the use of popular numerical solvers, such as

the successive-over-relaxation steady-state solver, that need to pass through a data file twice

in row or column format, to pass through the file once.
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Figure 5: State-Space Generator Input

4.4. User Interface

Along with the underlying C++ implementation of the state-space generator in the

Möbius tool, a Java interface was developed.  The interface provides a simple and easy-to-use

gateway to the state generation routine.  The interface also provides an assortment of useful

debugging options, execution options, file format options, and state generation information, as

shown in Figure 5.  The specific functionality of these options and more detail about the user

interface is explained in Appendix A.

In addition to useful debugging and model-execution viewing features, the state

generator interface displays the process of state generation during the generator’s execution,

as shown in Figure 6.  To do this, the state-space generator process communicates the current
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Figure 6: State-Space Generator Output

number of states generated to the Java interface as states are generated.  Additionally, the

interface allows for termination of the state-space generator process during execution.  These

features are useful for a modeler when executing, debugging, and analyzing the state-space of

a model.
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5. RESULTS AND COMPARISONS

In this chapter, we compare the space/time performance results of the state-space

generator we developed with the state-space generator in UltraSAN.   The main focus is on

comparing their relative memory usage and total CPU time usage.  While the particular state

spaces generated were not important to this comparison, they were compared and found to be

identical.  Both generators were executed on an HP C160 workstation using a 160-MHz PA-

RISC 2.0 processor.  This workstation is equipped with 768 MB of main memory and 1 GB of

virtual memory, and is directly connected to fast-wide SCSI disks.  During result gathering,

the systems had insignificant additional loads from other users.  Two models were

investigated: the Kanban model consisting of a single atomic model, and the faulty processor

model.  Each model had one state-based reward variable defined on it.

5.1. Kanban Model

The first model used for these comparisons is one previously used by Ciardo and

Tilgner [12] to illustrate a Kronecker-based approach to generalized stochastic Petri nets.  The

model, referred to as the Kanban model, represents a simple factory production line.  The

model is divided into four stages.  At each stage, an object either completes, moves to another

stage, or returns to be worked on again.  Objects leaving stage one may enter either stage two

or stage three.  Objects are recombined in the final stage, after proceeding through stage two

or three.  A SAN representation of this model is shown in Figure 7.  The capacity of each state

within the model is governed by the value of the Kanban places.  By modifying the value of

these places using global variables, we can observe how varying the capacity of the stages

affects the overall throughput of the system.

We begin the investigation of the state-space generator performance on this model by

varying the number of tokens in the Kanban places between one and six.  This is done using a

global variable within the model.  Since there are four Kanban places in the model, this global

variable also varies the total number of tokens in the model between four and twenty-four in
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steps of four tokens.  Increasing the number of tokens in the model increases the total number

of states in the model dramatically, as shown in Table 2.  As expected, increasing the number

of states greatly increases the amount of memory the state-space generator needs to store the

states of the model, and the time spent storing and checking generated states.  This effect is

shown in Figures 8 and 9.

Figure 7: Kanban Model

Table 2: Number of States Produced by Kanban Model

Global Variable Value N, Initial Number

of Tokens in Kanban Places

Number of States

Generated

1 160

2 4,600

3 58,400

4 454,475

5 2,546,432

6 11,261,376
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Figure 8: Generation Time Plot for Kanban Model

Figure 9: Memory Usage Plot for Kanban Model
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As seen in these figures, the Möbius state-space generator provides a significant

performance improvement over the UltraSAN state-space generator for both memory usage

and total generation time.  On average, the Möbius state-space generator was about twice as

fast as the UltraSAN generator.  For the cases with three to five initial tokens in the Kanban

places, the Möbius generator needed, on the average, one-quarter the memory needed to

generate the same number of states using UltraSAN.  When the initial place markings of the

Kanban places were 1 and 2, the Möbius generator used more memory than UltraSAN, due to

the initial amount of memory allocated by the Möbius state-space generator.   Finally, note

that the Möbius state-space generator was able to produce the state space for the Kanban

model when the initial number of tokens in the Kanban places was 6.  The state space

produced had 11,261,376 states.  Extrapolating from the UltraSAN results for lesser initial

markings, we believe the UltraSAN state generator would need approximately 4.5 GB of

memory for this configuration, while the Möbius state-space generator needed 684 MB.

Another important comparison is the difference in the number of bytes per state and

seconds per state needed by the two state-space generators.  The results of these comparisons

are shown in Figures 10 and 11.   Figure 10 shows the number of states generated per second

as the initial number of tokens in the Kanban places is varied from 1 to 6.   After the initial

time transient associated with the allocation of the initial block of memory, the states-per-

second value approaches a constant value for this model.  One reason a constant value is

approached for the Kanban model is that the amount of time needed to execute the hash

function stays the same as the number of states grows, since the number of memory values

used as input into the hash function remains the same.  Additionally, for this model, few

collisions in the hash table occur, so that on average new states are inserted into the hash table

in constant time.   Figure 11 shows the number of bytes of memory used per state when

processing various Kanban models.   This plot shows that when the amount of memory

initially allocated becomes small compared to the total memory usage, the curve approaches a

constant value of 64 bytes per state, with the amount of memory needed for storage of

individual states being 32 bytes.
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Figure 10: States per Second for Kanban Model

Figure 11: Bytes per State Needed for Kanban Model
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5.2. Faulty Processor Model

The “faulty processor” model, found in [3], was also used to test the Möbius state-

space generator.  In this model, tasks for the faulty processor arrive as a Poisson process to a

queue of certain capacity.  If the queue is full, the task is rejected.  The processor removes

tasks from the queue on a FIFO basis.  The processor can process at most two tasks at a time.

If one task is processed at a time, correct processing is guaranteed.   If two tasks are processed

at a time, there is a chance of a processing error.  A task that is processed incorrectly remains

in the processor for processing.    Figures 12 and 13 show the SAN representation of the

processor itself and the job arrival process, respectively.

Figure 12: Faulty Processor Model

Figure 13: Faulty Processor Job Arrival Model
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Figure 14: Faulty Processor Composed Model

The faulty processor model was used to test the scalability of the state-space generator,

since this model can be used with the composed model editor in UltraSAN.  The replicate/join

formalism is one example of a composed model constructor available in the Möbius tool.  The

composed model used in this experiment is shown in Figure 14.  By jointly varying the size of

the buffer (controlled by global variable “size”) and the number of processors (controlled by

global variable “num_processors”), we can generate a series of models with approximately the

same state-space sizes, but with different numbers of replications.  These results can be used

to study the performance impact on both state generator implementations, of an increase in the

amount of memory needed to store.  The global variable settings and resulting model

characteristics are shown in Table 3.

Table 3: Composed Faulty Processor Model Settings and Characteristics

Global Variable

num_processors

Global Variable

size

States

Generated

State Size

(bytes)

1 20,000 180,009 9

2 4000 180,045 15

3 1090 180,015 21

4 362 179,685 28

5 138 178,893 35
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The performance results for this model were compared to the UltraSAN state-space

generator.  These results are listed in Table 4.  As with the Kanban Test model, the results are

excellent, showing an average speedup of 1.5 times while using approximately one-quarter the

memory needed to generate the same state space in UltraSAN.

The main reason this model was chosen was to investigate states generated per second

and bytes per state when state size increases while the number of states is kept approximately

constant.  As expected, both implementations show a nearly linear increase in bytes per state

as the state size increases, as shown in Figure 15, since the storage of the number of places in

the model, and hence the state size, grows linearly with the number of processor submodels.

The decreasing slope of the curve is due to the number of states for 4 and 5 processors being

slightly smaller than for 1, 2, and 3 processors.  Note that the Möbius state-space generator

requires much less overall memory.  In particular, for this model, both the absolute memory

per state and the rate of growth of memory per state are less for the Möbius generator than the

UltraSAN.  Specifically, the Möbius state-space generator needs approximately 2.9 bytes of

storage for every byte in the state size as compared to 13.6 bytes needed by UltraSAN.  As

seen in Figure 16, the states generated per second by both generators decrease as the state size

increases.  In the case of the Möbius state-space generator, this decrease in state generation

rate can be attributed to the extra computation time needed to execute the hash function for

larger state sizes.  Therefore, a larger state size will cause more computations in the algorithm

and thus increase the time needed to generate the state space of a model.

Table 4: Performance Results of Composed Faulty Processor Model

Möbius State-Space
Generator

UltraSAN State-Space
Generator

Global Variable
num_processors

Global
Variable

size Time
(seconds)

Memory
(MB)

Time
(seconds)

Memory
(MB)

1 20000 33 7.6 67 34.2

2 4000 73 8.5 116 39.8

3 1090 127 9.2 177 44.3

4 362 191 10.9 253 47.8

5 138 268 12.4 353 50.7
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Figure 15: States Generated per Second for Composed Faulty Processor Model

Figure 16: Bytes per State Needed for Composed Faulty Processor Model
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As evidenced by the results for the Kanban and faulty processor models, the increased

generality and abstraction of the Möbius tool do not decrease its space and time performance.

In fact, Möbius outperforms UltraSAN’s state-space generator in both dimensions.  Of

particular importance is the decreased memory usage, which will allow larger state spaces to

be generated with the same amount of memory.  By using innovative data structures and an

optimized formalism-generic algorithm, we have been able to produce a full-featured,

formalism-independent generation engine
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6. CONCLUSION AND FUTURE RESEARCH

The objective of the work presented here was to develop a formalism-generic state-

space generation algorithm that supports multiple action distribution types and also performs

well by reducing the amount of time and memory needed for state generation.  These

objectives were achieved by:

a) Creating a state-space generation algorithm that is formalism-generic and that uses

the methods provided by the Möbius tool.

b) Developing efficient data structures and code optimizations.

c) Implementing a state-space generator that supports exponential and deterministic

timed actions as well as instantaneous actions.  The instantaneous actions use the

Möbius execution policy to decide what to execute during multiple enablings.

d) Supporting the state-space generation algorithm by designing a graphical user

interface with useful debugging, analysis, and output features.

e) Implementing multiple output format types for the state-transition rate matrix,

including the new Möbius format that speeds execution of numerical solvers.

f) Optimizing the performance characteristics of the formalism-generic state-space

generator to exceed those of comparable formalism specific tools.

The utility of the Möbius state-space generator is shown by the performance results of

the previous chapter.  In every experiment for both models examined, the state-space

generator substantially outperformed the UltraSAN state-space generator using identical

models.  In the future, the Möbius state-space generator can further be used to show

performance results for multiformalism state-space generation.

Additional areas of research and additions could be explored.  Specific to the state

generation routine itself, additional data structure modifications could be implemented to

combine the queue and hash table by using a flag on the hash table to signal whether a state is

generated or unexplored.  This implementation may save a significant amount of memory but

would add additional complexity.
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On-the-fly solution methods for transient solutions, another area of research, are

currently being researched and are used to solve large models that have state spaces too large

to fit in memory.  For example, certain reliability models can be solved using this method.

The Möbius state-space generator supports these new solution methods by allowing the

designer to derive, using the C++ polymorphism properties, a new state generation routine.

Thus, the designer could still use all the functionality in the state-space generator and just add

the new methods to solve for the transition probability vector to determine transient measures,

while at the same time generating only the states necessary for solution.

Another area of future research is phase-type distributions in state-space generation.

We have performed research on this subject, including overview reading and a prototype

implementation.   We believe that this area of research may make it possible to model

empirical data with a phase-type distribution, and to generate the state space of the model

containing this distribution.  The implementation of the Möbius state-space generator provides

an easy and extensible interface for these future areas of research.
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APPENDIX A:  STATE-SPACE GENERATOR USER’S MANUAL

A.1. Möbius State-Space Generation

Before any of the analytic solvers may be used, the Möbius state-space generator must

be executed to produce the state-transition rate matrix of a model’s stochastic process.   The

Möbius state-space generator’s output, which the solvers subsequently use as an input file,

consists of two files for Markov processes and three files for Markov regenerative processes.

The format of these files is explained in Appendix B.  Once the Möbius state-space generator

is installed, it may be selected from the “Solver” menu on the Möbius control panel.  When a

new state-space generator is created, the user is prompted for the name of the study file to

open as the top-level model.  An interface is then presented, which makes use of two tabs.

The first tab is used to set input options used during state-space generation.  The second tab

shows the progress of state generation.

A.2. Installing the Möbius State-Space Generator Module

To install the Möbius state-space generator into the Möbius menu on the control panel,

select “Add Module” from the “Modules” menu on the control panel, and fill in the entries as

shown in Figure 17.

        Figure 17: Adding the State-Space Generator Module

The entry for Package Name is Mobius.State.SpaceGenerator.  The entry for Class

Name is StateSpaceGeneratorInterface.class.
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In order to use the state-space generator, the user must be able to remotely log into a

computer and run Java with the proper CLASSPATH settings to include the Möbius classes.

This setting may be set either for an entire system or on a per-user basis using startup scripts.

To test this ability, execute the following command from a terminal prompt:

<remote shell command> <system name> java Arch m o

This should return the system architecture and operating system of the remote system.

The proper command-line Java must also be used to allow the state-space generator to

operate reliably. In particular, the maximum native stack size and maximum Java heap size

should be specified.  The following startup line is recommended:

java -ss1M -mx64M StartMobius

The maximum heap size option (mx) may be adjusted larger, but caution is advised in

allocating a larger native state size (ss).

A.3. State-Space Generator Input

The editor is accessed from the File→New→Solver→StateSpaceGenerator menu item

on the control panel.  Once this command is executed, a file dialog will appear, in which a

user must specify the file name for either a range or set study.  Once a valid study is provided,

the panel shown in Figure 18 is presented.  This panel allows the specific parameters of the

state-space generation to be specified and also displays the names of the experiments

associated with the study.

State-space generation parameters include:

• Study Class File Name.  The study class file name is the location of the saved

study file for the current state-space generation.

• State-space Directory.  The state-space directory is the directory in which the

state-transition rate matrix file, the reward output files, and the generator message

output file are saved.  If a directory is not specified before the OK button is

pressed, then the user will be prompted to enter a directory.
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Figure 18: State-Space Generator Input Panel

• Output File Name.  The output file name is the file used to store all the messages

the state-space generator produces during execution.

• Hash Value.  The hash value is the fraction of the hash table that is allowed to fill

before a rehash occurs during execution of the state generation routine.  This value

can be between 0.1 and 0.9.  A default value of 0.5 is used if no value is specified.

• File Format.  The file format choice box sets the output format in which the state-

transition rate matrix is written.  The reward file is written in ASCII or binary

depending on the format type specified.  See Appendix B for a detailed description

of these formats.

• Verbosity.  The verbosity choice box allows various levels of output from the

state-space generator.  Allowable values are as follows:

None:  No output information is provided.
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1:  Provides the state number and its state variable values for every state

generated.

2:  Provides information about the dynamic reallocation of the data structures

used in the state-space generator.

3:  Provides detailed output of every action enabled in a state, the resulting

states, and their rates or parameters.  The user must check the “Run in

Background” checkbox to use this verbosity level.

• Flag Absorbing States.  When this checkbox is selected, all states in which no

actions are enabled will be displayed.  Detection of absorbing states is useful for

debugging the model.

• Run in Background.  This checkbox allows the state-space generation process to

be run in the background, independent of the Java interface.  When this box is

checked, no execution information is displayed on the state-space generator

interface.

• Place Comments in Output.  When this box is checked, the comments entered

using the “edit comments button” are displayed in the generator message output

file.

• Build Only (Do Not Execute).  When this box is checked, an executable for the

generation of the state space is created.  The state space is not generated in this

case.

• Edit Comments.  This button produces a new frame in which comments can be

entered and then are displayed when the Place Comments in Output box is

checked.

• OK.  This button begins the state-space generator execution.

• Cancel.  This button closes the state-space generator interface.

A.4. State-Space Generator Output

The state-space generator output tab, shown in Figure 19, allows the user to stop the

state generation and also displays execution information.  When the user starts state
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Figure 19: State-Space Generator Output Panel

generation by pressing the OK button, the interface validates all the entries that the

user has selected to ensure proper operation.  Any errors are displayed.   After validation, the

state-space generator compiles the  source  code  to  produce  the  state  space generation

executable.   Then, while the generator executes, information about the progress of the

generation process is displayed.  Specifically, the progress bar increments for every one

thousand states generated, and the “States Generated” display is updated after every one

thousand states to show the number of states generated.  The user may halt execution during

state generation by pressing the Stop button.
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A.5. State-Space Generator Tips and Tricks

The state-space generator is quite usable in its current form; however, some advice is

necessary to achieve optimal performance and functionality.

• If your system has a large amount of memory and the expected state space is not

excessively large, then set the hash value smaller than 0.5.  An ideal value is 0.3;

however, note that more memory is required for smaller values of the hash value.

• Make sure the model has a finite state space by putting limits on values in state

variables.

• Realize that the number of states in a model is influenced by the introduction of

action-based rewards.  The generated number of states may therefore be higher

than it would be without action-based reward variables.

• Explore all possibilities to reduce the state-space size, as a smaller state-space size

speeds up all analytic solvers.  In particular, try to model the system with the help

of the composed model constructor, which may reduce the number of states.
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 APPENDIX B:  STATE-SPACE GENERATOR OUTPUT FORMATS

This appendix gives the format of the output files that can be generated by the Möbius

state-space generator.  An understanding of these files may prove helpful in debugging

models, and can also be used to link to a numerical solver.  The generated stochastic process

is contained in two or three files, depending on whether the model contains deterministic

actions.  Specifically, these files are:  the file containing the state-transition rate matrix, the

reward file, and the file used to store deterministic values if a Markov regenerative process is

produced.

B.1. State-Transition Rate Output Formats

The files containing the state-transition rate matrix have details about the total number

of states, the connectivity between states, and their rates (if all actions are exponential) or

probabilities (if deterministic activities are used).  The format of these files is explained in this

section.  Each explanation is presented in the form of a table of contents of the file, with each

numbered item appearing on a new line starting from line No. 1 for each file type.  The names

of the files follow this format:

<"experiment name">.<extension>

Each section shows the specific extension for each format.

ASCII Row Format   <"experiment name">.arm

1. A 1 in line 1.

2. The total number of states in the model under consideration.

3. State number of the current state.

4. The next possible state.

5. The rate from the current state to the state specified in item 4, if the associated

action is exponential.  If it is deterministic, a minus sign precedes the number in

this line and should be interpreted as follows: The absolute value of the number in

this line now gives the conditional probability that the deterministic action
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completes going from the current state to the state specified in item 4.  The time of

the deterministic action is stored in the <”experiment name”>.det  file (see

below).

6. Items 4 and 5 are repeated, each on a separate line, for all remaining next states

and rates from the state in item 3.

7. A 0 to mark the end of the possible next states from the state in item 3.

8. Items 3 through 7 for all states in the model.

Binary Row Format   <"experiment name">.brm

1. An  ASCII 2 in line 1.

Items 2-8 are the same as for the ASCII row format, except the values are written in

binary form.

ASCII Column Format   <"experiment name">.acm

1. A 3 in line 1.

2. The total number of states in the model under consideration.

3. State number of the current state.

4. The next possible state.

5. The rate into the current state from the state specified in item 4, if the associated

action is exponential.  If it is deterministic, a minus sign precedes the number in

this line and should be interpreted as follows: The absolute value of the number in

this line now gives the conditional probability that the deterministic action

completes going to the current state from the state specified in item 4.  The time of

the deterministic action is stored in the <”experiment name”>.det  file (see

below).

6. Items 4 and 5 are repeated, each on a separate line, for all remaining next states

and rates into the state in item 3.

7. A 0 to mark the end of the possible next states from the state in item 3.

8. Items 3 through 7 for all states in the model.
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Binary Column Format   <"experiment name">.bcm

1. An ASCII 4 in line 1.

Items 2-8 are the same as for the ASCII column format, except the values are written

in binary format.

ASCII Möbius Format   <"experiment name">.amm

1. A 5 in line 1.

2. The total number of states in the model under consideration.

3. The maximum departure rate in the system.

4. The total number of outgoing transitions in the model.

5. State number of the current state.

6. Number of non-self transitions into the state.

7. The total departure rate from the state.

8. The next possible incoming state.

9. The rate into the current state from the state specified in item 4, if the associated

action is exponential.  If it is deterministic, a minus sign precedes the number in

this line and should be interpreted as follows: The absolute value of the number in

this line now gives the conditional probability that the deterministic action

completes going to the current state from the state specified in item 4.  The time of

the deterministic action is stored in the <”experiment name”>.det  file (see

below).

10. Items 8 and 9 are repeated each, on a separate line, for all remaining next states

and rates into the state in item 5.

11. Items 5 through 11 for all states in the model.

Binary Möbius Format   <"experiment name">.bmm

1. An ASCII 5 in line 1.
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Items 2-12 are the same as for the ASCII Möbius format, except the values are written

in binary format.

B.2.  Reward Variable File

The reward variable file for the Möbius state space generator contains all the

information about the performance variables and the rewards (state-based and action-based)

for all states.  The file is written in either ASCII or binary depending on the corresponding

type selected for the state-transition rate matrix associated with the reward file.  The name of

the reward file uses the following convention:

<"experiment name">.var

The format and contents of this file are as follows, with each numbered item appearing on a

separate line, beginning with line No. 1.

1. Name of performance variable as it appears in the reward model editor, one per

line for each performance variable defined in the model.

2. A state number.

3. Action-based reward for performance variable whose state is item 2.

4. State-based reward for performance variable whose state is item 2.

5. Items 3 and 4 for each of the performance variables defined, beginning with the

first performance variable.

6. Items 2 through 5 for all states of the model.

B.3. Deterministic Parameter File

When the model has deterministic actions, the state-space generator will output a file

containing the deterministic parameters.  If the model does not contain any states in which the

deterministic action is enabled, then the file will contain a single 1.  The name of the file

follows this convention:

<"experiment name">.det
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The format for the rest of the file is as follows, with each enumerated item appearing on a new

line starting from line No. 1.

1. A 1 to denote that the model has enabled deterministic actions.

2. The time for an enabled deterministic action.

3. All states in which a deterministic action can complete with the time value in item

2.

4. A 0 to mark the end of all possible states with the time value in item 2.

5. If more than one deterministic action exits, then repeat items 2 through 4 for each

deterministic action.
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